
IEOR 6711: Stochastic Models I

Professor Whitt, Thursday, September 12

Our Friends: Transforms

1. Our Friends

Identify the following:

(a) generating function (of a sequence)

(b) probability generating function (of a probability distribution or of a random variable)

(c) exponential generating function (of a sequence)

(d) z transform

(e) moment generating function (of a probability distribution or of a random variable)

(f) characteristic function (of a probability distribution or of a random variable)

(g) Fourier transform (of a function)

(h) Laplace transform (of a function)

——————————————-

Answers:

(a) generating function

——————————————–
The generating function of the sequence {an : n ≥ 0} is

â(z) ≡
∞∑

n=0

anzn ,

which is defined where it converges. There exists (theorem) a radius of convergence R such
that the series converges absolutely for all z with |z| < R and diverges if |z| > R. The series
is uniformly convergent on sets of the form {z : |z| < R′}, where 0 < R′ < R.

References: (1) Wilf, Generatingfunctionology, (2) Feller, I, Chapter 11, (3) Grimmett and
Stirzaker, Chapter 5. The book, An Introduction to Stochastic Processes, by E. P. C. Kao,
1997, Duxbury, provides introductory discussions of both generating functions and Laplace
transforms, including numerical inversion algorithms using MATLAB (based on the 1992 and
1995 Abate and Whitt papers).

——————————————–

(b) probability generating function

——————————————–

Given a random variable X with a probability mass function (pmf)

pn ≡ P (X = n) ,



the probability generating function of X (really of its probability distribution) is the generating
function of the pmf, i.e.,

P̂ (z) ≡ E[zX ] ≡
∞∑

n=0

pnzn .

——————————————–

(c) exponential generating function

——————————————–
The exponential generating function of the sequence {an : n ≥ 0} is

âexp(z) ≡
∞∑

n=0

anzn

n!
,

which is defined where it converges; see p. 36 of Wilf.

——————————————–

(d) z transform

——————————————–
A z transform is just another name for a generating function; e.g., see Section I.2, p. 327,

of Appendix I of Kleinrock (1975), Queueing Systems.

——————————————–

(e) moment generating function

——————————————–

Given a random variable X the moment generating function of X (really of its probability
distribution) is

ψX(t) ≡ E[etX ] .

The random variable could have a continuous distribution or a discrete distribution; e.g., see
p. 15 of Ross. It can be defined on the entire real line.

Discrete case: Given a random variable X with a probability mass function (pmf)

pn ≡ P (X = n), n ≥ 0, ,

the moment generating function (mgf) of X (really of its probability distribution) is the gen-
erating function of the pmf, where et plays the role of z, i.e.,

ψX(t) ≡ E[etX ] ≡ p̂(et) ≡
∞∑

n=0

pnetn .

Continuous case: Given a random variable X with a probability density function (pdf)
f ≡ fX on the entire real line, the moment generating function (mgf) of X (really of its
probability distribution) is

ψ(t) ≡ ψX(t) ≡ E[etX ] ≡
∫ ∞

−∞
f(x)etx dx .
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A major difficulty with the mgf is that it may be infinite or it may not be defined. For
example, if X has a pdf f(x) = A/(1 + x)p, x > 0, then the mgf is infinite for all t > 0.

——————————————–

(f) characteristic function

——————————————–
The characteristic function (cf) is the mgf with an extra imaginary number i ≡ √−1:

φ(t) ≡ φX(t) ≡ E[eitX ] .

where i ≡ √−1; see p. 17 of Ross, Chapter 6 of Chung, Chapter XV of Feller II and Lukacs.
The random variable could have a continuous distribution or a discrete distribution.

Unlike mgf’s, every probability distribution has a well-defined cf. To see why, recall that
eit is very different from et. In particular,

eitx = cos(tx) + i sin(tx) .

——————————————–

(g) Fourier transform

——————————————–
A Fourier transform is just a minor variant of the characteristic function. Really, it should

be said the other way around, because the Fourier transform is the more general notion. There
are a few different versions, all differing from each other in minor unimportant ways. Under
regularity conditions, a function f has Fourier transform

f̃(y) =
∫ ∞

−∞
f(x)e−2πixy dx .

Again under regularity conditions, the original function f can be recovered from the inversion
integral

f(x) =
∫ ∞

−∞
f̃(y)e2πixy dy .

For example, see D. C. Champeney, A Handbook of Fourier Theorems, Cambridge University
Press, 1987.

——————————————–

(h) Laplace transform

——————————————–
Given a real-valued function f defined on the positive half line R+ ≡ [0,∞), its Laplace

transform is
f̂(s) ≡

∫ ∞

0
e−sxf(x) dx,

where s is a complex variable with positive real part, i.e., s = u + iv with i =
√−1, u and v

real numbers and u > 0. see Doetsch (1961, 1974) and Chapter XIII of Feller II.
The Laplace transform takes advantage of the fact that X is nonnegative (the density

concentrates on the positive half line), so that it can damp the function. Recall that

e−sx = e−(u+iv)x = e−uxeivx = e−ux[cos(vx) + i sin(vx)], for x ≥ 0 .
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——————————————–

2. Generating Functions

A generating function is a clothesline on which we hang up a sequence of numbers for
display (Wilf, Generatingfunctionology).

Let {an : n ≥ 0} be a sequence of real numbers. Then

â(z) ≡
∞∑

n=0

anzn

is the generating function of the sequence {an : n ≥ 0}.
Questions

(a) At least in principle, how can we get the nth term an back from the generating function
â(z)?

(b) Let the sequence {cn} ≡ {cn : n ≥ 0} be the convolution of the two sequences {an} ≡
{an : n ≥ 0} and {bn} ≡ {bn : n ≥ 0}; i.e.,

cn ≡
n∑

i=0

aibn−i, n ≥ 0 .

Find the generating function of {cn} in terms of the generating functions of {an} and {bn}
(c) Let Xi have a Poisson distribution with mean λi for i = 1, 2. Let X1 and X2 be

independent. Use generating functions to find the distribution of X1 + X2.

(d) Let X1, X2, . . . be IID random variables on the nonnegative integers each with prob-
ability generating function (pgf) P̂X(z). Let N be a random variable on the nonnegative
integers with pgf P̂N (z) that is independent of X1, X2, . . .. What is the generating function of
X1 + . . . + XN?

(e) A hen lays N eggs, where N has a Poisson distribution with mean λ. Suppose that the
eggs hatch independently. Suppose that each egg hatches with probability p. Use generating
functions to find the distribution of the total number of chicks hatched from these eggs.

(f) Use generating functions to prove the identity

(
2n
n

)
=

j=n∑

j=0

(
n
j

)2

(g) Consider the recurrence

an+1 = 2an + n, for n ≥ 0 with a0 = 1 .

What is an?

(h) Consider the recurrence

an+1 = an + an−1, for n ≥ 0, with a0 = 1 and a1 = 1 .
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Find the generating function of the sequence {an : n ≥ 0}. Use generating functions to find a
good approximation for an for large n.

Answers

(a) At least in principle, how can we get the nth term an back from the generating function
â(z)?

—————————————————————–
Look at the nth derivative evaluated at zero:

an = n!â(n)(0), where â(n)(0) ≡ dn

dzn
â(z)|z=0

—————————————————————–

(b) Let the sequence {cn} ≡ {cn : n ≥ 0} be the convolution of the two sequences
{an} ≡ {an : n ≥ 0} and {bn} ≡ {bn : n ≥ 0}; i.e.,

cn ≡
n∑

i=0

aibn−i, n ≥ 0 .

Find the generating function of {cn} in terms of the generating functions of {an} and {bn}
—————————————————————–

ĉ(z) ≡
∞∑

n=0

cnzn

=
∞∑

n=0

[
n∑

i=0

aibn−i]zn

=
∞∑

i=0

[
∞∑

n=i

aibn−i]zn changing the order of the sums

=
∞∑

i=0

aizi
∞∑

n=i

bn−iz
n−i

=
∞∑

i=0

aizi
∞∑

n=0

bnzn

= â(z)b̂(z) .

Recall that we need conditions to justify the interchange. It suffices to have the two series∑∞
i=0 |ai|zi and

∑∞
i=0 |ai|zi be finite for some z > 0, by Fubini.

This problem shows that the generating function of a convolution of two sequences is the
product of the generating functions of the component sequences.

—————————————————————–

(c) Let Xi have a Poisson distribution with mean λi for i = 1, 2. Let X1 and X2 be
independent. Use generating functions to find the distribution of X1 + X2.

—————————————————————–
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First step: The distribution of X1 + X2 is a convolution of the distributions of X1 and X2:

P (X1 + X2 = n) =
n∑

i=0

P (X1 = i)P (X2 = n− i), n ≥ 0.

Next we see that the generating function of Xi (actually of the probability distribution of Xi,
say pn ≡ P (Xi = n)) is

P̂ (z) ≡ P̂Xi(z) ≡ E[zXi ] ≡
∞∑

n=0

pnzn

=
∞∑

n=0

e−λiλn
i

n!
zn

= e−λi

∞∑

n=0

λn
i zn

n!

= e−λieλiz

= eλi(z−1) .

Hence,
∞∑

n=0

P (X1 + X2)zn = P̂X1(z)P̂X2(z) = e(λ1+λ2)(z−1) ,

so that X1 + X2 is again Poisson distributed, but with mean λ1 + λ2.

—————————————————————–

(d) Let X1, X2, . . . be IID random variables on the nonnegative integers each with probabil-
ity generating function (pgf) P̂X(z). Let N be a random variable on the nonnegative integers
with pgf P̂N (z). that is independent of X1, X2, . . .. What is the pgf of Z ≡ X1 + . . . + XN?

—————————————————————–

P̂Z(z) ≡
∞∑

n=0

P (Z = n)zn

=
∞∑

n=0

P (X1 + · · ·+ XN = n)zn

=
∞∑

n=0

[
∞∑

k=0

P (X1 + · · ·+ XN = n|N = k)P (N = k)]zn

=
∞∑

k=0

P (N = k)
∞∑

n=0

P (X1 + · · ·+ Xk = n)zn

=
∞∑

k=0

P (N = k)P̂X(z)k

= P̂N (P̂X(z)) .

Alternatively, in a more streamlined way,

E[zX1+···+XN ] = E(E[zX1+···+XN |N ])
= E(E[zX ]N )
= P̂N (P̂X(z)) .
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—————————————————————–

(e) A hen lays N eggs, where N has a Poisson distribution with mean λ. Suppose that the
eggs hatch independently. Suppose that each egg hatches with probability p. Use probability
generating functions (pgf’s) to find the distribution of the number of chicks.

—————————————————————–
We can apply part (d), because the total number of chicks is the random sum Z = X1+· · ·+

XN . The random variables Xi are the outcome of the ith egg, i.e., Xi = 1 = 1−P (Xi = 0) = p.
Then the pgf of Xi is

P̂X(z) = pz + (1− p) .

Since N is the number of eggs laid, the pgf of N is

P̂N (z) = eλ(z−1) ;

see Part (c) above. Thus

P̂Z(z) = P̂N (P̂X(z)) = eλ([pz+(1−p)]−1) = eλp(z−1) ,

which is the pgf of the Poisson distribution with mean λp.

—————————————————————–

(f) Use generating functions to prove the identity

(
2n
n

)
=

j=n∑

j=0

(
n
j

)2

—————————————————————–
Note that the righthand side can be written as a convolution, because

aj = an−j ,

where

aj =
(

n
j

)
.

Moreover, using the binomial form,

â(z) ≡
j=n∑

j=0

ajz
j = (1 + z)n .

Multiplying the two generating functions, we get (1 + z)2n as the generating function, which
is the generating function of (

2n
k

)
;

i.e.,

(1 + z)2n =
k=2n∑

k=0

zk

(
2n
k

)

Then cn is the coefficient of zn in (1 + z)2n. So we see that the relationship is just convolution
for the specific sequences.
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A few references on combinatorics:

J. Riordan, Introduction to Combinatorial Analysis, 1958, Wiley.

J. Riordan, Combinatorial Identities, 1968, Wiley.

Chapter II in W. Feller, volume I.

Richard A. Brualdi, Introductory Combinatorics, 3rd Edition

—————————————————————–

(g) Consider the recurrence

an+1 = 2an + n, for n ≥ 0 with a0 = 1 .

What is an?

—————————————————————–
This comes from Section 1.2 of Wilf. If we start iterating, then we see that the successive

terms are 1, 2, 5, 12, 27, 58, 121, . . .. It becomes hard to see the general form. We can multi-
ply both sides by zn and add to get expressions involving the generating function â(z). In
particular, for the left side we get

a1 + a2z + a3z
2 + a4z

3 + · · · = (â(z)− a0)
z

=
â(z)− 1

z
.

On the other hand, for the right side we get

2â(z) +
∞∑

n=0

nzn .

We identify the second term by relating it to the geometric series
∞∑

n=0

zn =
1

1− z
for |z| < 1 .

In particular,
∞∑

n=0

nzn =
∞∑

n=0

z
d

dz
zn

= z
d

dz

∞∑

n=0

zn

= z
d

dz
(1− z)−1

=
z

(1− z)2
.

We now solve the equation

(â(z)− 1
z

= 2â(z) +
z

(1− z)2
.

Solving for the function â(z), we get

â(z) =
1− 2z + 2z2

(1− z)2(1− 2z)
.
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Now we use a partial fraction expansion to simplify this expression. Partial fraction expansions
are discussed in Chapter 11 of Feller I, for example. You can look it up online too; e.g.,

http://cnx.rice.edu/content/m2111/latest/
You could even do the partial fraction with an online tool: http://mss.math.vanderbilt.edu/cgi-

bin/MSSAgent/ pscrooke/MSS/partialfract.def

To do the partial fraction expansion, we write

â(z) =
1− 2z + 2z2

(1− z)2(1− 2z)
=

A

(1− z)2
+

B

(1− z)
+

C

(1− 2z)
.

Multiply both sides by (1 − z)2 and then let z = 1 to get A = −1; then multiply both sides
by (1− 2z) and let z = 1/2 to get C = 2; substitute z = 0 with known A and C to get B = 0.
Thus the final form is

â(z) =
−1

(1− z)2
+

2
(1− 2z)

.

. In this simple form, we recognize that

an = 2n+1 − n− 1, n ≥ 0 .

—————————————————————–

(h) Consider the recurrence

an+1 = an + an−1, for n ≥ 0, with a0 = 1 and a1 = 1 .

Find the generating function of the sequence {an : n ≥ 0}. Use generating functions to find a
good approximation for an for large n.

—————————————————————–
This is the recurrence for the famous Fibonacci numbers. Proceeding as in the previous

part (multiplying both sides by zn and adding), we get

â(z) =
1

1− z − z2
.

Recall that
1− z − z2 = (1− zr+)(1− zr−) ,

where

r+ =
(1 +

√
5)

2
and r− =

(1−√5)
2

.

Now doing the partial-fraction expansion, we get

1
1− z − z2

=
1

(r+ − r−)
(

r+

1− zr+
− r−

1− zr−
)

and
an =

1√
5
(rn+1

+ − rn+1
− ), for n ≥ 0 .

That is Binet’s Formula for the nth Fibonacci number; e.g.,

http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fib.html
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Note that r+ is φ ≡ 1.618 · · ·.
However, since r+ > 1 and |r−| < 1, the second term becomes negligible for large n. Hence

we have
an ≈ 1√

5
rn+1
+ for large n .

Moreover, the formula produces the exact result if we take the nearest integer to the computed
value.

—————————————————————–

3.What Can We Do With Transforms?

(a) Characterize the distribution of a sum of independent random variables.

(b) Calculate moments of a random variable.

(c) Find limits of sequences.

(d) Establish probability limits, such as the LLN and CLT.

——————————————————-
A good reference for this is Chapter 6 of Chung, A Course in Probability Theory. That

is a great book on measure-theoretic probability. The key result behind these proofs is the
continuity theorem for cf ’s.

Theorem 0.1 (continuity theorem) Suppose that Xn and X are real-valued random variables,
n ≥ 1. Let φn and φ be their characteristic functions (cf ’s), which necessarily are well defined.
Then

Xn ⇒ X as n →∞
if and only if

φn(t) → φ(t) as n →∞ for all t .

Now to prove the WLLN (convergence in probability, which is equivalent to convergence
in distribution here, because the limit is deterministic) and the CLT, we exploit the continuity
theorem for cf’s and the following two lemmas:

Lemma 0.1 (convergence to an exponential) If {cn : n ≥ 1} is a sequence of complex numbers
such that cn → c as n →∞, then

(1 + (cn/n))n → ec as n →∞ .

Lemma 0.2 (Taylor’s theorem) If E[|Xk|] < ∞, then the following version of Taylor’s theo-
rem is valid for the characteristic function φ(t) ≡ E[eitX ]

φ(t) =
j=k∑

j=0

E[Xj ](it)j

j!
+ o(tk) as t → 0

where o(t) is understood to be a quantity (function of t) such that

o(t)
t
→ 0 as t → 0 .
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Suppose that {Xn : n ≥ 1} is a sequence of IID random variables. Let

Sn ≡ X1 + · · ·+ Xn, n ≥ 1 .

Theorem 0.2 (WLLN) If E[|X|] < ∞, then

Sn

n
⇒ EX as n →∞ .

Proof. Look at the cf of Sn/n:

φSn/n(t) ≡ E[eitSn/n] = φX(t/n)n = (1 +
itEX

n
+ o(t/n))n

by the second lemma above. Hence, we can apply the first lemma to deduce that

φSn/n(t) → eitEX as n →∞.

By the continuity theorem for cf’s (convergence in distribution is equivalent to convergence of
cf’s), the WLLN is proved.

Theorem 0.3 (CLT) If E[X2] < ∞, then

Sn − nEX√
nσ2

⇒ N(0, 1) as n →∞ ,

where σ2 = V ar(X).

Proof. For simplicity, consider the case of EX = 0. We get that case after subtracting the
mean. Look at the cf of Sn/

√
nσ2:

φ
Sn/

√
nσ2(t) ≡ E[eit[Sn/

√
nσ2]]

= φX(t/
√

nσ2)n

= (1 + (
it√
nσ2

)EX + (
it√
nσ2

)2
EX2

2
+ o(t/n))n

= (1 +
−t2

2n
+ o(t/n))n

→ e−t2/2 = φN(0,1)(t)

by the two lemmas above. Thus, by the continuity theorem, the CLT is proved.

——————————————————-

(e) Determine the asymptotic form of sequences and functions.

(f) Help solve differential equations.

——————————————————-
Let f ′ and f ′′ be the first and second derivative of the function f , which is a real-valued

function on the positive half line. Using integration by parts, we see that

f̂ ′(s) ≡
∫ ∞

0
e−sxf ′(x) dx = −f(0) + sf̂(s)

and
f̂ ′′(s) ≡

∫ ∞

0
e−sxf ′′(x) dx = −f ′(0)− sf(0) + s2f̂(s) .
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Example 0.1 (first example)
Now, to illustrate how Laplace transforms can help solve differential equations, suppose

that we want to solve
f ′(t)− f(t) = −2, f(0) = 1 .

By taking Laplace transforms, we can replace the differential equation by an algebraic equation.
Specifically, we get

−1 + sf̂(s)− f̂(s) =
−2
s

,

which implies that

f̂(s) =
s− 2

s(s− 1)
=

2
s
− 1

s− 1
,

using a partial-fraction expansion in the last step. But then we can directly recognize the form
of the two terms, so that we see that

f(t) = 2− et, t ≥ 0 .

Example 0.2 (second example)
If, instead, we have the slightly more complicated example

f ′′(t) + f(t) = sin t, f(0) = f ′(0) = 0 ,

then we get

s2f̂(s) + f̂(s) =
1

s2 + 1
or

f̂(s) =
1

(s2 + 1)2
.

We can use a book of Laplace transform tables to find that

f(t) =
(sin t− t cos t)

2
, t ≥ 0 .

——————————————————-

(g) Calculate cumulative distributions functions by numerical inversion.

——————————————————-
See J. Abate and W. Whitt, “Numerical inversion of Laplace transforms of probability

distributions,” ORSA Journal of Computing, vol. 7, 1995, pages 36–43. The longer-term
numerical-inversion homework assignment covers this.
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