
IEOR 6711: Stochastic Models I

SOLUTIONS to Second Midterm Exam, Chs. 3-4, November 20, 2007

Justify your answers; show your work.

1. Selling Flour: The Grainery. (30 points)

The Grainery is a store that sells flour to bakers. Suppose that bakers come to the Grainery
according to a Poisson process with a rate of λ per week. Suppose that each baker asks
to buy a random amount of flour, which is distributed according to a random variable X
having cumulative distribution function (cdf) G with density g and a mean of m pounds. Let
the successive quantities requested by the bakers be independent and identically distributed,
independent of the arrival process.

The store uses an (s, S) inventory policy: Whenever the store’s inventory level of flour
drops below s pounds, the store immediately places an order from a centralized warehouse to
bring its inventory level up to S pounds, where S > s. Assume that the delivery time from
the warehouse to the Grainery is negligible; i.e., assume that these orders are delivered to
the Grainery immediately after the last baker whose request takes the inventory level below
s leaves. (The baker whose request takes the inventory level below s cannot receive any of
the new order. That baker receives only part of his request if his request exceeds the current
supply. This is the case of ”lost sales;” i.e., there is no commitment to fill the rest of the order
later. After that baker leaves, the new inventory is S.)

———————————————————————————————-
This is an elaboration of Example 3.4A on page 118. The key observation is that the

counting process of the successive order times (by the Grainery from the warehouse) is a
renewal counting process.

———————————————————————————————-
SCORING: (a) and (b) each 7, (c) and (e) each 6, and (d) 4.

———————————————————————————————-

(a) Give an expression for the long-run rate that the Grainery places orders to replace its
stock of flour. Indicate how the numerical value can be obtained.

———————————————————————————————-
The rate is the reciprocal of the mean time between successive orders. To find it, let Yn

be the interarrival time between the (n − 1)st and nth baker; and let Xn be the amount of
flour requested by the nth baker. Then {Yn : n ≥ 1} is a sequence of IID exponential random
variables with mean 1/λ, while {Xn : n ≥ 1} is a sequence of IID random variables with
cdf G and mean m. Let NG(t) be the renewal counting process associated with the sequence
{Xn : n ≥ 1}. Then the times between successive orders by the Grainery are IID, each
distributed as

T =
NG(S−s)+1∑

k=1

Yk,

where the summands Yk are IID and independent of the random variables NG(S − s) + 1.
Hence we can simply condition and uncondition (we do not need Wald) to get the mean

E[T ] = E




NG(S−s)+1∑

k=1

Yk


 = E[(NG(S − s) + 1)]E[Y1] =

mG(S − s) + 1
λ

,



where mG is the renewal function associated with NG, i.e.,

mG(t) ≡ E[NG(t)], t ≥ 0.

Thus, the rate of orders by the Grainery is

rate =
1

E[T ]
=

λ

mG(S − s) + 1
.

———————————————————————————————-

(b) Let X(t) be the inventory of flour at the Grainery at time t. Explain why the limit of
P (X(t) ≥ x) as t →∞ exists and give an expression for that limit.

———————————————————————————————-
Let the cycles be the successive periods between orders by the Grainery. As noted above,

these are IID. For s ≤ x ≤ S, the process X(t) is first above x and then eventually below x.
These successive periods above and below x produce an alternating renewal process. We can
thus apply Theorem 3.4.4, which in turn can be proved by the key renewal theorem. We need
to observe that the distribution of T is non-lattice, because it is a random sum of exponential
random variables. Indeed, the sum of two independent random variables has a density if one
of the two has a density; see Theorem 4 on p. 146 of Feller (1971), vol. II. See Asmussen
(2003) for more on this issue. I was not expecting a detailed proof of this condition. Here we
can obtain that representation by writing

T = Y1 +
NG(S−s)+1∑

k=2

Yk.

Moreover, we need E[T ] < ∞, which we have. Thus, we have

lim
t→∞P (X(t) ≥ x) =

E[reward per cycle]
E[length of cycle]

=
(mG(S − x) + 1)/λ

(mG(S − s) + 1)/λ
=

mG(S − x) + 1
mG(S − s) + 1

,

as given in the last formula of the example in Ross on page 119.

———————————————————————————————-

(c) How does the answer in part (b) simplify when the cdf G is exponential?

———————————————————————————————-
When the cdf G is exponential, mG(t) = t/m for all t ≥ 0. Hence, we obtain

lim
t→∞P (X(t) ≥ x) =

E[reward per cycle]
E[length of cycle]

=
(mG(S − x) + 1)/λ

(mG(S − s) + 1)/λ
=

(S − x) + m

(S − s) + m
.

———————————————————————————————-

(d) Is the cumulative distribution function of the limiting inventory level in part (c) con-
tinuous? Explain.

———————————————————————————————-
No. It is continuous except for an atom at S. Indeed, the distribution is uniform except

for this atom. Note that

lim
t→∞P (X(t) ≥ S) =

(S − S) + m

(S − s) + m
=

m

(S − s) + m
,
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but clearly
lim
t→∞P (X(t) ≥ S) = lim

t→∞P (X(t) = S).

———————————————————————————————-

(e) How does the answer (b) simplify when the mean m becomes relatively small compared
to S − s? (To make this precise, suppose that the mean-m random variable X ≡ X(m)
introduced above is constructed from a mean-1 random variable Z by letting X(m) = mZ.
Then let m ↓ 0.)

———————————————————————————————-
Apply the elementary renewal theorem, stating that mG(t)/t → 1/m as t →∞. When we

scale down the mean, it is equivalent to increasing t in the renewal function. We want to look
at

lim
m↓0

lim
t→∞P (X(t) ≥ x).

But, under our scaling relation, the limit is the uniform distribution on [s, S]. That should be
consistent with intuition.

To proceed carefully, we can first apply part (b) to the mean-1 random variable Z. We use
a subscript to indicate the mean of the X variable. When we start with Z, we have mean 1.
We get

lim
t→∞P (X1(t) ≥ x) =

E[reward per cycle]
E[length of cycle]

=
(mZ(S − x) + 1)/λ

(mZ(S − s) + 1)/λ
=

mZ(S − x) + 1
mZ(S − s) + 1

,

Now, if we introduce the scaling by m, that is tantamount to re-scaling time by 1/m and
keeping the random variable Z, which still have mean 1. Hence we get

lim
t→∞P (Xm(t) ≥ x) = lim

t→∞P (X1(t/m) ≥ x)

=
mZ((S − x)/m) + 1
mZ((S − s)/m) + 1

→ S − x

S − s
,

(1)

because, by the elementary renewal theorem,

mZ(t/m)
t/m

→ 1 as m ↓ 0,

since E[Z] = 1.

———————————————————————————————-

2. Random Clockwise Walk Around the Circle. (35 points)

Consider a random walk on the circle, where each step is a clockwise random motion. At
each step, the angle is at one of the values kπ/2, 1 ≤ k ≤ 4. That is, there is a sequence
of independent clockwise motions on the circle among the four angles kπ/2, 1 ≤ k ≤ 4. Let
transitions take place at positive integer times. In each step, the walk moves in a clockwise
motion jπ/2 with probability (j + 1)/10 for 0 ≤ j ≤ 3. Henceforth, let state k represent kπ/2,
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then we have the following transition matrix for transitions among the four states 1, 2, 3 and
4:

P =

1
2
3
4




0.1 0.2 0.3 0.4
0.4 0.1 0.2 0.3
0.3 0.4 0.1 0.2
0.2 0.3 0.4 0.1


 .

———————————————————————————————-
SCORING: Each part counted 7, so the total was 35 points. But part (b) was hard, so

that it should be regarded as a ”bonus” question.

———————————————————————————————-

(a) Show that there exists a distance (metric) d on the space of probability vectors of length
4 and a constant c with 0 < c < 1 such that, for any two probability vectors u ≡ (u1, u2, u3, u4)
and v ≡ (v1, v2, v3, v4),

d(uP, vP ) ≤ cd(u, v) .

———————————————————————————————-
This is an example of the contraction proof of the steady-state limit for irreducible aperiodic

finite-state DTMC’s, discussed in the lecture on November 8, and the posted notes for that
day. See those notes. We use the metric associated with the l1 norm:

d(u, v) ≡ ||u− v||1 ≡
m∑

k=1

|uk − vk|.

As shown in the notes, the contraction constant c can be taken to be one minus the sum of
the minimal elements of the columns. Hence here c = 0.6.

———————————————————————————————-

(b) Find the smallest such constant c in part (a), such that the inequality is valid for all u
and v, and prove that it is smallest.

———————————————————————————————-
The contraction constant c = 0.6 specified above is not best possible. It is possible to find

the answer by writing out the terms in detail of d(uP, vP ), as shown by Jaehyun Cho. The
following is his method:

d(uP, vP ) = |0.0(u1 − v1) + 0.1(u2 − v2) + 0.2(u3 − v3) + 0.3(u4 − v4)|
+ |0.3(u1 − v1) + 0.0(u2 − v2) + 0.1(u3 − v3) + 0.2(u4 − v4)|
+ |0.2(u1 − v1) + 0.3(u2 − v2) + 0.0(u3 − v3) + 0.1(u4 − v4)|
+ |0.1(u1 − v1) + 0.2(u2 − v2) + 0.3(u3 − v3) + 0.0(u4 − v4)|

= | − 0.1(u1 − v1) + 0.0(u2 − v2) + 0.1(u3 − v3) + 0.2(u4 − v4)|
+ |0.2(u1 − v1)− 0.1(u2 − v2) + 0.0(u3 − v3) + 0.1(u4 − v4)|
+ |0.1(u1 − v1) + 0.2(u2 − v2)− 0.1(u3 − v3) + 0.0(u4 − v4)|
+ |0.0(u1 − v1) + 0.1(u2 − v2) + 0.2(u3 − v3)− 0.1(u4 − v4)|
≤ | − 0.1(u1 − v1)|+ |0.0(u2 − v2)|+ |0.1(u3 − v3)|+ |0.2(u4 − v4)|
+ |0.2(u1 − v1)|+ | − 0.1(u2 − v2)|+ |0.0(u3 − v3)|+ |0.1(u4 − v4)|
+ |0.1(u1 − v1)|+ |0.2(u2 − v2)|+ | − 0.1(u3 − v3)|+ |0.0(u4 − v4)|
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+ |0.0(u1 − v1)|+ |0.1(u2 − v2)|+ |0.2(u3 − v3)|+ | − 0.1(u4 − v4)|
= 0.4(|u1 − v1|+ |u2 − v2|+ |u3 − v3|+ |u4 − v4|)

The second equality is obtained by subtracting 0.1(u1 − v1) + 0.1(u2 − v2) + 0.1(u3 − v3) +
0.1(u4−v4) from each term, which changes nothing because it is 0, since u and v are probability
vectors.

It is easy to show that c = 0.4 is best possible by an example: u = (1, 0, 0, 0) and v =
(0, 0, 1, 0). Clearly, d(u, v) = 2 and d(uP, vP ) = 0.8 = 0.4d(u, v).

———————————————————————————————-

(c) Use part (a) to show that there exists a unique stationary probability vector for P , i.e.,
a probability vector π ≡ (π1, π2, π3, π4) satisfying

π = πP.

———————————————————————————————-
See the notes.

———————————————————————————————-

(d) Use part (a) to show that

d(uPn, π) ≤ Kcn, n ≥ 1,

where c and K are constants, independent of u, and identify the best possible constant K (the
smallest constant that is valid for all u).

———————————————————————————————-
See the notes. The notes give d(u/π) on the right instead of K. Note that d(u, v) ≤ 2 for

all probability vectors u and v. However, for π = (1/4, 1/4, 1/4, 1/4), which is the limit here
(see part (e) below), we can do better. We can have K at most 2 × (3/4) = 3/2. That is
attained by u = (1, 0, 0, 0).

———————————————————————————————-

(e) Find the stationary probability vector π.

———————————————————————————————-
Since the transition matrix P is doubly stochastic, we know right away that the stationary

probability vector is π = (1/4, 1/4, 1/4, 1/4).

———————————————————————————————-

3. Customers at an ATM. (50 points)

Suppose that customers arrive at a single automatic teller machine (ATM) according to
a Poisson process with rate λ per minute. Customers use the ATM one at a time. There is
unlimited waiting space. Assume that all potential customers join the queue and wait their
turn. (There is no customer abandonment.)

Let the successive service times at the ATM be mutually independent, and independent of
the arrival process, with a cumulative distribution function G having density g and mean 1/µ.
Let Q(t) be the number of customers at the ATM at time t, including the one in service, if
any.
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———————————————————————————————-
This is the M/G/1 queue, as discussed in class on November 15. See the posted notes and

the cited sections in Ross.

———————————————————————————————-
SCORING: All parts counted 5 points, except part (d), which counted 10 points. The total

possible score was 50. Parts (h) and (i) can be considered bonus questions.

———————————————————————————————-

(a) Prove that Q(t) →∞ as t →∞ with probability 1 if ρ ≡ λ/µ > 1.

———————————————————————————————-
Let A(t) count the number of arrivals in [0, t], let D(t) count the number of departures

in [0, t]; let S(t) count the number of service completions in [0, t] if the server were to work
continuously without interruption, using the given sequence of service times. Clearly, D(t) ≤
S(t) w.p.1. Note that Q(t) = A(t) − D(t) for each t. By the SLLN for a Poisson process (a
special case of Proposition 3.3.1), A(t)/t → λ. By the SLLN for the renewal process, S(t),
S(t)/t → µ. Thus,

lim inf
t→∞

A(t)−D(t)
t

≥ lim
t→∞

A(t)− S(t)
t

= λ− µ > 0 ,

which implies that

lim inf
t→∞

Q(t)
t

≥ λ− µ > 0 ,

so that Q(t) →∞ w.p.1.

———————————————————————————————-

(b) Is the stochastic process {Q(t) : t ≥ 0} a Markov process? Explain.

———————————————————————————————-
No. The future of Q(t) depends on the elapsed service time in progress at time t.

———————————————————————————————-

(c) Identify random times Tn, n ≥ 1, such that the stochastic process {Xn : n ≥ 1} is an
irreducible infinite-state discrete-time Markov chain (DTMC), when Xn = Q(Tn) for n ≥ 1.

———————————————————————————————-
The random times can be the departure times. See the notes and the book.

———————————————————————————————-

(d) Find conditions under which the state Xn at time n of the DTMC {Xn : n ≥ 1} in
part (c) converges in distribution to a proper steady-state limit as n →∞, and determine that
limiting steady-state distribution.

———————————————————————————————-
We follow Example 4.3 A on page 177. We need to have λ < µ or, equivalently, ρ ≡ λ/µ < 1.

We apply Theorem 4.3.3 stating that it suffices to solve π = πP , under the conditions. We
determine the steady-state probability vector π via its generating function. The generating
function of π is what was wanted.

———————————————————————————————-
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(e) In the setting of part (d), what is the steady-state probability that the system is empty
(at these embedded random times)?

———————————————————————————————-
We get π0 = 1− ρ as part of the analysis in the previous part.

———————————————————————————————-

(f) How does the steady-state distribution determined in part (d) simplify when the service-
time cdf is

G(x) = 1− e−µx, x ≥ 0 ?

———————————————————————————————-
The distribution becomes geometric; see the notes.

———————————————————————————————-

(g) Find
lim

n→∞P (Xn = j)

in the setting of part (f).

———————————————————————————————-

lim
n→∞P (Xn = j) = (1− ρ)ρj .

———————————————————————————————-

(h) What is the heavy-traffic approximation for the steady-state distribution found in part
(d)?

———————————————————————————————-
A heavy-traffic approximation is the exponential distribution with the exact mean. The

exact mean is

E[Xρ,∞] = ρ +
(

ρ2

1− ρ

) (
c2
s + 1
2

)
,

where c2
s is the SCV of the service time. The limit in the next part does not directly yield

exactly that approximation, because as ρ ↑ 1, some of the ρ terms get replaced by 1. A direct
application of the limit would yield first

(1− ρ)Xρ,∞ ≈
(

c2
s + 1
2

)
Z,

where Z is a mean-1 exponential random variable, and then

Xρ,∞ ≈
(

c2
s + 1

2(1− ρ)

)
Z,

but, given the exact mean, we could refine the approximation. The mean thing we learn for
M/G/1 is that the complicated distribution tends to be approximately exponential for large
ρ.

———————————————————————————————-

(i) State and prove a limit theorem justifying the approximation in part (h).
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———————————————————————————————-
See the notes. Paralleling the approximation above, the limit is

(1− ρ)Xρ,∞ ⇒ L,

where L is a random variable with an exponential distribution having mean (c2
s + 1)/2.

The detailed proof is given in the posted pages from Gnedenko and Kovalenko. The idea
is to exploit Taylor’s series, which becomes valid because of the scaling.

———————————————————————————————-
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