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OUTLINE

© The Overloaded G/GI/s + GI Fluid Queue Model.  (stationary)
(W?, Operations Research, 2006)

@ The G,/GI /s, + GI Fluid Model with Alternating Overloaded and
Underloaded Intervals.  (Yunan Liu & W2, Queueing Systems, 2012)

© Numerical Examples: Comparisons to Simulations of Stochastic
Queueing Systems.
@ An Algorithm to Compute the Performance Functions of the Fluid Model
(Relates to time-varying Little’s law, offered load analysis and the

infinite-server model and has extensions to networks.)



I. The Overloaded Stationary G/GI/s+GI Fluid Model

Approximation for the G/GI/s + GI Stochastic Queueing Model
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Many-Server Heavy-Traffic (MSHT) Limit

Increasing Scale Increasing Scale

e asequence of G/GI /s + GI models indexed by n,

@ arrival rate grows: \,/n — )\ as n — oo,

number of servers grows: s, /n — s asn — oo,

@ service-time cdf G and patience cdf F held fixed independent of n

with mean service time 1: p~!' = foooxdG(x) =1.



The Three MSHT Limiting Regimes for Stationary Models

Let the traffic intensity be p, = A, /Snpin = \u/Sn-
@ Quality-and-Efficiency-Driven (QED) regime (critically loaded):

(1—p)vn—p as n— oo, —oo<f<c0.

@ Quality-Driven (QD) regime (underloaded): (1 — p,)y/n — .
e Efficiency-Driven (ED) regime (overloaded): (1 — p,)/n — —o0.

In fluid scale: QED: p =1, QD: p < 1 and ED: p > 1.



Separation of Time Scales

The MSHT limit causes a separation of time scales:

System View versus Customer View

@ The relevant time scale is the mean service time, which is fixed.

@ Since the arrival rate grows, i.e., since \,/n — A as n — o0,

the arrival process matters in a long time scale, through its LLN and CLT.

o The service-time cdf G and patience cdf /" matter.



Fluid Approximation from MSHT limit



Fluid Approximation from MSHT limit
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Fluid Approximation from MSHT limit
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The Queueing Variables

@ content processes: two-parameter stochastic processes
e B, (t,x) number in service at time ¢ who have been there for time < x,

e Q,(t,x) number in queue at time # who have been there for time < x,

W, () elapsed waiting time for customer at head of line (HOL),

e V,(t) potential waiting time for new arrival (virtual if infinitely patient),
@ A,(t) number to abandon in [0, 7],

@ E,(t) number to enter service in [0, 7],

@ S,(t) number to complete service in [0, 7],

Fluid scaling: Y, =nlY,.



MSHT fluid limit (FWLLN)

Theorem
(FWLLN) If ..., then

(Bn7Qn7 Wna VnaAl’l)EnaSl’l) = (Bv Q?W’V7A7E7 S) il’l ]D)]%) X ]D)Sv

asn — oo, where (B, Q,w,v,A, E,S) is deterministic, depending on the

model data (\,s, G, F,B(0,-),0(0,-)), with

y y
B(t,y) = /0 b(t,x)dx, Q(t,y) = /0 a(t,x)dx, 130,y>0,

At) /0 ‘o(u)du, E(f) = /0 b(u,0)du, S(1) = /0 () du.




The G/GI/s+-GI Fluid Model

Model data: (\.s. G. F) and initial conditions.

service facility

A waiting room
input flow departure flow
—_— - _—

abandonmentl

G(x) = proportion

served by time x
F(x) = proportion
abandoning by time x

capacity S



The Overloaded Fluid Model in Steady State

fluid density arriving time t in the past

in service in queue
A F(t)
sG°(u)
w+u w time t 0



Simulations for the M /E, /20 + GI Model: \ = 24

Two abandonment cdf’s: Erlang E, and lognormal LN(1,4), mean 1.

perf. E, LN(1,4)
meas. sim approx sim approx
P(A) 0.175  0.167 0.191 0.167
£.0003 £.0002
E[Q] 7.7 8.2 3.15 2.93
+.013 +.004
SCVIQ] | 043 0.00 0.97 0.00
E[W|S] | 0322  0.365 0.129 0.131
+.001 £.0002




II. The Time-Varying G,/GlI /s, + GI Fluid Model

@ Numerical Examples: Comparison with Simulations of

Queueing Models

@ An Algorithm to Compute All the Performance

Functions of the Fluid Model



II.1. Numerical Examples

e Comparing the Algorithm for the Fluid Model to Simulations of

the Stochastic Queueing Models

e Alternating Overloaded and Underloaded Intervals



Example: M,/M /s + M Fluid Queue, E[T,| =

Arrival rate (1) = 1 4 0.2 - sin(7) and fixed staffing s(z) = s = 1.05
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Comparison with Simulation of the M;/M /s + M Queue

n = 1000, single sample path (\,(z) = 1000 4 200 - sin(¢), s = 1050)
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Comparison with Simulation: Smaller n

n = 100, 3 sample paths (A(¢) = 100 + 20 - sin(t), s = 105)
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Comparison with Simulation: Approximate Mean Values

n = 100, average of 100 sample paths (A(z) = 100 + 20 - sin(z), s = 105)
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Non-Exponential Distributions Matter

Simulation comparison for the M;/GI /s + E; fluid model: (i) H; service (red
dashed lines), (ii) M service (green dashed lines), (iii) sample path from

simulation of queue with H, service based on n = 2000 (blue solid lines).
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I1.2. The Time-Varying G;/GI/s; + GI Fluid Model

Approximation for the G¢/GI/s; + GI Stochastic Queueing Model
e input rate \(7), time-varying
e service capacity s(), time-varying
o feasible staffing s(7), (fluid not pushed out of service)
e same model data: (\(¢), s(¢), G, F) plus initial conditions

o alternating overloaded (OL) and underloaded (UL) intervals



The G,/GlI/s; + GI Fluid Model

two-parameter functions

Fluid content
@ B(t,y) fo (2, x) dx: quantity of fluid in service at ¢ for up to y
e QO(t,y) fo (1, x) dx: quantity of fluid in queue at 7 for up to y
Fluid densities
@ b(t,x)dx (q(t,x)dx) is the quantity of fluid in service (in queue) at time ¢

that have been so for a length of time x.



Model Data

° fo u) du — input over [0, 7].

° —|— fo du — service capacity at time .

e G(x) = fo u) du — service-time cdf.

° F(x) = fo u) du — patience-time cdf.

e B(0,y fo (0, x) dx — initial fluid content in service for up to y.
° fo (0, x) dx — initial fluid content in queue for up to y.

Smooth Model: Assume that (A, s, G, F, B(0, ), 0(0,-)) is differentiable

with piecewise-continuous derivative (\, s’, g,f, b(0,),¢(0,-)).



Key Fluid Dynamics

Fundamental Evolution Equations

o g(t+u,x+u)=q(t,x) - F%J;)“ ), provided fluid does not enter service

0<x<w(t)—uu>0,t>0.

® b(t+u,x+u)=>b(tx)- %

x>0,u>0,t>0.



Given ¢(t, x) and b(t, x),
@ Service completion rate: o ( fo (t,x)hg(x)dx,

@ Abandonment rate: = [y q(t,x)hp(x)dx,

where hp(x) = L ((’;) and hg(x) = (E;%

~

N

@ ¢(t,x) and b(z, x) determine everything!



Two Cases: Underloaded Intervals and Overloaded Intervals

B(t)<S(t)
b(t.0)= A1) iy OO
arrival G departure

(a) Underloaded: B(t)<S(), Q(t)=0

Q1)=0 B(t)=S(t)
. 0)=)(¢ : service
q(t,0) A(1)|  queue b(t,0) tacility o(t)
arrival G departure
Floa)
abancvfonment

(b) Overloaded: B(t)=S(t), Q(t)>0



First (Easy) Case: Underloaded Interval

B(t,y) in G,/GI/s;+ GI fluid model
<= B(t,y) in G;/GI/oo fluid model
<= B(t,y) in M,;/GI/oo fluid model

<= E[B(t,y)] in M,/GI/oco stochastic model

We have formulas already (the “Physics” paper, Eick,
Massey & W2, 1993).



The Fluid Density in an Underloaded Interval

explicit expression:

b(t,x) = new content I, + old content 1,

= (_}(x))\(t - x)l{xSt} + b(O,x - t)%l{)oﬂw

transport PDE:
by(t,x) + by(t,x) = —hg(x)b(t,x)

with boundary conditions b(z,0) = A(¢) and initial values b(0, x).



Second (Interesting) Case: Overloaded Interval

o Minimum feasible staffing function s* exceeding s.
o b satisfies fixed-point equation.

(Apply Banach contraction fixed point theorem.)
o w satisfies an ODE.

o PWT v obtained from BWT w via the equation:

v(t —w(t)) = w(z).



Flow enters service from left and leaves queue from right
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The service-content density b(t, x)

@ During an underloaded interval,

b(t,x) = G(x)\(t — )<y + G(Gx(i) ) b(0,x — t)l{x>t}.

@ During an overloaded interval,
G(x)

b(l‘, x) = b(t — X, O)G(x)l{xgt} + b(O,x — l‘) G( ) {x>t}

(i) With M service, o(t) = B(t) = s(t), b(t,0) = s'(t) + s(z).

(ii) With GI service, b(t,0) satisfies the fixed-point equation

b(t,0) = a(r)+ /Otb(t —x,0)g(x) dx,

where a(t) = 5'(t) + /000 b(0,y)g(t +y)/G(y) dy



The ODE for the Boundary Waiting Time

b(t,0)
q(t,w(1))

o q(t,w(t)): density of fluid in queue the longest at ¢

w(t)=1-—

o b(t,0): rate into service at ¢

o b(1,0)>(<) qlt, w(t)) = w'(1)<(>) 0



The Amount of Fluid that Enters Service in a Small Interval

E(t+06) —E(1) b(1,0)0 ~ q(t,w(t))(w(t) — w(t + 9) — 9])

Q

= q(t,w(®))(=[w(t+8) —w(1)] +9), so

b(t,0) ~ _ w(t+0) —w(r) 41 and
q(t, w(t) 0
' dw(1) b(1,0)
= —2=1- .
wi) d 20w (1)
q(t,x) q(t+3,x)
0 w(t) 0 Wiro) wis X

=W(t)+5—¢(d)
(a) Fluid content at time t (b) Fluid content at time t + &



SUMMARY

@ We have discussed the fluid approximation for many-server queues.

@ It can be used to study the performance impact of delay announcements.

@ and to help make better delay predictions. [See Ibrahim&W? papers. ]

© The time-varying G,/GI /s; + GI Fluid model is tractable and useful.

© Analyzed for the case of alternating OL and UL intervals.

@ The algorithm involves: (i) a fixed-point equation for the fluid density
in service, and (ii) an ODE for the boundary waiting time.

@ Extension for networks of fluid queues has been developed.

© Stochastic refinements have been developed.



THE END
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Comparison with Simulation: Even Smaller n

n = 20, average of 100 sample paths (\(¢) = 20 + 4 - sin(t), s = 21)
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Extensions: FCLT and Stochastic Refinements

For smaller n, such as n = 20, the queueing stochastic processes experience
significant fluctuations. Thus, for smaller n, we need to approximate the full
distributions of the stochastic processes. That can be based on a FCLT
refinement of the FWLLN plus engineering refinements. See: A. K. Aras, X.
Chen and Y. Liu, Many-server Gaussian limits for overloaded
non-Markovian queues with customer abandonment, Queueing Systems,

2018.



Example: Gaussian approximation for an OL Interval

e the model: M,/M /s, + M

o \N(1) =2.0+6-sin(t),s(t) =s =04, u=1,06=0.5
e initially critically loaded, X(0) = s

e queueing model has n = 100

e estimates based on 1000 replications



Comparisons with Simulation for n = 100
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Comparisons with Simulation for n = 25
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