
SOLUTIONS to the First Midterm Exam, October 7, 2012

IEOR 6711: Stochastic Models I,

1. Poisson Process and Transforms (30 points)

[grading scheme: On all questions, partial credit will be given. Up to 4 points off for
errors on parts (a)-(g); up to 8 points off for errors on part (h). But minimum possible score
is 0. Parts (a)-(g) are judged relatively easy, but a full answer to part (h) is harder.]

Let {N(t) : t ≥ 0} be a Poisson process with rate (intensity) λ.

(a) Give expressions for: (i) the probability mass function (pmf) of N(t), pN(t)(k) ≡
P (N(t) = k); (ii) the probability generating function (pgf) of N(t), p̂N (t)(z); the mo-
ment generating function (mgf), ψN(t)(u) and (iv) the characteristic function (cf) of
N(t), φN(t)(u).

———————————————————————-

pN(t)(k) ≡ e−λt(λt)k

k!

p̂N (t)(z) ≡ E[zN(t)] =
∞∑

k=1

zkpN(t)(k) = eλt(z−1)

ψN(t)(u) ≡ E[euN(t)] =
∞∑

k=1

eukpN(t)(k) = p̂N (t)(eu) = eλt(eu−1)

φN(t)(u) ≡ E[eiuN(t)] =
∞∑

k=1

eiukpN(t)(k) = p̂N (t)(eiu) = eλt(eiu−1)

———————————————————————-

(b) Show how the mgf ψN(t)(u) can be used to derive the mean and variance of N(t).

———————————————————————-
Use the fact that ψN (t)(k)(u) = E[N(t)keuN(t)], where is the kth derivative of the mgf

ψN (t)(u) with respect to u, so that ψN (t)(k)(0) = E[N(t)k]. We directly get ψN (t)(1)(u) =
λteuψN (t)(u), so that E[N(t)] = ψN (t)(1)(0) = λt and

ψN (t)(2)(u) = (λteu)2ψN (t)(u) + λteuψN (t)(u),

so that E[N(t)2] = (λt)2 + λt. Hence,

V ar(N(t)) = E[N(t)2]− E[N(t)] = (λt)2 + λt− (λt)2 = λt.

———————————————————————-

(c) Use the mgf ψN(t)(z) to prove or disprove the claim: If [a, b] and [c, d] are two disjoint
subintervals of the positive halfline [0,∞), then the sum (N(d) −N(c)) + (N(b) −N(a)) has
a Poisson distribution.

———————————————————————-



We draw on §2.1 (definition of a Poisson process) and §1.4 (transforms). We exploit the
fact (axiom) that a Poisson process has independent increments, and that each increment has
a mean proportional to its length. We also exploit the fact that the transform of a sum of
independent random variables is the product of the transforms. Thus,

ψ(N(d)−N(c))+(N(b)−N(a))(u) = ψ(N(d)−N(c))(u)ψ(N(b)−N(a))(u)

= ψN(d−c)(u)ψN(b−a))(u) = eλ(d−c)(eu−1)eλ(b−a)(eu−1)

= eλ[(d−c)+(b−a)](eu−1),

which implies that (N(d)−N(c))+ (N(b)−N(a)) has a Poisson distribution with mean equal
to the sum of the two means, λ[(d − c) + (b − a)]. In the last step we exploit the property
ea×eb = ea+b. Note that deriving higher moments from the pgf is somewhat more complicated.

———————————————————————-

(d) What is the probability P (N(t) is even) ≡ P (N(t) ∈ {2k : k ≥ 0})? Prove that this
probability is always greater than 1/2 and converges to 1/2 as t →∞.

———————————————————————-
This is part (d) of problem 1.11 in the textbook, assigned in our first homework. We use

the pgf. If necessary, we directly derive the following:

P (N(t) is even) =
p̂N (t)(1) + p̂N (t)(−1)

2
=

(1 + e−λt)
2

,

from which it is immediate that it is always greater than 1/2 and converges to 1/2 as t →∞.

———————————————————————-

Let {Xk : k ≥ 1} be a sequence of i.i.d. continuous real-valued random variables with
probability density function (pdf) f(x), mean m and variance σ2. Let

Y (t) ≡
N(t)∑

k=1

Xk, t ≥ 0.

(e) Give an expression for the cf of Y (t).

———————————————————————-
First note that {Y (t) : t ≥ 0} is a compound Poisson process, as discussed in §2.5 of the

textbook and the lecture notes of September 27. Hence, paralleling p. 82, we have

φY (t)(u) ≡ E[eiuY (t)] = E[eiu
∑N(t)

k=1 Xk]

= E

( ∞∑

n=0

eiu
∑n

k=1 XkP (N(t) = n)

)

=
∞∑

k=0

φX(u)nP (N(t) = n)

=
∞∑

k=0

φX(u)n e−λt(λt)n

n!

= exp {λt(φX(u)− 1)} = p̂N(t)(φX(u)).
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———————————————————————-

(f) Derive the mean and variance of Y (t).

———————————————————————-
Again, see the lecture notes of September 27. As noted on p. 83, the mean and variance

can easily be found by differentiating the transform, yielding

E[Y (t)] = λtE[X] and V ar(Y (t)) = λtE[X2].

Note that the variance involves E[X2], not V ar(X).

———————————————————————-

(g) Does there exist a finite random variable L with a non-degenerate probability distribu-
tion (such that P (L = c) 6= 1 for any c) and constants a and b such that

Y (t)− at√
bt

⇒ L as t →∞, (1)

where ⇒ denotes convergence in distribution? If so, what are a, b and L?

———————————————————————-
Yes, we can apply the CLT. We can let a = E[Y (1)] = λE[X], b = V ar(Y (1)) = λE[X2]

and L = N(0, 1), a standard normal random variable.

———————————————————————-

(h) Give a detailed proof to support your answer in part (g).

———————————————————————-
We can apply the proof using cf’s and a Taylor series expansion, just as for the ordinary

CLT on p. 11 of the lecture notes for September 11. See the lecture notes of September 27.

———————————————————————-

2. Conditional Remaining Lifetimes (30 points)

Let a random lifetime be represented by a nonnegative continuous random variable X
with probability density function (pdf) f(x), cumulative distribution function (cdf) F (x) ≡∫ x
0 f(s) ds and complementary cdf (ccdf) F c(x) ≡ 1− F (x) ≡ P (X > x) satisfying F c(x) > 0

for all x ≥ 0. For t ≥ 0, the associated conditional remaining lifetimes are the random
variables X(t) with ccdf (a function of x for x ≥ 0 which depends on t)

F c(x; t) ≡ P (X(t) > x) ≡ P (X > t + x|X > t), t ≥ 0, x ≥ 0,

and associated pdf f(x; t) (with F (x; t) ≡ ∫ x
0 f(s; t) ds). Let r(t) ≡ f(0; t).

[grading scheme: Up to 5 points off for errors on all parts, but the minimum possible
score is 0.]

(a) Give an explicit expression for r(t) in terms of the pdf f of X.

———————————————————————-
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The function r(t) is the failure (or hazard) rate function, which is defined on p.38 of
the textbook. The pdf is derived there.

f(x; t) =
f(t + x)
F c(t)

and r(t) ≡ f(0; t) =
f(t)
F c(t)

=
f(t)∫∞

t f(s) ds
(2)

———————————————————————-

(b) Suppose that r(t) = 7, t ≥ 0. Does that imply that the pdf f of X is well defined and
that we know it? If so, what is it?

———————————————————————-
As shown on pp. 38-39 of the textbook, the failure rate function uniquely characterizes the

cdf F . To see that, we can integrate r over [0, t] to get
∫ t

0
r(s) ds = − log {F c(t)}+ c,

yielding the explicit expression

F c(t) = exp {−
∫ t

0
r(s) ds}. t ≥ 0. (3)

If we substitute r(t) = 7 into (3), then we get

F c(t) = e−7t, t ≥ 0,

which is the ccdf of the exponential pdf with rate λ = 7, i.e.,

f(t) = 7e−7t, t ≥ 0.

A lifetime distribution is exponential if and only if its failure rate function is constant.

———————————————————————-

(c) Suppose that r(t) = t, t ≥ 0. Does that imply that the pdf f of X is well defined and
that we know it? If so, what is it?

———————————————————————-
We reason as in part (b), substituting r(t) = t into (3) to get

F c(t) = e−t2/2, t ≥ 0,

which, we see by differentiating with respect to t, is the ccdf of the pdf

f(t) = te−t2/2, t ≥ 0.

———————————————————————-

Now let Xi, i = 1, 2, be two independent random lifetimes defined as above, having pdf’s
fi(x), cdf’s Fi(x), ccdf’s F c

i (x). Let Xi(t) be the associated conditional remaining lifetimes
with cdf’s F c

i (x; t) and pdf’s fi(x; t). Let ri(t) ≡ fi(0; t)

(d) Prove or disprove:

P (X1 < X2|min {X1, X2} = t) =
r1(t)

r1(t) + r2(t)
.
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———————————————————————-
This formula is valid. This is Problem 1.34 in the textbook. To prove it, we first observe

that
P (X1 < X2|min {X1, X2} = t) =

f1(t)F c
2 (t)

f1(t)F c
2 (t) + f2(t)F c

1 (t)
. (4)

To approach (4) more formally, we might exploit basic properties of conditional pdf’s (which
can be separately justified). For that purpose, let M ≡ min {X1, X2}. You can start with the
joint distribution of (X1, X2, M) and the associated conditional density

fX1,X2|M (x, y|t) =
fX1,X2,M (x, y, t)

fM (t)
,

where we must have t = min {x, y}. We then can derive

fM (t) = f1(t)F c
2 (t) + f2(t)F c

1 (t), t ≥ 0,

and then integrate to obtain (4). Given (4), we divide both the numerator and denominator
of (4) by F c

1 (t)F c
2 (t) and apply the representation for r in (2).

———————————————————————-

Now suppose that r1(t) ≤ r2(t) for all t ≥ 0. Prove or disprove each of the following
statements:

(e) F1(t) ≤ F2(t) for all t ≥ 0,

———————————————————————-
This results is valid too. The statement is tantamount to the conclusion that hazard rate (or

failure rate) ordering (expressed by the condition) implies stochastic ordering (expressed by the
conclusion). See §9.3 and §9.1 of the textbook, respecitvely. The conclusion here is equivalent
to the stochastic ordering X1 ≥st X2. (The random variables are ordered stochastically in the
opposite order of the cdf ordering as functions. See the extra lecture notes of September 27.)

———————————————————————-

(f) E[X3
1 ] ≥ E[X3

2 ],

———————————————————————-
This results is valid too. The statement follows from part (e) by the representation

E[X3] =
∫ ∞

0
3x2F c(x) dx

given in 1 (d) (iii) on page 3 of homework assignment 1. It also follows from a basic property
of the stochastic ordering: X1 ≥st X2 if and only if

E[h(X1)] ≥ E[h(X2)] (5)

for all nondecreasing integrable real-valued functions h. See Proposition 9.1.2 of the textbook
and the extra lecture notes of September 27.

Both approaches are easily understood by recognizing that, given X1 ≥st X2, it is possible
to construct alternative random variables Yi, i = 1, 2, with Yi distributed the same as Xi and
having the property P (Y1 ≥ Y2) = 1. The construction can be in terms of a random variable
U uniformly distributed on [0, 1]. We let Yi ≡ F−1

i (U). (This construction is discussed in
homework 1.)
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———————————————————————-

(g) P (X1 ≥ X2) = 1).

———————————————————————-
This statement is invalid. In fact, we know nothing about the joint distribution of the

vector (X1, X2). The statement is valid for the specially constructed random variables (Y1, Y2)
in part (f), but not for the original random variables. For a concrete example, suppose that
X1 and X2 are i.i.d. exponential random variables with mean 1. let these random variables
initially be defined on the space [0, 1] using Xi ≡ F−1

i (U), so that the conclusion would be
true; indeed we would have P (X1 = X2) = 1). But then change the way X2 is defined. In
particular, let X2 be defined over [0, 1/2] as it was initially over [1/2, 1] and let X2 be defined
over [1/2, 1] as it was initially over [0, 1/2]. The distribution is unchanged, but the w.p.1 order
is lost. Indeed, after this modification we have P (X1 < X2) = P (X1 > X2) = 1/2). And yet,
the two random variables after this modification do still have the same distribution.

———————————————————————-

3. Independent Random Variables. (20 points)

Let {Xn : n ≥ 1} and {Yn : n ≥ 1} be independent sequences of independent random
variables with Xn distributed the same as Yn for all n ≥ 1 and

P (Xn = n) = 1− P (Xn = 0) =
1
n

for all n ≥ 1.

Let
Zn ≡ XnYn and Dn ≡ Xn − Yn, n ≥ 1.

[grading scheme: Part (a) 2 points; parts (b)-(d) 6 points each.]

(a) What are the mean and variance of Zn?

———————————————————————-
By independence, P (XnYn = n2) = P (Xn = n, Yn = n) = (1/n)2 = 1/n2. Otherwise

Zn ≡ XnYn = 0. Hence we have

P (Zn = n2) = 1− P (Zn = 0) =
1
n2

,

so that

E[Zn] = 1, E[Z2
n] = n2 and V ar(Zn) = E[Z2

n]− (E[Zn])2 = n2 − 1.

———————————————————————-

(b) What is the probability that the sum Z1 + Z2 + · · ·+ Zn converges to a finite limit as
n →∞?

———————————————————————-
By the Borel-Cantelli Lemma in Proposition 1.1.2,

P (Zn 6= 0 infinitely often) = 0,

because ∞∑

n=1

P (Zn 6= 0) =
∞∑

n=1

(1/n2) < ∞.
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Since there almost surely only finitely many non-zero terms in the series, the series necessarily
converges to a finite limit with probability 1.

———————————————————————-

(c) What is the probability that the sum D1 + D2 + · · ·+ Dn converges to a finite limit as
n →∞?

———————————————————————-
Unlike part (b), the probability that the sum D1 +D2 + · · ·+Dn converges to a finite limit

as n →∞ is 0.
To see that, first note that P (Dn 6= 0) = 2(1/n)((1− (1/n)) = 2(n−1)/n2 > 1/n for n ≥ 2.

Since {Dn : n ≥ 1} is a sequence of independent random variables, we can apply the converse
of the Borel-Cantelli Lemma in Proposition 1.1.3 to deduce that

P (Dn 6= 0 infinitely often) = 1,

because ∞∑

n=1

P (Dn 6= 0) =
∞∑

n=1

2(n− 1)/n2 = ∞.

Hence Dn = n or Dn = −n infinitely often almost surely. That almost surely violates the
criterion for convergence. In particular, for such a limit to exist, there must exist for each ε
an n0 ≡ n0(ε) such that

∞∑

j=n0

Dj < ε.

But that clearly is violated.

———————————————————————-

(d) Are there deterministic constants an and bn with an → ∞, bn → ∞ and an/bn → ∞
such that

(Z1 + · · ·+ Zn)− an

bn
⇒ L as n →∞,

where L is a nondegenerate random variable (with a probability distribution not concentrating
on a single value) and ⇒ denotes convergence in distribution? If so, what are the se constants
an and bn and what is L?

———————————————————————-
No, there do not exist such constants and nondegenerate random variable L. Since the

random variables Zn are not identically distributed and since the variance of Zn is order n2,
clearly the standard CLT does not apply. Since Z1 + · · ·Zn → U as n → ∞ w.p.1 for some
(unknown) nondegenerate random variable U by part (b) and bn →∞, it is evident that

(Z1 + · · ·+ Zn)
bn

→ 0 as n →∞ w.p.1

So we can disregard that term. On the other hand, an/bn →∞, by assumption.

———————————————————————-

4. Cars on a Highway Segment During Rush Hour (20 points)
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Two car-detection devices have been placed on a segment of a one-way highway without
exits or entrances in between. Let N(t) be the number of cars that pass the first detection
point during [0, t]. Suppose we consider a rush hour period in the morning. Thus, we let
{N(t) : t ≥ 0} be a nonhomogeneous Poisson process with rate function λ(t) = 12t over an
initial time interval [0, 6]. However, the first detection device does not work perfectly. Indeed,
each car is detected by the initial detection device only with probability 2/3, independently
of the history up to the time it passes the detection device. However, The second detection
device works perfectly.

As a simplifying assumption, assume that the cars do not interact, so that the length of
time that the cars remain in the highway segment can be regarded as i.i.d. random variables,
independent of the times that they pass the detection device. These times are regarded as
random variables, because the cars travel at different speeds. Suppose that the length of time
each car remains in the highway segment is uniformly distributed over the interval [1, 3].

[grading scheme: Up to 4 points off for errors on all parts, but the minimum possible
score is 0.]

(a) What is the expected number of cars that pass the first detection point on the highway
during the interval [0, 5] and are detected by the detection device?

———————————————————————-
Let Nd(t) be the number of cars that pass the initial detection device and are detected in

the interval [0, t]. By independent thinning, {Nd(t) : t ≥ 0} is also a nonhomogeneous Poisson
process with rate function λd(t) = (2/3)λ(t) = 8t over the initial time interval [0, 6].

m(5) ≡ E[Nd(5)] =
∫ 5

0
8t dt = 100

———————————————————————-

(b) What is the probability that precisely 50 cars pass the first detection point on the
highway during the interval [0, 5] and are detected by the detection device?

———————————————————————-
By part (a),

P (Nd(5) = 50) =
e−m(5)m(5)50

50!
=

e−100(100)50

50!

———————————————————————-

(c) Give a convenient approximate expression for the probability that more than 120 cars
pass the first detection point on the highway during the interval [0, 5] and are detected by the
detection device.

———————————————————————-
Since m(5) is large, we can use a normal approximation. Let N(0, 1) be a standard normal

random variable.

P (P (Nd(5) > 120) = P

(
Nd(5)− E[Nd(5)]√

V ar(Nd(5))
>

120− E[Nd(5)]√
V ar(Nd(5))

)

≈ P

(
N(0, 1) >

120−E[Nd(5)]√
V ar(Nd(5))

)
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= P

(
N(0, 1) >

120− 100]√
100

)
= P (N(0, 1) > 2.0) ≈ 0.023

(You are not required to know or calculate the final normal probability, but actually you should
have some idea, because it is such a common case.)

———————————————————————-

(d) Let C(t) be the number of cars that are detected by the detection device up to time t and
remain in the highway segment at time t. Give an expression for the probability distribution
of C(4)?

———————————————————————-
We use the Mt/GI/∞ queueing model. Let S be the random time each car remains in the

highway segment. From the “Physics paper” or from the textbook, we know that C(t) has a
Poisson distribution for each t with mean

m(t) = E[C(t)] =
∫ t

0
λ(s)Gc(t− s) ds,

where λ(s) = 8s, G(x) ≡ P (S ≤ x) = (x − 1)/2 (1 ≤ x ≤ 3), G(x) = 0 (x < 1), G(x) = 1
(x > 3), and Gc(x) ≡ P (S > x) = 1−G(x). Hence,

m(4t) ≡ E[C(4)] =
∫ 4

0
8sGc(4− s) ds

=
∫ 3

1
8s

(s− 1)
2

ds +
∫ 4

3
8s ds =

∫ 3

1
(4s2 − 4s) ds + 28

= [(4/3)(33)− 2(3)2 − (4/3)(13) + 2(1)2] + 28 = [36− 18− (4/3) + 2] + 28 = 46
2
3

———————————————————————-

(e) What is the covariance between C(3) and C(6)?

———————————————————————-
The covariance is 0 because the random variables are independent. See Theorem 2 of the

Physics paper, but notice that the service times are uniform on [1, 3] here. Since the service
times are at most 3, the C(3) cars will all be gone by time 6. We have the covariance expression
Cov(A + B,B + C) = Cov(B, B) = V ar(B) = E[B], where A, B and C are the numbers of
events in the three regions in the plane in Figure 3 of the Physics paper, but necessarily B = 0.

———————————————————————-

(f) Let D(t) be the number of cars that are detected by the detection device and have
departed by time t. Give an expression for the joint distribution of C(4) and D(4).

———————————————————————-
By Theorem 1 of the “Physics paper,” the random variables C(4) and D(4) are independent

Poisson random variables. Clearly, C(t) + D(t) = Nd(t), where

E[Nd(4)] =
∫ 4

0
8t dt = 64,
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reasoning as in part (a). Hence, E[D(4)] = 64 − E[C(4)], but by part (d) E[C(4) = 54
3 . so

that
E[D(4)] = 64− 54

3
=

192− 54
3

=
138
3

.

Thus, finally we can write

P (C(4) = j,D(4) = k) = P (C(4) = j)P (D(4) = k) =

(
e−(54/3)(54/3)j

j!

)(
e−(138/3)(138/3)k

k!

)
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