
A Concise Summary

Everything you need to know about exponential and Poisson

Exponential Distribution

Assume that X ∼ exp(λ), by which we mean that X has an exponential distribution with
rate λ. Then X has mean 1/λ; i.e., EX = 1/λ. Also the variance is V ar(X) = (EX)2 = 1/λ2.
In addition, assume that Y ∼ exp(µ) and Xi ∼ exp(λi) for i = 1, · · · , n, where all these
exponential random variables are independent.

1. Lack of memory : P (X > s + t|X > s) = P (X > t) for all s > 0 and t > 0.
(check the computation)

2. Minimum: min{X,Y } ∼ exp(λ + µ)
(check the computation)
and hence
min{X1, · · · , Xn} ∼ exp(λ1 + · · ·+ λn) without computation.

3. Maximum: X+Y = min{X, Y }+max{X, Y } tells us an easy way to compute E[max{X, Y }].)
4. More on Minimum: P (X = min{X, Y }) = P (X < Y ) = λ

λ+µ : (check the computation)
and hence
P (Xk = min{X1, · · · , Xn}) = λk

λ1+···+λn
without computation.

5. Even more on Minimum:The events {X = min{X, Y }} and {min{X, Y } > t} are inde-
pendent for all t.
and hence
the events {Xk = min{X1, · · · , Xn}} and {min{X1, · · · , Xn} > t} are independent for all
t.

Poisson Processes

Consider a Poisson process {N(t) : t ≥ 0} with rate λ, referred to by N(t)(λ). In addition,
consider Poisson processes Nj(t)(λj), 1 ≤ j ≤ m.

1. Interarrival Times: The interarrival times of N(t)(λ) are IID exp(λ) .

2. Thinning (Type classification) : When arrivals occur in the Poisson process N(t), they
are classified randomly and independently (the successive classifications are done indepen-
dently according to the same probabilities) into classes (indexed by j) with probability
p1, · · · , pm. Let Nj(t) be the input (arrival) process for class j (obtained with probability
pj). These newly created counting processes Nj(t) are independent Poisson processes
with rates λpj .

3. Superposition (Type aggregation) : When independent Poisson arrivals Nj(t) occur with
rates λj , the total number of arrivals is a Poisson(λ1 + · · ·+ λm).

4. Conditioning : When we know N(t) = n, the occurrence time of n arrivals are distributed
as independent random variables, each uniform on the interval [0, t].
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Poisson Process: A Special Case of Several Processes

It is useful to be aware that a Poisson process is a special case of several important stochastic
processes. That leads to different equivalent definitions of a Poisson process, as in Definitions
2.1.1 and 2.1.2 of the Ross text. It also leads to different ways to analyze a Poisson process.

(a) Poisson random measure

Definition 2.1.1 can be viewed as a special case of a Poisson process defined as a Poisson
random measure (on a subset of a Euclidean space Rk with an intensity function λ(x), where
k = 1 and the subset in [0,∞) and λ(x) ≡ λ for some positive constant λ). A Poisson process
(as well as a nonhogeneous Poisson process - Section 2.4 - can be viewed as a special case of
a Poisson random measure. In the standard case, the underlying space is the positive real
line [0,∞). But Poisson random measures can be defined on more general spaces, such as R2,
corresponding to random points on the blackboard. Exercise 2.33 discusses a special case of a
Poisson random measure in which the space is R2. We will exploit this perspective when we
discuss the Mt/GI/∞ infinite-server queue

(b) CTMC

Definition 2.1.2 can be viewed as a special case of a Poisson process defined as a a special
case of a continuous-time Markov chain (CTMC). One way to characterize a CTMC is via its
infinitesimal rate matrix, usually denoted by Q. For a Poisson process, we have Qi,i+1 = λ,
Qi,i = −λ and Qi,j = 0 for all other j. The rate matrix Q determines the probability transition
matrix P (t) ≡ (Pi,j(t)) via a matrix ordinary differential equation (ODE)

Ṗ (t) = P (t)Q = QP (t) ;

see the CTMC lecture notes posted on line for the end of the course in November (already
posted). That corresponds to Definition 2.1.2. Notice that the ”little oh” notation in (iii) of
definition 2.1.2 just means that the function has a derivative (from the right at 0).

(c) Lévy Process

A Poisson Process can also be viewed a special case of a Lévy process. A Lévy process is
a stochastic process with stationary and independent increments. Assume that it takes the
value 0 at time 0. (This is another way to look at Definition 2.1.2.) The unique Lévy process
with continuous sample paths is Brownian motion. (You do not need to directly assume that
the increments have a normal distribution.) The unique Lévy process with sample paths
having only unit jumps is the Poisson process. (You do not need to directly assume that the
increments have a Poisson distribution.) The general Lévy process can be constructed from
an independent Brownian motion and Poisson processes. This corresponds to Definition 2.1.1
(which is not stated in such a minimal elegant way).

(d) renewal process

A Poisson process is a special case of a renewal process (Chapter 3) in which the times
between renewals have an exponential distribution. This corresponds to Proposition 2.2.1.

2. Basic Properties

Please pay attention to the basic properties on the Concise Summary page, such as Theorem
2.3.1 and Proposition 2.3.2.
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