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OUTLINE

1 The generalized Polya process (GPP) and path-dependent behavior

2 Stability Properties of the Ψ− GPP/GI/1 Queue

3 Heavy-Traffic Limits for the
∑n

i=1 Pi/GI/1 queue

(tractable approximations for transient queue-length distribution)

Source: “Queues with Path-Dependent Arrival Processes,” Journal of

Applied Probability, 2021, forthcoming, with Kerry W. Fendick. See

http://www.columbia.edu/∼ww2040/allpapers.html
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Asymptotic Loss of Memory

The standard notion of steady state for a stochastic Process:

X(t)⇒ X(∞) as t→∞,

where X(∞) is independent of X(t) for any fixed t.

For time-varying model, asymptotic loss of memory (ALOM):

Large-Time Asymptotics for the Gt/Mt/st + GIt Many-Server Fluid

Queue with Abandonment, Queueing Systems, 67 (2011) 145-182

(with Yunan Liu).

Now we consider processes where ALOM does NOT hold. 4



A Classic Urn Model from Feller, Volume I

Polya urn model
Step 1.  Take one ball out of 
the urn picked at random.

Start with:
r red balls and 
g green balls

Step 2.  Return that ball plus 
one more of the same color.

Step 3.  Repeat. Let Xn be 
the proportion of red balls 
in the urn after n steps.

As n→ ∞, 𝑿𝐧 → Beta(r,g)

5



Generalized Polya Process (GPP)

Definition. A GPP N ≡ {N(t) : t ≥ 0} is a Markov point process with

stochastic intensity (defined in terms of the internal historiesHt by)

λ(t) ≡ λ(t|Ht) ≡ (γN(t−) + β)κ(t),

where N(0) = 0, γ and β are positive constants and κ(t) is a positive

integrable deterministic real-valued function.

Definition. A Polya point process is the special case in which β = 1 and

κ(t) =
1

γt + 1
so that λ(t) =

γN(t−) + 1
γt + 1

.
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the restarting property, Cha (2014)

Proposition. If N is a GPP with parameter triple (κ(t), γ, β), then the

conditional future process Nu(t) ≡ N(u + t)− N(u) given N(u) = n

and the history up to time u is itself a GPP with parameter triple

(κ(u + t), γ, β + nγ), so that

λu(t) ≡ λ(u + t|Hu+t,N(u) = n) ≡ (γNu(t−) + β + nγ)κ(u + t).
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negative binomial marginal distribution, Cha (2014)

Proposition. If N is a GPP with parameter triple (κ(t), γ, β), then N(t)

has a negative binomial distribution with pmf

P(N(t) = k) = C(β, γ, k)(1− p(t))rp(t)k, k = 0, 1, 2, . . .

where r =
β

γ
, p(t) = 1− e−γK(t), K(t) =

∫ t

0
κ(s) ds,

C(β, γ, k) =
Γ(r + k)

Γ(r)k!
, E[N(t)] =

rp(t)
1− p(t)

and Var[N(t)] = . . .
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a stationary point process (Ψ-GPP)

Theorem. If N is a GPP with parameter triple (κ(t), γ, β) and if

κ(t) =
1

γt + 1
, so that

λ(t) =
γN(t−) + β

γt + 1
(need not have β = 1),

then N is a stationary point process (has stationary increments) plus

E[N(t)] = βt and Cov(N(s),N(t)) = βs(1+γt) for 0 ≤ s ≤ t <∞,

so that Var(N(t)) = βt(1 + γt), t ≥ 0. (of order t2 as t grows)9



non-ergodic LLN

Theorem
. If N is a (β, γ) Ψ-GPP (for which κ(t) = 1/(γt + 1)), then

t−1N(t)→ L(γ, β) as t→∞ w.p.1

where L ≡ L(γ, β) has a gamma distribution with shape β/γ and rate 1/γ,

and thus mean E[L] = β and variance Var[L] = βγ.

If a point process N satisfies a non-ergodic LLN, then we say that the point

process N exhibits path-dependent behavior.
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asymptotically Poisson with a random rate

Corollary. If N is a (β, γ) Ψ-GPP with stochastic intensity λ(t), then

λ(t)→ L(γ, β) as t→∞ w.p.1

where L ≡ L(γ, β) has a gamma distribution with shape β/γ and rate

1/γ, and thus mean E[L] = β and variance Var[L] = βγ. Hence,

asymptotically as t→∞, the point process behaves as a Poisson

process with random rate L.
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simulation support of the non-ergodic LLN

The empirical distribution of N(100)/100 based on 50, 000 iid samples (left)

and 25 paths of N(t)/t over [0, 200] (right)

for a Ψ-GPP with (β, γ) = (1, 1).
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Source: Remark 2 and Section 6 of “Queues with Path-Dependent Arrival

Processes,” Journal of Applied Probability, 2021, forthcoming (with Kerry W.

Fendick). See http://www.columbia.edu/∼ww2040/allpapers.html
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explosion in Ψ− GPP/GI/1 queue

Corollary. If Q(t) is the queue length process starting empty in the

Ψ− GPP/GI/1 queue with service times having mean 1 and N is a

(β, γ) Ψ-GPP with stochastic intensity λ(t), then

t−1Q(t)→ max{L(γ, β)− 1, 0} as t→∞ w.p.1, so that

P(Q(t)→∞ as t→∞) = P(L(γ, β) > 1),where

0 < P(L(γ, β) > 1) < 1.
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simulation illustration of instability

Figure: Display of twenty-five individual sample paths of Q(t)/t for 0 ≤ t ≤ 250,

starting empty, for a P/D/1 queue with parameter pairs (β, γ) = (0.5, 1) (left) and

(β, γ) = (1.5, 1) (right).
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Note weak link between traffic intensity and performance! 15



OUTLINE

1 The generalized Polya process (GPP) and path-dependent behavior

2 Stability Properties of the Ψ− GPP/GI/1 Queue

3 Heavy-Traffic Limits for the
∑n

i=1 Pi/GI/1 queue

Additional Source: Kerry W. Fendick,“Brownian motion minus

independent increments: representation and queueing application,”

Probability in the Engineering and informational Sciences (PEIS), published

online 2020. (Draws on 1994 paper by B. Hajek)
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preservation under superposition, Cha (2014)

Proposition. If N1 and N2 are independent GPP’s with parameter triples

(κ(t), γ, β1) and (κ(t), γ, β2), respectively, then the superposition

process N1(t) + N2(t) is itself a GPP with parameter triple

(κ(t), γ, β1 + β2), so that

for each n, the sum (superposition) of n i.i.d. GPP’s with parameter

triple (κ(t), γ, β) is itself a GPP with parameter triple (κ(t), γ, nβ).
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superposition FCLT for Ψ-GPP (a Ψ-GMP limit)

Theorem. If {Ni(t) : i ≥ 1} is a sequence of i.i.d. (γ, β) Ψ-GPPs, then

An ⇒ A as n→∞ (FCLT in function space D), where,

An(t) ≡ n−1/2(

n∑
i=1

Ni(t)− nβt), t ≥ 0,

and A is a Ψ-GMP, stationary Gaussian Markov process (see Fendick

(2021)) with the covariance fct. of Ni(t), cov(A(s),A(t)) = βs(1 + γt).

Also, A satisfies the sde dA(t) = µ(t)A(t)dt + σdB(t) for B(t) standard

BM, σ ≡
√
β and µ(t) ≡ (t + (1/γ))−1.

Proof. Apply Hahn’s theorem for sums of processes, as in Thm 7.2.1 of

WW book. 18



convergence to Ψ− GMP with drift

Theorem. If {Ni(t) : i ≥ 1} is a sequence of i.i.d. (γ, β) Ψ-GPPs and if
√

n(µn − 1)→ µ as n→∞ (adding drift), then

Ad
n(t)⇒ A(t) + βµt as n→∞ (FCLT in function space D), where,

Ad
n(t) ≡ n−1/2(

n∑
i=1

Ni(µnt)− nβt), t ≥ 0,

and A is a Ψ-GMP, stationary Gaussian Markov process (see Fendick

(2021)) with the covariance fct. of Ni(t), cov(A(s),A(t)) = βs(1 + γt).
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heavy-traffic FCLT for
∑n

i=1(Ψ− GPPi)/GI/1 queue

Theorem. Let C(t) be the renewal counting process of i.i.d. service

times with mean 1/β and scv c2
s . Let

Sn(t) ≡ n−1/2(C(nt)− βnt),

Xn(t) ≡ Ad
n(t)− Sn(t) and

Qn(t) ≡ n−1/2Qn(t), t ≥ 0.

If Qn(0)⇒ Q(0) in addition to previous assumptions, then

(Ad
n, Sn,Xn,Qn)⇒ (A + βµe, S,X,Q) in D4 as n→∞,

Remaining Proof standard HT theory from Chapter 9 of 2002 WW book.
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marginal distributions

Corollary. Under the assumptions above,

(Xn(s),Qn(s),Qn(s+t))⇒ (X(s),Q(s),Q(s+t)) in R3 as n→∞,

where the joint limiting distribution has joint pdf

f (xs, qs, qs+t) = f (xs)f (qs|xs)f (qs+t|xs, qs),

with all given explicitly in terms of the normal cdf, the exponential

function and the model parameters, so that

P(Q(s + t) ≤ qs+t|X(s) = xs,Q(s) = qs) and P(Q(t) ≤ qt) are also

given explicitly in the same way. (See paper for details.) 21



Thank you!
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