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OUTLINE

1 The Overloaded G/GI/s + GI Fluid Queue Model. (stationary)

(W2, Operations Research, 2006)

2 The Gt/GI/st + GI Fluid Model with Alternating Overloaded and

Underloaded Intervals. (Yunan Liu & W2, Queueing Systems, 2012)

1 Numerical Examples: Comparisons to Simulations of Stochastic

Queueing Systems.

2 An Algorithm to Compute the Performance Functions of the Fluid Model

(Relates to time-varying Little’s law, offered load analysis and the

infinite-server model and has extensions to networks.)



I. The Overloaded Stationary G/GI/s+GI Fluid Model

Approximation for the G/GI/s + GI Stochastic Queueing Model

when overloaded

service facility

waiting room

arrival process departures

abandonment

λ

s serversF(x) = P(Ta ≤  x)
(Ta time to abandon)

G(x) = P(Ts ≤  x)
(Ts service time)



Many-Server Heavy-Traffic (MSHT) Limit

Increasing Scale Increasing Scale

a sequence of G/GI/s + GI models indexed by n,

arrival rate grows: λn/n→ λ as n→∞,

number of servers grows: sn/n→ s as n→∞,

service-time cdf G and patience cdf F held fixed independent of n

with mean service time 1: µ−1 ≡
∫∞

0 x dG(x) ≡ 1.



The Three MSHT Limiting Regimes for Stationary Models

Let the traffic intensity be ρn ≡ λn/snµn = λn/sn.

Quality-and-Efficiency-Driven (QED) regime (critically loaded):

(1− ρn)
√

n→ β as n→∞, −∞ < β <∞.

Quality-Driven (QD) regime (underloaded): (1− ρn)
√

n→∞.

Efficiency-Driven (ED) regime (overloaded): (1− ρn)
√

n→ −∞.

In fluid scale: QED: ρ = 1, QD: ρ < 1 and ED: ρ > 1.



Separation of Time Scales

The MSHT limit causes a separation of time scales:

System View versus Customer View

The relevant time scale is the mean service time, which is fixed.

Since the arrival rate grows, i.e., since λn/n→ λ as n→∞,

the arrival process matters in a long time scale, through its LLN and CLT.

The service-time cdf G and patience cdf F matter.



Fluid Approximation from MSHT limit



Fluid Approximation from MSHT limit



Fluid Approximation from MSHT limit



The Queueing Variables

content processes: two-parameter stochastic processes

Bn(t, x) number in service at time t who have been there for time ≤ x,

Qn(t, x) number in queue at time t who have been there for time ≤ x,

Wn(t) elapsed waiting time for customer at head of line (HOL),

Vn(t) potential waiting time for new arrival (virtual if infinitely patient),

An(t) number to abandon in [0, t],

En(t) number to enter service in [0, t],

Sn(t) number to complete service in [0, t],

Fluid scaling: Ȳn ≡ n−1Yn.



MSHT fluid limit (FWLLN)

Theorem
(FWLLN) If . . . , then

(B̄n, Q̄n,Wn,Vn, Ān, Ēn, S̄n)⇒ (B,Q,w, v,A,E, S) in D2
D × D5,

as n→∞, where (B,Q,w, v,A,E, S) is deterministic, depending on the

model data (λ, s,G,F,B(0, ·),Q(0, ·)), with

B(t, y) ≡
∫ y

0
b(t, x) dx, Q(t, y) ≡

∫ y

0
q(t, x) dx, t ≥ 0, y ≥ 0,

A(t) ≡
∫ t

0
α(u) du, E(t) ≡

∫ t

0
b(u, 0) du, S(t) ≡

∫ t

0
σ(u) du.



The G/GI/s+GI Fluid Model

Model data: (λ, s,G,F) and initial conditions.

service facility

waiting room

input flow departure flow

abandonment

λ

capacity  sF(x) = proportion
abandoning by time x

G(x) = proportion
served by time x



The Overloaded Fluid Model in Steady State

fluid density arriving time t in the past

in service in queue

Fc(t)



sGc(u)



w time  t 0w + u

s



Simulations for the M/E2/20 + GI Model: λ = 24

Two abandonment cdf’s: Erlang E2 and lognormal LN(1, 4), mean 1.

perf. E2 LN(1, 4)

meas. sim approx sim approx

P(A) 0.175 0.167 0.191 0.167

±.0003 ±.0002

E[Q] 7.7 8.2 3.15 2.93

±.013 ±.004

SCV[Q] 0.43 0.00 0.97 0.00

E[W|S] 0.322 0.365 0.129 0.131

±.001 ±.0002



II. The Time-Varying Gt/GI/st + GI Fluid Model

1 Numerical Examples: Comparison with Simulations of

Queueing Models

2 An Algorithm to Compute All the Performance

Functions of the Fluid Model



II.1. Numerical Examples

Comparing the Algorithm for the Fluid Model to Simulations of

the Stochastic Queueing Models

Alternating Overloaded and Underloaded Intervals



Example: Mt/M/s + M Fluid Queue, E[Ta] = 2

Arrival rate λ(t) = 1 + 0.2 · sin(t) and fixed staffing s(t) = s = 1.05
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Comparison with Simulation of the Mt/M/s + M Queue

n = 1000, single sample path (λn(t) = 1000 + 200 · sin(t), s = 1050)
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Comparison with Simulation: Smaller n

n = 100, 3 sample paths (λ(t) = 100 + 20 · sin(t), s = 105)
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Comparison with Simulation: Approximate Mean Values

n = 100, average of 100 sample paths (λ(t) = 100 + 20 · sin(t), s = 105)
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Non-Exponential Distributions Matter

Simulation comparison for the Mt/GI/s + E2 fluid model: (i) H2 service (red

dashed lines), (ii) M service (green dashed lines), (iii) sample path from

simulation of queue with H2 service based on n = 2000 (blue solid lines).
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II.2. The Time-Varying Gt/GI/st + GI Fluid Model

Approximation for the Gt/GI/st + GI Stochastic Queueing Model

input rate λ(t), time-varying

service capacity s(t), time-varying

feasible staffing s(t), (fluid not pushed out of service)

same model data: (λ(t), s(t),G,F) plus initial conditions

alternating overloaded (OL) and underloaded (UL) intervals



The Gt/GI/st + GI Fluid Model

two-parameter functions

Fluid content

B(t, y) ≡
∫∞

0 b(t, x) dx: quantity of fluid in service at t for up to y

Q(t, y) ≡
∫∞

0 q(t, x) dx: quantity of fluid in queue at t for up to y

Fluid densities

b(t, x)dx (q(t, x)dx) is the quantity of fluid in service (in queue) at time t

that have been so for a length of time x.



Model Data

Λ(t) ≡
∫ t

0 λ(u) du – input over [0, t].

s(t) ≡ s(0) +
∫ t

0 s′(u) du – service capacity at time t.

G(x) ≡
∫ x

0 g(u) du – service-time cdf.

F(x) ≡
∫ x

0 f (u) du – patience-time cdf.

B(0, y) ≡
∫ y

0 b(0, x) dx – initial fluid content in service for up to y.

Q(0, y) ≡
∫ y

0 q(0, x) dx – initial fluid content in queue for up to y.

Smooth Model: Assume that (Λ, s,G,F,B(0, ·),Q(0, ·)) is differentiable

with piecewise-continuous derivative (λ, s′, g, f , b(0, ·), q(0, ·)).



Key Fluid Dynamics

Fundamental Evolution Equations

q(t + u, x + u) = q(t, x) · F̄(x+u)
F̄(x)

, provided fluid does not enter service

0 ≤ x ≤ w(t)− u, u ≥ 0, t ≥ 0.

b(t + u, x + u) = b(t, x) · Ḡ(x+u)
Ḡ(x)

,

x ≥ 0, u ≥ 0, t ≥ 0.



Flow Rates

Given q(t, x) and b(t, x),

Service completion rate: σ(t) ≡
∫∞

0 b(t, x)hG(x)dx,

Abandonment rate: α(t) ≡
∫∞

0 q(t, x)hF(x)dx,

where hF(x) ≡ f (x)
F̄(x)

and hG(x) ≡ g(x)
Ḡ(x)

q(t, x) and b(t, x) determine everything!



Two Cases: Underloaded Intervals and Overloaded Intervals



First (Easy) Case: Underloaded Interval

B(t, y) in Gt/GI/st + GI fluid model

⇐⇒ B(t, y) in Gt/GI/∞ fluid model

⇐⇒ B(t, y) in Mt/GI/∞ fluid model

⇐⇒ E[B(t, y)] in Mt/GI/∞ stochastic model

We have formulas already (the “Physics” paper, Eick,

Massey & W2, 1993).



The Fluid Density in an Underloaded Interval

explicit expression:

b(t, x) = new content 1{x≤t} + old content 1{x>t}

= Ḡ(x)λ(t − x)1{x≤t} + b(0, x− t)
Ḡ(x)

Ḡ(x− t)
1{x>t}.

transport PDE:

bt(t, x) + bx(t, x) = −hG(x)b(t, x)

with boundary conditions b(t, 0) = λ(t) and initial values b(0, x).



Second (Interesting) Case: Overloaded Interval

Minimum feasible staffing function s∗ exceeding s.

b satisfies fixed-point equation.

(Apply Banach contraction fixed point theorem.)

w satisfies an ODE.

PWT v obtained from BWT w via the equation:

v(t − w(t)) = w(t).



Flow enters service from left and leaves queue from right



The service-content density b(t, x)
During an underloaded interval,

b(t, x) = Ḡ(x)λ(t − x)1{x≤t} +
Ḡ(x)

Ḡ(x− t)
b(0, x− t)1{x>t}.

During an overloaded interval,

b(t, x) = b(t− x, 0)Ḡ(x)1{x≤t} + b(0, x− t)
Ḡ(x)

Ḡ(x− t)
1{x>t}.

(i) With M service, σ(t) = B(t) = s(t), b(t, 0) = s′(t) + s(t).

(ii) With GI service, b(t, 0) satisfies the fixed-point equation

b(t, 0) = a(t) +

∫ t

0
b(t− x, 0)g(x) dx,

where a(t) ≡ s′(t) +

∫ ∞
0

b(0, y)g(t + y)/Ḡ(y) dy.



The ODE for the Boundary Waiting Time

w′(t) = 1− b(t,0)
q(t,w(t)) .

q(t,w(t)): density of fluid in queue the longest at t

b(t, 0): rate into service at t

b(t, 0)>(≤) q(t,w(t))⇒ w′(t)<(≥) 0



The Amount of Fluid that Enters Service in a Small Interval

E(t + δ)− E(t) ≈ b(t, 0)δ ≈ q(t,w(t))(w(t)− [w(t + δ)− δ])

≡ q(t,w(t))(−[w(t + δ)− w(t)] + δ), so

b(t, 0)

q(t,w(t)
≈ −

(
w(t + δ)− w(t)

δ

)
+ 1 and

w′(t) ≡ dw(t)
dt

= 1− b(t, 0)

q(t,w(t)
.

),( xtq

)(tw

(a) Fluid content at time t 

),( xtq 

x0 )( tw

(b) Fluid content at time t + 

0
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SUMMARY

1 We have discussed the fluid approximation for many-server queues.

2 It can be used to study the performance impact of delay announcements.

3 and to help make better delay predictions. [See Ibrahim&W2 papers.]

4 The time-varying Gt/GI/st + GI Fluid model is tractable and useful.

5 Analyzed for the case of alternating OL and UL intervals.

6 The algorithm involves: (i) a fixed-point equation for the fluid density

in service, and (ii) an ODE for the boundary waiting time.

7 Extension for networks of fluid queues has been developed.

8 Stochastic refinements have been developed.



THE END
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Extra Slides



Comparison with Simulation: Even Smaller n

n = 20, average of 100 sample paths (λ(t) = 20 + 4 · sin(t), s = 21)
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Extensions: FCLT and Stochastic Refinements

For smaller n, such as n = 20, the queueing stochastic processes experience

significant fluctuations. Thus, for smaller n, we need to approximate the full

distributions of the stochastic processes. That can be based on a FCLT

refinement of the FWLLN plus engineering refinements. See: A. K. Aras, X.

Chen and Y. Liu, Many-server Gaussian limits for overloaded

non-Markovian queues with customer abandonment, Queueing Systems,

2018.



Example: Gaussian approximation for an OL Interval

the model: Mt/M/st + M

λ(t) = 2.0 + 6 · sin(t), s(t) = s = 0.4, µ = 1, θ = 0.5

initially critically loaded, X(0) = s

queueing model has n = 100

estimates based on 1000 replications



Comparisons with Simulation for n = 100
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Comparisons with Simulation for n = 25
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