
IEOR 6711: Stochastic Models I

Fall 2013, Professor Whitt

Lecture Notes, Thursday, September 5

Modes of Convergence

1 Overview

We started by stating the two principal laws of large numbers: the strong and weak forms,
denoted by SLLN and WLLN. We want to be clear in our understanding of the statements; that
led us to a careful definition of a random variable and now a careful examination of the basic
modes of convergence for a sequence of random variables. We also want to focus on the
proofs, but in this course (as in the course textbook) we consider only relatively simple proofs

that apply under extra moment conditions. Even with these extra conditions, important
proof techniques appear, which relate to the basic axioms of probability, in particular, to
countable additivity, which plays a role in understanding and proving the Borel-Cantelli

lemma (p. 4) . We think that it is helpful to fucus on these more elementary cases before
considering the most general conditions.

Key reading for the present lecture: §§1.1-1.3, 1.7-1.8, the Appendix, pp. 56-58.

2 Modes of Convergence

As general background, we need to understand the relation among the basic modes of conver-
gence for a sequence of random variables. The main idea is to realize that there is more than
one mode of convergence.

Consider the following limits (as n → ∞):

(i) Xn ⇒ X (convergence in distribution)

Definition: That means Fn(x) → F (x) for all x that are continuity points of the cdf F ,
where Fn(x) ≡ P (Xn ≤ x) and F (x) ≡ P (X ≤ x). A point x is a continuity point of F if (and
only if) F does not have a jump at x, i.e., if F (x) = F (x−), where F (x−) is the left limit of
F at x. (Recall that F is right continuous by definition; since it is monotone, the left limits
necessarily exist.)

(ii) EXn → EX (convergence of means)

This is just convergence for a sequence of numbers; the mean is only a partial summary
of the full distribution. Obviously convergence of means is a relatively weak property. The
meaning of convergence of a sequence of numbers should be clear:

lim
n→∞

xn = x

means that: for all ǫ > 0, there exists an integer n0 ≡ n0(ǫ) such that, for all n ≥ n0,
|xn − x| < ǫ.

(iii) E[|Xn − X|] → 0 (convergence in the mean, convergence in L1)

This is convergence in the mean: for all ǫ > 0, there exists an integer n0 ≡ n0(ǫ) such that,
for all n ≥ n0, E[|Xn − X|] < ǫ.

We also sometimes consider convergence in the pth mean, especially for p = 2.



(iii’) E[|Xn − X|p] → 0 (convergence in the pth mean, convergence in Lp)

(iv) P (Xn → X) = 1 (convergence w.p.1)

This is convergence with probability one (w.p.1). Elaborating, we are saying that

P ({s ∈ S : lim
n→∞

Xn(s) = X(s)}) = 1 ,

where the limit inside is for a sequence of real numbers (for each s), and thus defined just as
in (ii) above. (Here we use S for the underlying sample space. I alternate between S and Ω.)

(v) Xn → X in probability

Here is a definition: For all ǫ > 0 and η > 0, there exists an integer n0 such that, for all
n ≥ n0,

P (|Xn − X| > ǫ) < η .

In general, convergence in probability implies convergence in distribution. However, when
the limiting random variable X is a constant, i.e., when P (X = c) = 1 for some constant
c, the two modes of convergence are equivalent; e.g., see p. 27 of Billingsley, Convergence of
Probability Measures, second ed., 1999.

References on this topic. limits for sequences of numbers: Chapter 3 of Rudin, Principles
of Math. Analysis

limits for sequences of functions: Chapter 7 of Rudin, Principles of Math. Analysis

convergence concepts: Chapter 4 of Chung, A Course in Probability Theory

expectation and convergence of random variables: some of Chapters V and VIII of Feller
II

related supplementary reading: Billingsley, Probability and Measure, Chapters 1, 6, 14, 21,
25

3 Relations Among the Modes of Convergence

Consider the following limits (as n → ∞):

(i) Xn ⇒ X (convergence in distribution)
(ii) EXn → EX (convergence of means)
(iii) E[|Xn − X|] → 0 (convergence in the mean, also known as convergence in L1, using

standard functional analysis terminology)
(iv) P (Xn → X) = 1 (convergence with probability 1 (w.p.1))
(v) Xn → X in probability (convergence in probability)

What are the implications among these limits? For example, does limit (i) imply limit (ii)?

———————-
See Chapter 4 of Chung, A Course in Probability Theory for a discussion of convergence

concepts. The following implications hold:
(iv) → (v) → (i), (iii) → (ii) and (iii) → (v) → (i)
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Figure 1: Relations among the five modes of convergence for a sequence of random variables:
Xn → X as n → ∞.

We remark that convergence in probability is actually equivalent to convergence in distri-
bution, i.e., also (i) implies (v), for the special case in which the limiting random variable X
is a constant. That explains why the WLLN can be expressed as convergence in distribution.

For all the relations that do not hold, it suffices to give two counterexamples. These
examples involve specifying the underlying probability space and the random variables Xn and
X, which are (measurable) functions mapping this space into the real line R. In class we used
pictures to describe the functions, where the x axis represented the domain and the y-axis
represented the range. In both examples, the underlying probability space is taken to be the
interval [0, 1] with the uniform probability distribution.

Counterexample 1: To see that convergence with probability 1 (w.p.1) (iv) does not
imply convergence of means (ii) (and thus necessarily convergence of means (iii)), let the
underlying probability space be the unit interval [0, 1] with the uniform distribution (which
coincides with Lebesgue measure). Let X = 0 w.p.1 and let Xn = 2n on the interval (an, an +
2−n) where an = 2−1 + 2−2 + · · · + 2−(n−1) with a1 = 0, and let Xn = 0 otherwise. Then
P (Xn → X ≡ 0) = 1, but E[|Xn − X|] = EXn = 1 for all n, but EX = 0. (To see that
indeed P (Xn → X ≡ 0) = 1, note that the interval on which Xk is positive for any k > n
has probability going to 0 as n → ∞.) We could make E[Xn] explode (diverge to +∞ if we
redefined Xn to be n2n where it is positive.

From the example above, it follows that convergence in probability (v) does not imply
convergence of means (ii) and that convergence in distribution (i) does not imply convergence
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of means (ii).

However, convergence in distribution (i) does imply convergence of means (ii) under extra
regularity conditions, namely, under uniform integrability. See p. 32 of Billingsley, Convergence
of Probability Measures, 1968, for more discussion. If Xn ⇒ X and if {Xn : n ≥ 1} is uniformly
integrable (UI), then E[Xn] → E[X] as n → ∞. The online sources give more.

For a sample paper full of UI issues, see
Wanmo Kang, Perwez Shahabuddin and WW. Exploiting Regenerative Structure to Es-

timate Finite Time Averages via Simulation. ACM Transactions on Modeling and Computer
Simulation (TOMACS), vol. 17, No. 2, April 2007, Article 8, pp. 1-38.

Available at: http://www.columbia.edu/∼ww2040/recent.html

Counterexample 2: To see that convergence in the mean (iii) does not imply convergence
w.p.1 (iv), again let the underlying probability space be the unit interval [0, 1] with the uniform
distribution (which coincides with Lebesgue measure). Let X = 0 w.p.1. Somewhat like before,
let Xn = 1 on the interval (an, an +n−1) where an = an−1 +(n−1)−1 mod 1, with a1 = 0, and
let Xn = 0 otherwise. (The mod1 means that there is “wrap around” from 1 back to 0.) (To
see that indeed P (Xn → X ≡ 0) = 0, note that the Xk = 1 infinitely often for each sample
point. On the other hand, E[|Xn − X|] = EXn = 1/n → 0 as n → ∞.

4 Reducing Everything to Convergence w.p.1

An important unifying concept is the Skorohod Representation Theorem; it shows how con-
vergence in distribution can be expressed in terms of convergence w.p.1. See homework 1.
Also see Section 1.3 of the Internet Supplement to my book, available for downloading from
my web page. It might also be helpful to read the introduction (3 pages) to my paper, “Some
Useful Functions for Functional Limit Theorems.” Mathematics of Operations Research, vol.
5, No. 1, February 1980, pp. 67-85. This is also available for downloading. Both these sources
point to the power of these ideas in the general context of stochastic processes instead of just
real-valued random variables.

5 Proof of the SLLN

5.1 Moment Inequalities

We now turn to the proof of Theorem ??. To appreciate the extra conditions in Theorem ??

above, you want to know the following moment inequality.

Theorem 5.1 Suppose that r > p > 0. If E[|X|r ] < ∞, then E[|X|p] < ∞.

Theorem 5.1 follows from:

Theorem 5.2 Suppose that r > p > 0. Then

E[|X|p] < (E[|X|r ])p/r .

Theorem 5.2 follows from Hölder’s inequality:

4



Theorem 5.3 Suppose that p > 1, q > 1 and p−1 + q−1 = 1. Suppose that E[|X|p] < ∞ and
E[|Y |q] < ∞. Then

E[|XY |] ≤ (E[|X|p])1/p(E[|Y |q])1/q .

Hölder’s inequality in Theorem 5.3 can be proved by exploiting the concavity of the log-
arithm. To apply Hölder’s inequality, replace X by Xp and Y by 1. Let the exponents be
r/p > 1 and q such that (1/q) + (p/r) = 1.

Google the law of large numbers and Hölder’s inequality.

5.2 The Proof in the Appendix to Chapter 1 in Ross

The proof is given on pages 56-58 of Ross. The key idea is to apply the Borel-Cantelli lemma,
Proposition 1.1.2 on p. 4, as Ross indicates on the bottom of p. 57. For further discussion, let
the mean be 0. We apply the Borel-Cantelli Lemma to show that, for all ǫ > 0,

P (|Sn/n| > ǫ infinitely often) = 0. (1)

We do so by showing that
∞
∑

n=1

P (|Sn/n| > ǫ) < ∞. (2)

There are two remaining issues: (1) How do we establish this desired inequality in (2), and
(ii) Why does that suffice to prove (1)?

To see why it suffices to prove (1), define the events

Ak ≡ {s ∈ S : |Sn(s)/n| > 1/k infinitely often}, k ≥ 1.

Here “infinitely often” mean for infinitely many n. We observe that

{s ∈ S : Sn(s)/n → 0 as n → ∞}c =

∞
⋃

k=1

Ak.

However, by the continuity property of increasing sets, Proposition 1.1.1 on p. 2 of Ross, which
itself is equivalent to the fundamental countable additivity axiom, we have

P

(

∞
⋃

k=1

Ak

)

= lim
K→∞

P

(

K
⋃

k=1

Ak

)

= lim
K→∞

P (AK) .

Hence, it suffices to show that P (AK) = 0 for each K, which is equivalent to (1).
Now we turn to the second point: verifying (2). Now we exploit Markov’s inequality, using

the fourth power, getting

P (|Sn/n| > ǫ) <
E[S4

n]

n4ǫ4
.

We then show that E[S4
n] ≤ Kn2. (Details are given in Ross.) Hence,

P (|Sn/n| > ǫ) < K ′/n2

for some new constant K ′. Thus we can deduce the required (2). (Note that this argument
does not work if we use the second power instead of the fourth power.)
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6 The Continuous Mapping Theorem

a. continuous-mapping theorem [see Section 3.4 of my book online]

Theorem 6.1 If Xn ⇒ X as n → ∞ and f is a continuous function, then

f(Xn) ⇒ f(X) as n → ∞ .

This can be approved by applying the Skorohod representation theorem (homework 1): We
start by replacing the original random variables by the new random variables, say X∗

n and X∗,
on a new underlying probability space that converge w.p.1, and have the property that the
probability law of X∗

n coincides with the probability law of Xn for each n and the probability law
of X∗ coincides with the probability law of X. Then we get convergence f(X∗

n) → f(X∗) w.p.1
by the assumed continuity. But this w.p.1 convergence implies convergence in distribution:
f(X∗

n) ⇒ f(X∗) because w.p.1 convergence always implies convergence in distribution (or in
law). However, since the asterisk random variables have the same distributions as the random
variables without the asterisks, we have the desired f(Xn) ⇒ f(X).

[see Theorem 0.1 in Problem 3 (d) in Homework 1; also see the Skorohod Representation
Theorem at the end of Section 3.2 in my book; see Section 1.3 of the Internet Supplement for
a proof in the context of separable metric spaces]

b. If Xn → X and Yn → Y , does (Xn, Yn) → (X,Y )? [In general, the answer is no, but
the answer is yes if either X or Y is deterministic. The answer is also yes if Xn is independent
of Yn for all n. See Section 11.4 of my book online.]

(c) Some questions:

Suppose that

Vn ⇒ N(2, 3), Wn ⇒ N(1, 5), Xn ⇒ 7 and Yn ⇒ 3 .

(Convergence in distribution as n → ∞)

(a) Does V 2
n ⇒ N(2, 3)2 ? [yes, by continuous mapping theorem; See Section 3.4 of my

book]

(b) Is N(2, 3)2
d
= N(4, 9) , where

d
= means equal in distribution?

[no, square of normal has chi squared distribution]

(c) Does
√

Vne(V 3
n −12V 2

n ) ⇒
√

N(2, 3)e(N(2,3)3−12N(2,3)2)

[yes, again by continuous mapping theorem]

(d) Does Vn + Wn ⇒ N(3, 8) ?
[not necessarily, if Vn and Wn are independent then true]

(e) Does Vn + Xn ⇒ N(9, 3) ? [yes, See Section 11.4 of my book, we first have (Vn,Xn) ⇒
(V,X)]

(f) Does V 4
n (e(X2

n+Y 3
n ) − WnV 13

n + 6 ⇒ N(2, 3)4(e(49+27) − N(1, 5)N(2, 3)13 + 6 ?
[yes, under extra assumptions to get vector convergence: (Vn,Wn,Xn, Yn) ⇒ (V,W,X, Y ),

where random variables on the right are independent (only important for random ones), inde-
pendence suffices; then apply continuous mapping theorem]
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(g) Answer questions (a) - (e) above under the condition that ⇒ in all the limits is replaced
by convergence with probability one (w.p.1).

[almost same answers]

(h) Answer questions (a) - (e) above under the condition that ⇒ in all the limits is replaced
by convergence in probability.

[almost same answer, because there is a w.p.1 representation of convergence in probabil-
ity: Xn → X in probability if and only if for all subsequences {Xnk

} there exists a further
subsubsequence {Xnkj

} such that for this subsequence there is convergence w.p.1 to X.]
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