
IEOR 6711: Stochastic Models I

SOLUTIONS to the Second Midterm Exam, November 17, 2013

1. Random Movement on a Chessboard (25 points)

The king (a chess piece) is placed on one corner square of an empty 8 × 8 = 64-square
chessboard. The king then makes a sequence of random moves from square to square, making
each of its legal moves with equal probability on each move, independent of how it reached
its current square. In each move, the king is allowed to move one square in any direction,
including diagonally, as long as it stays on the board. Thus, the king has three possible moves
from its initial corner square, but 8 possible moves from each interior square, away from any
side of the board.

(a) Does the probability that the king is in its initial square after n moves converge to a
limit as n →∞? If so, what is that limit?

——————————————————————-
Note in this case the chain is aperiodic. Hence the answer is yes. We use the fact that this

is a special case of a random walk on the vertices of a graph with weights on its arcs. The
nodes are the squares. There is an arc between two nodes if the king can move from one square
to the other. All weights are 1. The probability of moving from one square to another then is
the weight on the arc divided by the sum of the weights out of the originating square. In this
case, the steady-state probability is

πj =
∑

k wi,k∑
j

∑
k wj,k

=
3

(4× 3) + (24× 5) + 36× 8)
=

3
420

=
1

140
.

as shown in Proposition 4.71.

——————————————————————-

(b) What is the expected number of moves until the king first returns to its initial square?

——————————————————————-
Let T1,1 be the first time the king to returns to the initial square. Then

E[T1,1] =
1
π1

= 140.

——————————————————————-

(c) Justify your answer in parts (a) and (b). (Style points for careful complete answers,
including supporting details and proofs.)

——————————————————————-
See lecture notes on reversibility for November 7 and Section 4.7 of the textbook. Use

renewal theory to justify (b), recalling that successive visits to the initial square are renewals.

——————————————————————-

(d) Give an expression (carefully identifying all components) for the probability that the
king visits the opposite corner square (the corner square that is on a different row and in a
different column) before it visits the other corner square on the same row as its initial square?



——————————————————————-
Here we have an issue in absorbing Markov chain theory, from Section 2 of the lecture notes

of October 24. We put the 64× 64 transition matrix in canonical form. in block matrix form,
we have

P =
(

I 0
R Q

)
,

where I is an identity matrix (1’s on the diagonal and 0’s elsewhere) and 0 (zero) is a matrix of
zeros. In this case, I would be 2×2, R is 62×2 and Q is 62×62). The two possible destination
corner squares are the two absorbing states. Let the opposite corner be labeled square 1 and
the other square on the same row as the initial square be labeled square 2. The matrix Q
gives the transition probabilities among the transient states, which includes the initial corner
square. Let the initial corner square be labeled as square 64. Then what we want to calculate
is

B64,1,

the entry on the 64th row and in the first column of the 62× 2 matrix B. (I label the rows of
R, Q and B with the integers 3, 4, . . . , 64. I label the columns of Q the same way. I label the
columns of R and B by 1 and 2. I label the columns of Q the same ways as the rows. The
matrix B is computed by

B = NR

where
N = (I −Q)−1.

——————————————————————-

(e) Justify your answer in part (d).

——————————————————————-
See Section 2 of the lecture notes of October 24.

——————————————————————-

2. Finite-State Markov Chains (25 points)

Consider an m-state Markov chain for m < ∞ with transition probabilities Pi,j that are
strictly positive for all i and j. Consider the following three statements:

(i) There are positive numbers xi such that
∑m

i xiPi,j = xj for all j.

(ii) There are positive numbers xi such that xiPi,j = xjPj,i for all i and j.

(iii) For all triples of states (i, j, k), Pi,jPj,kPk,i = Pi,kPk,jPj,i.

Indicate whether or not each of the following claims is valid. Then support your answer with
a proof, quoting established theorems where appropriate. Finally, prove all quoted theorems
used to answer (c) and (d).

(a) Statement (i) implies statement (ii).

——————————————————————-
Of course, (i) is just the stationarity equation π = πP (assuming that the numbers xi are

normalized to sum to one, while (ii) is the definition of reversibility. False. Give a counterex-

2



ample. Here is one:

P =




0.05 0.90 0.05
0.05 0.05 0.90
0.90 0.05 0.05


 ,

Since the transition matrix is doubly stochastic, π = (1/3, 1/3, 1/3), as can be checked, but
(ii) does not hold, as can be checked.

——————————————————————-

(b) Statement (ii) implies statement (i).

——————————————————————-
This is correct. Just sum on either i or j to show it.

——————————————————————-

(c) Statement (ii) implies statement (iii).

——————————————————————-
This is correct, by the Kolmogorov cycle theorem, Theorem 4.72. The proof is given on

the top of p. 209. But it does only cycles of length 3.
Given reversibility, we can write

Pi,j =
Pj,iπj

πi

Hence given any cycle, such as 1 → 2 → 3 → 4 → 5 → 1, we can write

P1,2P2,3P3,4P4,5P5,1 =
(

P2,1π2

π1

) (
P3,2π3

π2

)
· · ·

(
P1,5π1

π5

)

= P2,1P3,2P4,3P5,4P1,5 = P1,5P5,4P4,3P3,2P2,1

because the πj terms cancel in the first line on the right. More generally, the proof can be
done by induction.

——————————————————————-

(d) Statement (iii) implies statement (ii).

——————————————————————-
This is also correct. This is a combination of the Kolmogorov cycle theorem, Theorem

4.72, and an additional argument showing that it suffices to have the cycle relation for cycles
of length 3 if the elements of the matrix P are all positive, see Exercise 4.45.

Here is a direct argument for (iii) implies (ii): Let

πj =
CP1,j

Pj,1
,

where 1 is a fixed state and C is chosen so that
∑

j πj = 1. Since all the probabilities are
positive, we can do this. Then observe that

πjPj,k =
CPi,jPj,k

Pj,i
=

CPi,kPk,j

Pk,i
= πkPk,j

which is (ii).

——————————————————————-
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(e) Statement (i) is always valid.

——————————————————————-
This claim is correct. A proof could be by Theorem 4.3.3, for which we must have (ii)

there. A proof could also be by the contraction fixed point theorem in the lecture of October
29.

——————————————————————-

(f) Statement (ii) is always valid.

——————————————————————-
That claim is not correct. The counterexample in part (a) applies.

——————————————————————-

(g) If Statement (i) holds for vectors x ≡ (x1, . . . , xm) and y ≡ (y1, . . . , ym), then necessarily
y = cx for some constant c > 0.

——————————————————————-
The claim is correct. The proofs of existence in part (e) imply uniqueness among probability

vectors. But scalar multiples also satisfy the same relation.

——————————————————————-

3. Automobile Replacement (25 points)

Mr. Brown has a policy that he buys a new car as soon as his old one breaks down or
reaches the age of 6 years, whichever occurs first. Suppose that the successive lifetimes (time
until they breakdown) of the cars he buys can be regarded as independent and identically
distributed random variables, each uniformly distributed on the interval [0, 10] years. Suppose
that each new car costs $20, 000. Suppose that Mr. Brown incurs an additional random cost
each time the car breaks down. Suppose that this additional breakdown cost is exponentially
distributed with mean $4, 000. Suppose that he can trade his car in after it is 6 years old if it
does not break down, and only if it does not break down, and receive a random dollar value
uniformly distributed in the interval [1000, 3000].

(a) What is the long-run average cost per year of Mr. Brown’s car-buying strategy?

——————————————————————-
We apply renewal reward theory:

long run average cost =
average cost per cycle
average length of cycle

In particular we apply the SLLN for renewal reward processes, Theorem 3.6.1 (i). Here it is
important to justify the simple method.

The times that Mr. Brown has each car constitute the cycles. The instants that Mr. Brown
gets a new car are the renewal epochs. Let T be the time Mr. Brown has each car. Calculating
the mean E[T ] is somewhat complicated because the distribution has a (uniform) density over
the interval [0, 6] plus a discrete mass at the point 6. We can write

E[T ] =
∫ 6

0

xdx

10
+ 6P (L > 6) =

36
20

+ 6(0.4) = 1.8 + 2.4 = 4.2 years
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Next, we need the expected cost per car. For that, we only need the mean turn-in value,
which is of course $2000. Let C̄ be the long-run average cost. (The cost can be treated just
like the reward. Directly, we can regard the cost as negative reward.) Then

C̄ =
20, 000 + (0.6)4, 000− (0.4)2, 000

E[T ]
=

20, 000 + 2, 400− 800
4.2

=
21, 600

4.2
≈ 5143

The average cost per year is about $5143.

——————————————————————-

(b) What is the long-run average age of the car currently is use?

——————————————————————-
We can again use renewal reward theory, just as above. The same theory applies. This is

worked out in detail in Example 3.6(B). We will need the second moment of T . We can write

E[T 2] =
∫ 6

0

x2dx

10
+ 62P (L > 6) =

216
30

+ 36(0.4) = 7.2 + 14.4 = 21.6

Let A(t) be the age of the car currently in use at time t. In the long-run, the age of the
car currently in use at time t, A(t), is distributed according to Te a random variable with the
stationary-excess cdf Fe associated with the cdf F of T . The mean of this equilibrium age has
the formula

lim
t→∞

∫ t
0 A(t) dt

t
= E[Te] =

E[T 2]
2E[T ]

=
21.6

2(4.2)
=

21.6
8.4

= 2.57 years.

——————————————————————-

(c) Suppose that the car buying policy started at time 0 with a purchase of a new car.
Give an explicit expression for the distribution of the remaining time he will use the current
car at time t via its Laplace transform.

——————————————————————-
The question asks for the distribution of the residual life Y (t). Its cdf P (Y (t) ≤ x) satisfies

a renewal equation; see §3.1 of the lecture notes on October 15, where h(t) = F (t + x)− F (t).
By the lecture notes of October 10, we have the general renewal equation

g(t) = h(t) +
∫ t

0
g(t− y) dF (y)

with solution

g(t) = h(t) +
∫ t

0
h(t− y) dm(y)

and Laplace transform

ĝ(s) =
ĥ(s)

1− f̂(s)
,

so it suffices to exhibit the two Laplace transforms that occur in this case

f̂(s) =
1− e−6s

10s
+

4e−6s

10
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and

ĥ(s) =
∫ ∞

0
e−st(F (t + x)− F (t) dt =

(esx − 1)f̂(s)
s

for f̂(s) above.

——————————————————————-

(d) Prove that the remaining time he will use the car currently in use at time t converges
in distribution as t →∞ and identify the limiting distribution.

——————————————————————-
Apply the key renewal theorem to get convergence in distribution Y (t) ⇒ Te, where

P (Te ≤ x) =
1

ET

∫ x

0
P (T > y) dy

It is important to show that the conditions are satisfied. First the mean time between
renewals is finite, E[T ] < ∞. Second the distribution of T is non-lattice, because it has the
component that is uniformly distributed on [0, 6]; the atom at 6 does not cause any problems.
Finally, it is important to note that the function h here is directly Riemann integrable (d.R.i.).
That last step is somewhat complicated, because h here is not decreasing. If x = 2, then there
is a jump up in h(t) at t = 4. However, we can use condition (iv) in Proposition V.4.1 on p.
154 of Asmussen (2003). We can observe that h is bounded and continuous a.e. with respect
to Lebesgue measure. (For 0 < x < 6, it has only two discontinuity points, when t + x = 6
and when t = 6.) And we see that h(t) ≤ 1 − F (t), where 1 − F (t) is d.R.i. because it is
nondecreasing and integrable. Its integral is E[T ] by the tail integral formula..

——————————————————————-

4. I.I.D. Uniform Random Variables (25 points)

Let Un, n ≥ 1, be independent and identically distributed (i.i.d.) random variables, each
uniformly distributed on the interval [0, 2]. Let

g(n, x) ≡ P (U1 + · · ·+ Un ≤ x) for x ≥ 0, n ≥ 1 and

g(x) ≡
∞∑

n=1

g(n, x) for x ≥ 0.

Indicate whether or not each of the following statements is valid. Then support your answer
with a proof, quoting established theorems where appropriate. Finally, either prove all quoted
theorems that you used to answer (ii) or prove all quoted theorems that you used to answer
(iii).

——————————————————————-
The critical observation is that g(x) = m(x), the renewal function, which follows from

Proposition 3.2.1.

——————————————————————-

(i) g(x) < ∞ for all x, 0 < x < ∞.

——————————————————————-
This is Proposition 3.2.2.

6



——————————————————————-

(ii) g(x)/x → 1 as x →∞.

——————————————————————-
This is the elementary renewal theorem, Theorem 3.3.4. I am expecting that you will give

a detailed proof of this theorem as the final part.

——————————————————————-

(iii) g(x + 1)− g(x) → 1 as x →∞.

——————————————————————-
This is Blackwell’s theorem, Theorem 3.4.1.

——————————————————————-

(iv) 2g(x) = x ∧ 2 +
∫ x∧2
0 g(x− y)dy for x ≥ 0, where a ∧ b ≡ min {a, b}.

——————————————————————-
This is the renewal equation for g(x) ≡ m(x), written in general as

m(t) = 0 +
∫ t

0
[(1 + m(t− y)] dF (y) = F (t) +

∫ t

0
m(t− y)]f(y) dy

(See the third display on page 2 of the lecture notes for October 10.)

——————————————————————-

(v) g(x)−x√
x

⇒ N(0, σ2) as x → ∞, for some σ2 > 0 where N(a, b) denotes a Gaussian
random variable with mean a and variance b and ⇒ denotes convergence in distribution.

——————————————————————-
This statement is invalid. A deterministic function of x cannot converge in distribution to

a nondegenerate stochastic limit (with positive variance) as x → ∞. The actual limit is 0.
That follows as an easy consequence of the next part, by dividing the left side by

√
x.

——————————————————————-

(vi) g(x)− x ⇒ Y as x →∞, for some positive random variable Y with E[Y 2] < ∞.

——————————————————————-
This statement IS correct, because we have convergence everywhere, which implies con-

vergence with probability 1, which in turn implies convergence in distribution. The limiting
random variable is deterministic. Thus Y = y and E[Y 2] = y2 for some constant y. In
particular, we have

g(x)− x → E[U [0, 2]2]
2

− 1 =
4/3
2
− 1 = −1

3
as x →∞

as a consequence of Corollary 3.4.7 on p. 121. But the full argument uses the key renewal
theorem; see §3.4.2 for the details.

——————————————————————-
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