
IEOR 6711: Stochastic Models I

Fall 2013, Professor Whitt, Thursday, October 17

Renewal Theory: Patterns

1. Patterns: see Example 3.5 A, p. 125

Consider successive independent flips of a biased coin. On each flip, the coin comes up
heads (H) with probability p or tails (T) with probability q = 1 − p, where 0 < p < 1. A
given segment of finitely many consecutive outcomes is called a pattern. The pattern is said to
occur at flip n if the pattern is completed at flip n. For example, the pattern A ≡ HTHTHT
occurs at flips 8 and 10 in the sequence TTHTHTHTHTTTTHHHT . . . and at no other
times among the first 17 flips.

WARMUP
For parts (a) and (b) below, assume that p = 1/2, but for later parts do not make that

assumption.

(a) Which pattern occurs more frequently in the long run: A ≡ HHH or B ≡ HTH?

(b) For patterns A and B in part (a), let NA and NB be the numbers of flips until the
patterns A and B, respectively, first occur. Is E[NA] = E[NB]?

MAIN PROBLEM
Now we revert to general probabilities p and q = 1− p.

(c) What is the probability that pattern A ≡ HTHTHT occurs at flip 72?

(d) Suppose that pattern A from part (c) does indeed occur at flip 72. What is the expected
number of flips until pattern A occurs again?

(e) Let NA(n) be the number of occurrences of pattern A in the first n flips, where A is
again the pattern in part (c). Does

NA(n)
n

→ x as n →∞ w.p.1?

If so, what is the limit x?

(f) What is E[NA], the expected number of flips until pattern A ≡ HTHTHT first occurs?

(g) What is the probability that pattern A occurs before pattern B ≡ TTH? That is, what
is P (NA < NB)?

(h) As before, let NA(n) be the number of occurrences of pattern A in the first n flips.
What is the approximate distribution of NA(n) for large n?

(i) Justify your answer in part (h).

2. Answers

(a) Which pattern occurs more frequently in the long run: A ≡ HHH or B ≡ HTH?

———————————————————————–
Since p = q = 1/2, we have P (A(n)) = P (B(n)) = 1/8 for all n ≥ 3. Thus the two patterns

occur equally often in the long run.



———————————————————————–

(b) For patterns A and B in part (a), let NA and NB be the numbers of flips until the
pattern first occurs. Is E[NA] = E[NB]?

———————————————————————–
No, we do not have E[NA] = E[NB]. See below and at the very end.

———————————————————————–

(c) What is the probability that pattern A ≡ HTHTHT occurs at flip 72?

———————————————————————–
For any pattern C, let C(n) be the event that pattern C occurs at time (flip) n. Then

P (C(n)) is the probability of event C(n), i.e., the probability that pattern C occurs at flip n.
This question is very easy to answer: With general probabilities p and q ≡ 1− p,

P (A(n)) = p3q3, n ≥ 6 .

That is because the specified outcomes must occur at flips n, n − 1, n − 2, n − 3, n − 4 and
n−5. We simply multiply the probabilities for independent events. We require n ≥ 6, because
this pattern is of length 6; it cannot occur before flip 6. Observe that the limiting value as
n →∞ already occurs at n = 6; we have a common value for all n ≥ 6. The limit is attained
at a finite value of n.

———————————————————————–

(d) Suppose that pattern A does indeed occur at flip 72. What is the expected number of
flips until pattern A occurs again?

———————————————————————–

We invoke renewal theory. We observe that the times (flips) when the event occurs
are renewals. (Of course that is why we are discussing this problem while we are reading
Chapter 3.) Note that here we have a delayed renewal process. The times between suc-
cessive renewals are IID. We have a delayed renewal process because the time until the first
pattern occurrence in general has a distribution that is different from the distribution of the
number of flips between renewals. Let NA(n) be the number of times pattern A has occurred
in the first n flips.

First we observe that

E[NA(n)] =
n∑

k=1

P (A(n)) ,

so that, by the reasoning above for part (c),

E[NA(n)]
n

→ p3q3 as n →∞ .

Let TA be the time between successive occurrences of event A. By Proposition 3.5.1 (ii) of
Ross,

E[NA(n)]
n

→ 1
E[TA]

as n →∞ .

Moreover, by the SLLN for delayed renewal processes, we have

NA(n)
n

→ 1
E[TA]

.
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see Proposition 3.5.1 (i) in Section 3.5 of Ross. As a consequence, we must have

E[TA] =
1

P (A(n))
for n suitably large .

Here, in our specific context,
E[TA] = p−3q−3

.

———————————————————————–

(e) Let NA(n) be the number of occurrences of pattern A in the first n flips, where A is
the pattern in part (c). Does

NA(n)
n

→ x as n →∞ w.p.1?

If so, what is the limit x?

———————————————————————–
We already used this result to answer the last question.

NA(n)
n

→ 1
E[TA]

= p3q3 as n →∞ w.p.1

by the SLLN for delayed renewal processes; Proposition 3.5.1 on page 125.

———————————————————————–

(f) What is E[NA], the expected number of flips until pattern A ≡ HTHTHT first occurs?

———————————————————————–
Like question (b), this is a tricky question. To understand this, it is useful to reconsider

the mean of TA. When we consider E[TA], the time between occurrences of A ≡ HTHTHT ,
we do not start with nothing, but we start already having had the partial pattern HTHT .
Let NC→D be the number of flips to get pattern D after observing pattern C. (Our notation
NC→D corresponds to ND|C in Ross; we use the arrow to emphasize which pattern comes first.)

In particular, our strategy is to relate E[NA] to E[TC ] for various patterns C. (That is
useful because, by above, we know how to compute E[TC ] for any pattern C.) First note that,
for A ≡ HTHTHT ,

TA ≡ NA→A ≡ NHTHTHT→HTHTHT
d= NHTHT→HTHTHT ,

so that

E[TA] ≡ E[THTHTHT ] ≡ E[NHTHTHT→HTHTHT ] = E[NHTHT→HTHTHT ].

Similarly
E[THTHT ] ≡ E[NHTHT→HTHT ] = E[NHT→HTHT ]

and
E[THT ] ≡ E[NHT→HT ] = E[N·→HT ] ≡ E[NHT ].

Putting this all together, we get

E[NA] = E[NHT ] + E[NHT→HTHT ] + E[NHTHT→HTHTHT ]

= E[THT ] + E[THTHT ] + E[THTHTHT ] =
1
pq

+
1

p2q2
+

1
p3q3

.
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———————————————————————–

(g) What is the probability that pattern A occurs before pattern B ≡ TTH?

———————————————————————–
This is another tricky question; see page 127 of Ross for a detailed explanation. We set up

two equations in two unknowns and solve them. One unknown is the probability PA ≡ P (NA <
NB) that A occurs before B. The other unknown is E[MA,B], where MA,B ≡ min {NA, NB}
is the first time that one of the patterns A or B first occurs. These variables are expressed in
terms of four computable means:

E[NA], E[NB], E[NA→B] and E[NB→A] .

We first show how to set up the two equations in two unknowns. Following Ross, we have

E[NA] = E[MA,B] + E[NA −MA,B]
= E[MA,B] + E[NA −MA,B|B before A](1− PA)
= E[MA,B] + E[NB→A](1− PA) .

Similarly,
E[NB] = E[MA,B] + E[NA→B]PA .

Solving these two equations, we obtain

PA =
E[NB] + E[NB→A]− E[NA]

E[NB→A] + E[NA→B]

and
E[MA,B] = E[NB]− E[NA→B]PA .

We have seen how to derive E[NA] and E[NB]. From part (f),

E[NA] = E[THT ] + E[THTHT ] + E[THTHTHT ] =
1
pq

+
1

p2q2
+

1
p3q3

.

On the other hand, the occurrence of B gives no head start toward having B occur again; i.e.,
we have

NB
d= TB and E[NB] = E[TB] =

1
pq2

.

So now we are ready to consider E[NA→B] and E[NB→A]. Note that NA→B
d= NT→TTH

and
E[NTTH ] = E[NT ] + E[NT→TTH ] ,

so that
E[NT→TTH ] = E[NTTH ]− E[NT ] = E[TTTH ]−E[TT ] =

1
pq2

− 1
q

.

Next note that NB→A
d= NH→HTHTHT and

E[NHTHTHT ] = E[NH ] + E[NH→HTHTHT ] ,

so that

E[NH→HTHTHT ] = E[NHTHTHT ]− E[NH ] = E[THT ] + E[THTHT ] + E[THTHTHT ]− E[TH ]

=
1
pq

+
1

p2q2
+

1
p3q3

− 1
p

.
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———————————————————————–

(h) As before, let NA(n) be the number of occurrences of pattern A in the first n flips.
What is the approximate distribution of NA(n) for large n?

(i) Justify your answer in part (h).

———————————————————————–

Answer to (h) and (i).
The approximate distribution is normal. We could apply the CLT for renewal processes on

page 108. That yields the limit

NA(n)− (n/m)√
nσ2/m3

⇒ N(0, 1) ,

where m ≡ mA ≡ E[TA] and σ2 ≡ σ2
A ≡ V ar(TA), with TA being a random variable with the

distribution of the times between renewals. That yields the approximation

NA(n) ≈ N(n/m, nσ2/m3)

for large n. It is often convenient to rewrite the variance term as

σ2

m3
= λc2 ,

where

λ ≡ 1
m

and c2 ≡ σ2

m2
;

i.e., c2 is the squared coefficient of variation (SCV, variance divided by the mean) of the time
between renewals.

In part (b), we derived the mean, getting

E[TA] =
1

p3q3
.

Hence 1/m = p3q3. However, we have no convenient formula for the variance σ2 ≡ V ar(TA).
However, to get at the variance, we can draw upon a different CLT, a CLT for sums of

dependent random variables. We can write

NA(n) =
n∑

k=1

Ik ,

where Ik is the indicator function, with Ik = 1 if pattern A occurs at flip k, and Ik = 0
otherwise. (Note that Ik is a random variable for each k.) For k ≥ 6,

E[Ik] = P (Ik = 1) = p3q3 .

The limit we will get is

NA(n)− E[NA(n)]√
V ar(NA(n))

⇒ N(0, 1) as n →∞ ,

where
V ar(NA(n))

n
→ γ > 0
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for some constant γ. (We want to identify that constant γ.)
We calculate the variance by

V ar(NA(n)) =
n∑

i=1

n∑

j=1

Cov(Ii, Ij) =
n∑

i=1

n∑

j=1

(E[IiIj ]−E[Ii]E[Ij ]) .

It is not difficult to calculate the expected values E[IiIj ]. If |i − j| ≥ 6, then Ii and Ij are
independent and E[IiIj ] = E[Ii]E[Ij ] = p6q6. The other cases are easy to compute too, so we
can obtain the desired formula. In particular, E[IiIi+1] = 0, E[IiIi+2] = p4q4, E[IiIi+3] = 0,
E[IiIi+4] = p5q5, E[IiIi+5] = 0 and E[IiIi+j ] = E[Ii]2 for j ≥ 6.

We end up scaling by
√

nγ, where

γ ≡ lim
n→∞

V ar(NA(n))
n

= (r0 − r2
0) + 2

5∑

j=1

(rj − r2
0)

where r1 = r3 = r5 = 0 and

r0 ≡ E[IiIi+0] = E[Ii] = p3q3,

r2 ≡ E[IiIi+2] = p4q4,

r4 ≡ E[IiIi+4] = p5q5,

(For each i, 6 ≤ i ≤ n− 5, there are n− 10 j such that |Ii − Ij | = 0, but 2(n− 10) j such that
|Ii − Ij | = 2 and 2(n− 10) j such that |Ii − Ij | = 4.)

Hence, we have determined the limit of V ar(NA(n))/n. Thus, indirectly, we can identify
V ar(TA), because we have two CLT’s, which must agree.

See Section 4.4 of my book for further discussion of the CLT applied here. See Billingsley
(1968, 1969) for more on such CLT’s.

———————————————————————–

ADDITIONAL DETAILS on (b) For patterns A and B in part (a), let NA and NB be the
numbers of flips until the pattern first occurs. Is E[NA] = E[NB]?

———————————————————————–
No, we do not have E[NA] = E[NB]. See below. To understand this, it is useful to

reconsider the mean of TA. When we consider E[TA], the time between occurrences of A ≡
HHH, we do not start with nothing, but we start already having had three H ′s in a row.
Let NC→D be the number of flips to get pattern D after observing pattern C. (Our notation
NC→D corresponds to ND|C in Ross; we use the arrow to emphasize which pattern comes first.)
The number of flips after A ≡ HHH until A ≡ HHH next occurs equals the number of flips
to reach A starting from the pattern HH; i.e.,

TA ≡ NHHH→HHH
d= NHH→HHH .

To get to HHH, we must first get to HH. Hence we have

E[NA] = E[NHHH ] = E[NHH ] + E[NHH→HHH ] = E[NHH ] + E[THHH ] .

Similarly,
THH ≡ NHH→HH

d= NH→HH ,
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so that
E[NHH ] = E[NH ] + E[NH→HH ] = E[NH ] + E[THH ] .

But, initially, we have
E[NH ] = E[TH ] .

By that reasoning,

E[NHHH ] = E[TH ] + E[THH ] + E[THHH ] =
1
p

+
1
p2

+
1
p3

.

But the story is different for the pattern B ≡ HTH: First, we have

TB ≡ NHTH→HTH
d= NH→HTH ,

so that

E[NB] = E[NHTH ] = E[NH ] + E[NH→HTH ] = E[TH ] + E[THTH ] =
1
p

+
1

p2q
.

Hence, we have

E[NA] = E[NHHH ] =
1
p

+
1
p2

+
1
p3
6= 1

p
+

1
p2q

= E[NB] .

———————————————————————–

Summary of the notation defined above:

pattern A, A(n), P (A(n)), NA, TA, NA(n),
NA→B, MA,B ≡ min {NA, NB}, PA, Ij
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