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Félix

The M/G/1 Queue.

We discussed the M/G/1 queue; see Example 4.1 (A), p. 164, Example 4.3 (A), pp. 177-
179, and Exercise 4.15 in Ross. See Examples 4.1 (B) and 4.3 (B) for a treatment of the G/M/1
queue. The M/G/1 queue has a Poisson arrival process (the M for Markov), IID service times
with a general cdf G, one server and unlimited waiting space.

A Markov chain and its analysis.

To get a Markov process from the queue-length process, where the queue length here is
interpreted as the number of the customers in the system, including the one in service, if any,
we can look at an embedded sequence. Specifically, for M/G/1, we look at the queue length
just after each departure (at the departure epoch, but not counting that departing customer),
while for G/M/1 we look at the queue length just before an arrival (at an arrival epoch, but not
counting that arrival). In both cases, that leads to discrete-time Markov chains with infinitely
many states. It is easy to see that the MC is irreducible and aperiodic. You apply Theorem
4.3.3 to deduce that it suffices to solve the equation π = πP for a probability vector π in order
to justify the existence of a limiting distribution which is also a stationary distribution. So you
set about to solve π = πP . But that requires solving an infinite system of linear equations.

The first step is to construct the DTMC. That means constructing the transition proba-
bilities. The key relation is the recursive expression (4.1.2) on p. 164, giving

Xn+1 = Xn + Yn − 1 if Xn ≥ 1 (1)

and
Xn+1 = Yn if Xn = 0, (2)

where Yn is the number of arrivals during one random service time. If Xn ≥ 1, then a customer
is in the system to enter service immediately, so we count the number of arrivals from the
departure epoch until the next departure epoch, and we subtract 1 because one customer
departs at the end of the interval. Equation (2) may perhaps be hard to understand. When
Xn = 0, there is nobody in the system at the departure epoch, so we must wait an interarrival
time until the first customer arrives and enters service. Hence we should add 1 for this first
arrival. In this case, we get Xn+1 = 1 + Yn − 1 = Yn, because Xn = 0. That explains (4.1.2)
in Ross. Then, conditioning on the length of the service time and unconditioning, we get

aj ≡ P (Yn = j) =
∫ ∞

0

e−λx(λx)j

j!
g(x) dx (3)

as in (4.1.3). We then get the transition probabilities given on p. 164.
The next step is to solve π = πP . That is Example 4.3 A on pp. 177-179. For M/G/1, we

can reduce that to a single equation by applying probability generating functions, as shown by



Ross (and me in class). We solve for π̂(z) ≡ ∑∞
n=0 πnzn. We use L’Hospital once to get π0.

In that step, we show that a proper steady-state distribution exists (there is a proper solution
of the equation π = πP ) if and only if ρ < 1, where ρ = λ/µ = λE[S], with λ being the
arrival rate, µ being the service rate and µ−1 ≡ E[S] being a mean service time, where S here
denotes a generic service-time random variable. From that analysis, we see that π0 = 1 − ρ.
We get an expression for the generating function of the steady-state distribution π in terms
of the arrival rate, the service rate and the Laplace transform of the service-time distribution.
It is significant that â(z) = ĝ(λ(1 − z)), where ĝ(s) is the Laplace transform of a service
time, and â(z) ≡ ∑∞

j=0 ajz
j is the generating function of the sequence {aj : j ≥ 0}, which

is the distribution of the number of arrivals during a service time. (Ross uses the notation
A(s) instead of â(z).) In particular, aj is the probability that the number of arrivals during a
service time is j and i.e.,

ĝ(s) ≡
∫ ∞

0
e−st dG(t) ≡

∫ ∞

0
e−stg(t) dt .

The final formula is given on page 179:

π̂(z) =
(1− ρ)(z − 1)â(z)

z − â(z)
. (4)

We can check this in simple special cases. When the service time is exponential with mean
1/µ,

ĝ(s) =
µ

µ + s
.

When this is substituted into the expression for π̂(z), we get the known geometric steady-state
distribution for the M/M/1 queue:

π̂(z) =
(1− ρ)
1− ρz

.

For the general M/G/1 queue, we can differentiate the generating function π̂(z) in (4) to
find the moments of the steady-state number in system. We need to differentiate and then let
z ↑ 1. However, when we take this limit, we get 0/0. Hence, we need to apply L’Hospital’s
rule. In fact we need to use it two times to get the derivative π̂′(1), which yields the mean:

E[QD
∞] = ρ +

ρ2

(1− ρ)
(c2

s + 1)
2

, (5)

where c2
s ≡ V ar(S)/(E[S])2 is the squared coefficient of variation of a service time. These

formulas are called the Pollaczek-Khintchine transform and the Pollaczek-Khintchine equation,
respectively, in recognition of the fundamental work by Félix Pollaczek (around 1930). They
are classic results in queueing theory.

Numerical Inversion.

The steady-state distribution is characterized by a transform, specifically a generating func-
tion, which itself depends on the transform (Laplace transform) of the service-time distribution.
Numerical inversion can be used to calculate numerical values. For the M/G/1 queue, this ap-
plication of numerical transform inversion is very straightforward; e.g., see Abate, Choudhury
and W (1999). There is also a short paper on inverting generating functions, Abate and W
(1992).

2



Pollaczek also derived (more complicated) transform solutions for the more general GI/G/1
queue. Our 1993 paper, Abate, Choudhury and W (1993) - available on line - shows that
inversion can again be applied (specifically, for the steady-state waiting time), so that it is
possible to numerically solve for the steady-state distribution (of the waiting time) of any
GI/G/1 queue, provided that we know the transforms of the interarrival-time and service-
time distributions. (The queue length can be calculated too; see Chapter X of Asmussen
(2003). The general GI/G/1 case is much more complicated, however, because the Laplace
transform of the steady-state waiting time is expressed as a contour integral. But we can
perform a numerical integration to calculate the required transform values from the contour
integral to use in the numerical inversion. The paper describes how to do that step.

Matrix Generalizations.

The books by Neuts (1981, 1989) discuss far-reaching matrix generalizations of the M/G/1
and GI/M/1 Markov chains. These are Markov chains that have the same kind of structure as
these particular queueing Markov chains, where the elements are replaced by entire matrices.
See Section XI.3 of Asmussen (2003) for a quick treatment.

Heavy-Traffic Approximations

The Pollaczek-Khintchine transform for the steady-state number in system derived in class
can be used to derive simple heavy-traffic approximations for the steady-state distribution. I
post a few pages from the textbook by Gendenko and Kovalenko (1968) that do this directly. If
we multiply the steady-state queue length by (1−ρ), then it converges in law to an exponential
distribution, with a mean that is equal to the limit of (1 − ρ) times the mean, which has an
explicit formula:

(1− ρ)E[QD
ρ,∞] → c2

s + 1
2

.

In particular, this heavy-traffic limit theorem states that

(1− ρ)QD
ρ,∞ ⇒ L as ρ ↑ 1 ,

where L is an exponential random variable with mean (c2
s + 1)/2, i.e.,

P (L > x) = e−2x/(c2s+1), x ≥ 0 .

The main benefit is that we see that the distribution itself is approximately exponential
under heavy loading. This limit yields useful approximations for typical moderate loading.
The limit is proved by taking limits of characteristic functions, exploiting Taylor’s series, just
as we did for the WLLN and CLT earlier. (See previous notes.)

This material from Gnedenko and Kovalenko (1968) follows the original reasoning of King-
man (1961, 1962) for establishing heavy-traffic limits. Subsequent work develops stochastic-
process limits, in which the entire queue-length process is approximated by (converges to
after appropriate scaling) reflected Brownian motion. See Whitt (2002) for an overview of
this approach. Chapter 5 there provides an introduction, while Chapter 9 provides a detailed
treatment of the single-server queue.

Details on the Proof of the Heavy-Traffic Limit
Start with the generating function of the stationary distribution of the queue length after

departures. Let X be the random variable with this distribution. (X is the same as QD
ρ,∞

above.) From (4), its generating function is

π̂(z) ≡ E[zX ] ≡
∞∑

i=0

ziπi ≡
∞∑

i=0

ziP (X = i) =
(1− ρ)(z − 1)ĝ(λ(1− z))

z − ĝ(λ(1− z))
, (6)
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where ĝ(s) is the Laplace transform of the service-time pdf, defined above. Then ĝ(λ(1− z)) is
the generating function of the number of arrivals during a random service time, also developed
above. You can multiply above and below by −1 and equivalently write

π̂(z) =
(1− ρ)(1− z)ĝ(λ(1− z))

ĝ(λ(1− z))− z
. (7)

Next convert the generating function to a characteristic function by replacing z by eit.
Using (7), this gives

φ(t) ≡ E[eitX ] = π̂(eit) =
(1− ρ)(1− eit)ĝ(λ(1− eit))

ĝ(λ(1− eit))− eit
. (8)

The heavy traffic limit is for the scaled random variable εXε, where ε = 1−ρ, where ρ ≡ λ/τ
is the traffic intensity, with λ being the arrival rate and τ being the mean service time. We
let ρ ↑ 1, which is equivalent to ε ↓ 0. We do so by letting λ ↑ τ , so that we only change the
arrival rate. The service distribution is held fixed.

We are interested in the limiting behavior of the characteristic function

φε(t) ≡ E[eitεXε ] = π̂ε(eiεt) =
ε(1− eiεt)ĝ(λε(1− eiεt))

ĝ(λε(1− eiεt))− eiεt
, (9)

where λ is changing with ε, i.e., λε ≡ (1− ε)E[S] .That is, we have a family of systems indexed
by ε ≡ 1− ρ ≡ 1− (λ/τ), where λ ↑ τ , with g and thus τ held fixed. The family indexed by λ
is equivalent to the family indexed by ε. The ε notation is used by Gendenko and Kovalenko
(1968).

We now can apply the continuity theorem for characteristic functions. We will want to show
that the characteristic functions (cf’s) φε(t) converge to the cf of the exponential distribution,
which is φ(t) = (1− itm)−1, where the exponential random variable has mean m, as ε ↓ 0.

Theorem 0.1 If ε ↓ 0 in the framework above, then

φε(t) → φ(t) ≡ (1− itm)−1, (10)

where

m ≡ E[S2]
2(E[S])2

=
(c2

s + 1)
2

. (11)

It is convenient to use the parameter c2
s because it is a dimensionless parameter charac-

terizing the variability (the variance except for scale). Both the traffic intensity ρ and c2
s are

dimensionless quantities. The queue length has no time units.

Proof of the theorem. We now do the proof. To do so, we use the existence of a finite
second moment to develop a Taylor series expansion for the Laplace transform ĝ(s) ≡ E[e−sS ],
where S is a random service time and s is a complex number; i.e.,

ĝ(s) = E[e−sS ] = 1− sE[S] + s2 E[S2]
2

+ o(|s|2) as |s| → 0. (12)

We also use the Taylor series approximation for the exponential function

eit = 1 + it− t2

2
+ o(t2) as t → 0. (13)
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We thus get for the characteristic function

ĝ(λε(1− eiεt)) = 1 + itελεE[S]− t2ε2
(

λεE[S] + (λε)2E[S2]
2

)
+ o(ε2) as ε → 0. (14)

Now it only remains to insert both (13) and (14) into (9) and then let ε ↓ 0. We need to
remember that ρ = λτ and that ε = 1− ρ. We first write

φε(t) =
ε(1− eiεt)ĝ(λε(1− eiεt))

ĝ(λε(1− eiεt))− eiεt
(15)

We first insert the expansions to get

φε(t) =
ε(−(itε) + t2ε2 + o(ε2))(1 + itελE[S] + o(ε))(

1 + itελE[S]− t2ε2
(

λE[S]+λ2E[S2]
2

)
+ o(ε2)

)
− 1− itε + ε2t2

2 + o(ε2)
(16)

We next add and subtract 1 in the denominator and then divide through by ε to get

φε(t) =
(−(itε) + t2ε2 + o(ε2))(1 + itελE[S] + o(ε))(
−it(1− λE[S]) + t2ε

(
1−λE[S]−λ2E[S2]

2

)
+ o(ε)

) (17)

We now simplify further recalling that 1− λE[S] = 1− ρ = ε. Hence, equation (17) becomes

φε(t) =
−itε + o(ε)

−itε− t2εm + o(ε)

=
1 + o(1)

1− itm + o(1)
→ 1

1− itm
, (18)

where

m ≡ E[S2]
2E[S]2

≡ c2
S + 1

2
.
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