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We develop rare-event simulation methodology for the analysis of loss events in a many-server loss system under the
quality-driven regime, focusing on the steady-state loss probability (i.e., fraction of lost customers over arrivals) and the behavior
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1. Introduction. Although there is vast literature on provably efficient rare-event simulation algorithms for
queues with fixed number of servers, few such algorithms exist for queueing systems with the number of servers
scaled asymptotically with the incoming traffic, frequently known as many server systems. In models with a single
or a fixed number of servers, random walk representations are often used to analyze associated rare events (see for
example Siegmund [27], Asmussen [3], Anantharam [2], Sadowsky [26] and Heidelberger [18]). The difficulty in
these types of systems arises from the boundary behavior induced by the positivity constraints inherent to queueing
systems. Many-server systems are, in some sense, less sensitive to boundary behavior; instead, the challenge in
their rare-event analysis lies on the fact that the system description is typically asymptotically infinite dimensional.
One of the goals of this paper, broadly speaking, is to propose methodology and techniques that we believe
are applicable to a wide range of rare-event problems involving many-server systems. In particular, we will
demonstrate how a full Markovian representation, or customarily known as measure-valued representation in the
literature, is both necessary and useful for efficient rare-event simulation of steady-state loss probabilities. As far as
we know, the algorithm proposed in this paper is the first provably asymptotically optimal algorithm (in a sense that
we will explain shortly) that involves such full measure-valued representation in the rare-event simulation literature.

In this paper we focus on the problem of estimating the steady-state loss probability in many-server loss systems.
We consider a system with general i.i.d. interarrival times and service times (both under suitable tail conditions).
The system has s servers and no waiting room. If a customer arrives and finds a server empty, he/she immediately
starts service occupying a server. If the customer finds all the servers busy, he/she leaves the system immediately
and the system incurs a “loss” (see Figure 1 for a pictorial description). The steady-state loss probability (i.e., the
long term proportion of customers that are lost) is rare if the traffic intensity (arrival rate into the system/total
service rate) is less than one and the number of servers is large. This is precisely the asymptotic environment that
we consider.

Related large deviations and simulation results include the work of Glynn [16], who developed large deviations
asymptotics for the number-in-system of an infinite-server queue with high arrival rates. Based on this result,
Szechtman and Glynn [28] developed a corresponding rare-event algorithm for the same quantity of an infinite-server
queue, using a sequential tilting scheme that mimics the optimal exponential change of measure. Related results for
first passage time probabilities have also been obtained by Ridder [24] in the setting of Markovian queues.
Blanchet et al. [9] constructed an algorithm for the steady-state loss probability of a slotted-time M/G/s system
with bounded service time. The algorithm in Blanchet et al. is the closest in spirit to our methodology here, but the
slotted-time nature, the Markovian structure, and the service times being bounded were used in a crucial way to
avoid the main technical complications involved in dealing with measure-valued representations.

In this paper we focus on the steady-state loss estimation of a fully continuous GI/G/s system with service
times that accommodate most distributions used in practice, including mixtures of exponential, Weibull, and
lognormal distributions. A key element of our algorithm, in addition to the use of a full Markovian representation,
is the application of weak convergence limits by Krichagina and Puhalskii [20] and Pang and Whitt [21]. As we
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(a) A customer takes on any available
server upon arrival.

(b) A customer leaves the system immediately
if all servers are busy upon arrival.

Figure 1. Dynamics of many-server loss system.

shall see, the weak convergence results are necessary because via a suitable extension of regenerative-type
simulation (see §2.4), the steady-state loss probability of the system can be transformed to a first passage problem
of the Markov process starting from an appropriate set, suitably chosen by means of such weak convergence
analysis. However, unlike the infinite-server system, the capacity constraint (s servers) introduces a boundary that
forces us to work with the sample path and to track the whole process history.

Our main methodology to construct an efficient algorithm is based on importance sampling, which is a variance
reduction technique that biases the probability measure of the system (via a so-called change of measure) to
enhance the occurrence of the rare event of interest. To correct for the bias, a likelihood ratio is multiplied to the
sample output to maintain unbiasedness. The key to efficiency is then to control the likelihood ratio, which is
typically small, and hence favorable, when the change of measure resembles the conditional distribution given the
occurrence of the rare event. Construction of good changes of measure often draws on associated large deviations
theory (see Asmussen and Glynn [5], Chap. 6). We will carry out this scheme of ideas in subsequent sections.

The criterion of efficiency that we will be using is the so-called asymptotic optimality (or logarithmic efficiency).
More concretely, suppose we want to estimate some probability � 2=�4s5 that goes to 0 as s ↗ �. For any
unbiased estimator X of � (i.e., �=EX) one must have EX2 ≥ 4EX52 = �2 by Jensen’s inequality. Asymptotic
optimality requires that �2 is also an upper bound of the estimator’s variance in terms of exponential decay rate. In
other words,

lim inf
s→�

logEX2

log�2
= 10

This implies that the estimator X possesses the optimal exponential decay rate any unbiased estimator can possibly
achieve. See, for example, Bucklew [12], Asmussen and Glynn [5], and Juneja and Shahabuddin [19] for further
details on asymptotic optimality.

Finally, we emphasize the potential applications of loss estimation in many-server systems. One prominent
example is call center analysis. Customer support centers, intracompany phone systems, and emergency rooms,
among others, typically have fixed system capacity above which calls would be lost. In many situations losses are
rare, yet their implications can be significant. The most extreme example is perhaps a 911 center in which any
call loss can be life threatening. In view of this, an accurate estimate (at least to the order of magnitude) of
loss probability is often an indispensable indicator of system performance. Although in this paper we focus on
i.i.d. interarrival and service times, under mild modifications, our methodology can be adapted to different model
assumptions such as Markov-modulation and time inhomogeneity that arise naturally in certain application
environments. As a side tale, a rather surprising and novel application of the present methodology is in the context
of actuarial loss in insurance and pension funds. In such systems the policyholders (insurance contract or pension
scheme buyers) are the “customers,” and “loss” is triggered not by an exceedence of the number of customers but
rather by a cash overflow of the insurer. Under suitable model assumptions, the latter can be expressed as a
functional of the past system history whereby the full Markovian representation becomes valuable. The full
development of this application is presented in Blanchet and Lam [7].

The organization of the paper is as follows. In §2 we will indicate our main results and lay out our GI/G/s
model assumptions. In §3 we will explain and describe in detail our simulation methodology. Section 4 will focus
on the proof of algorithmic efficiency and large deviations asymptotics, whereas §5 will be devoted to the use of
weak convergence results mentioned earlier for the design of an appropriate recurrent set. Finally, we will provide
numerical results in §6, and technical details are left to the appendix.
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2. Main results and contributions. In this section we describe our assumptions and introduce the objects we
shall use in this paper. Then we shall discuss our main results. At a general level, our main contribution in
this paper is the development of methodology for efficient rare-event analysis of the steady-state behavior of
many-server systems in a quality driven regime (quality driven regime refers to the scenario when the traffic
intensity is bounded away from 1 as the number of servers and the arrival rate both grow to infinity). Our
methodology, however, is also suitable for transient rare-event analysis assuming the initial condition of the system
is within the diffusion scale from the fluid limit of the system.

The main idea of our methodology has four parts, which can be informally summarized as follows. First
introduce a coupling with the infinite-server queue (related construction appeared in, e.g., Reed [22]). Second, take
advantage of a suitable ratio representation for the associated probability of interest for the system in consideration
(in our case a loss system). Third, identify a suitable regenerative-like set based on available results in the literature
on diffusion approximations for the system in consideration. A cycle is defined as the period between return times
to the regenerative-like set. Finally, the fourth step is to identify a rare-event of interest inside a cycle that is
common to both the system in consideration and the infinite-server system. Such rare event of interest must
have the same large deviations asymptotics as the probability of interest. It is crucial for the last step to select
the regenerative-like set carefully. We concentrate on loss probabilities in this paper, but an almost identical
(asymptotically optimal) algorithm can be obtained for the steady-state probability of delay in a many-server queue
under the quality driven regime.

Let us now introduce our assumptions on the loss system and develop the four elements outlined in the previous
paragraph for the evaluation of steady-state loss probabilities.

2.1. Assumptions on arrivals and service time distribution. Our model of interest is a GI/G/s loss system.
There are s ≥ 1 servers in the system. We assume arrivals follow a renewal process with rate �s; i.e., the interarrival
times are i.i.d. with mean 1/4�s5. More precisely, we introduce a “base” arrival system, with N 04t5, t ≥ 0 as the
counting process of its arrivals from time 0 to t and U 0

k , k= 011121 : : : , as the i.i.d. interarrival times with
EU 0

k = 1/� (except the first arrival U 0
0 , which can be delayed). We then scale the system so that Ns4t5 2=N 04st5 is

the counting process of the s-th order system, and Uk 2=U 0
k /s1 k = 011121 : : : are the interarrival times. Moreover,

we let Ak1 k = 1121 : : : , be the arrival times; i.e., Ak 2=
∑k−1

i=0 Ui (note the convention Uk =Ak+1 −Ak and A0 = 0).
Note that for convenience we have suppressed the dependence on s in Uk and Ak.

We assume that �s4�5 2= logEe�Uk , the logarithmic moment generating function of Uk, is finite for � in a
neighborhood of the origin. It is easy to see that �s4�5= �04�/s5 where �04�5 2= logEe�U

0
k is the logarithmic

moment generating function of the interarrival time in the base system.
Since �04 · 5 is increasing, we can let

�N 4�5 2= −4�05−14−�5 (1)

where 4�05−14 · 5 is the inverse of �04 · 5. Note that �−1
s 4�5= s4�05−14�5. Also, �N 4 · 5 is increasing and convex; this

is inherited from �04 · 5.
Now we impose a few assumptions on �N 4 · 5. We assume that �N 4 · 5 is twice continuously differentiable on �,

strictly convex, and steep on the positive side; i.e., �′
N 4�5↗ � as � ↗ �. Thus �′

N 405= � and �′
N 4�+5= 6�1�5.

We also impose the technical condition

�
d

d�
log�N 4�5→ � (2)

as � ↗ �. This condition is satisfied by many common interarrival distributions, such as exponential, Gamma,
Erlang, etc.

Under these assumptions we have for any 0 = t0 < t1 < · · ·< tm <� and �11 : : : 1 �m ∈�,

1
s

logE exp
{ m
∑

i=1

�i4Ns4ti5−Ns4ti−155

}

→

m
∑

i=1

�N 4�i54ti − ti−15 (3)

as s ↗ �. In particular, �N 4 · 5t is the so-called Gartner-Ellis limit of Ns4t5 for any t > 0 as s ↗ � (see Glynn and
Whitt [17] and Glynn [16]). In the case of Poisson arrival, for example, the interarrival times are exponential and
we have �4�5= log4�/4�− �55. This gives �N 4�5= �4e� − 15.

We now state our assumptions on the service times. Denote Vk as the service time of the k-th arriving customer,
and let Vk, k = 1121 : : : be i.i.d. with distribution function F 4 · 5 and tail distribution function F̄ 4 · 5. We assume
that F 4 · 5 has a density f 4 · 5 that satisfies

lim
y→�

yh4y5= � (4)
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where h4y5 2= f 4y5/F̄ 4y5 is the hazard rate function (with the convention that h4y5= � whenever F̄ 4y5= 0).
In particular, (4) implies that for any p > 0 we can find a> 0 such that yh4y5 > p as long as y > a. Hence,

F̄ 4y5= e−
∫ y

0 h4u5du
≤ c1e

−
∫ y
a p/udu

=
c2

yp
(5)

for some c1, c2 > 0. In other words, F̄ 4 · 5 decays faster than any power law. It is worth pointing out that
assumption (4) covers Weibull and lognormal service times, which have been observed to be important models in
call center analysis (see, e.g., Brown et al. [11]).

Note that service time distribution does not scale with s. Hence the traffic intensity, defined by the ratio of
arrival rate to service rate, is �EV (we sometimes drop the subscript k of Vk for convenience). We assume that
�EV < 1. This corresponds to a quality-driven regime and implies that loss is rare. We will see the importance of
this assumption in our derivation of efficiency and large deviations results in §4.

2.2. Representation of system status. Let Q4t5 be the number of customers in the GI/G/s system at time t.
More generally, we let Q4t1 y5 be the number of customers at time t who have residual service time larger than y,
where residual service time at time t for the k-th customer is given by 4Vk +Ak − t5+ (defined for customers that
are not lost). We also keep track of the age process B4t5= inf8t−Ak2 Ak ≤ t9 i.e., the time elapsed since the
last arrival. We assume right-continuous sample path (i.e., customers who arrive at time t and start service are
considered to be in the system at time t, while those who finish their service at time t are outside the system at
time t). We also make the assumption that service time is assigned and known upon arrival of each served
customer. Although not necessarily true in practice, this assumption does not alter any output from a simulation
point of view as far as estimation of loss probabilities is concerned. Figure 2 illustrates a typical realization of
Q4t1 ·5 at a time t. To have a Markov process, we let Wt 2= 4Q4t1 ·51B4t55 ∈D601�5×�+ as the state of the
process at time t, where D601�5 denotes the set of right-continuous-with-left-limit (RCLL) functions defined on
601�5. In the case of bounded service time over 601M7 the state-space is further restricted to D601M7×�+, where
D601M7 is the set of RCLL functions defined on 601M7.

2.3. A coupling GI/G/� system. As indicated briefly before, multiple times in this paper we shall use a
GI/G/� system that is naturally coupled with the GI/G/s system under the above assumptions. This GI/G/�

system has the same arrival process and service time distribution as the GI/G/s system but has infinite number of
servers and thus no loss can occur. Furthermore, it labels s of its servers from the beginning. When customer
arrives, he would choose one of the idle labeled servers in preference to the rest and only choose unlabeled server
if all the s labeled servers are busy. It is then easy to see that the evolution of the GI/G/� system restricted to the
s labeled servers follows exactly the same dynamic of the GI/G/s system that we are considering. In this paper
we shall use the superscript “�” to denote quantities in the GI/G/� system; for example, Q�4t5 denotes the
number of customers at time t for the GI/G/� system, and so on.

Throughout the paper we also use overline to denote quantities that exclude the initial customers. So for
example Q̄�4t1 y5 denotes the number of customers who arrive after time 0 in the GI/G/� system and are present
at time t having residual service time larger than y; i.e., Q̄�4t1 y5=Q�4t1 y5−Q�401 t + y5.

Q(t, y)

y

1

2

3

4

Figure 2. A typical realization of Q4t1 ·5; note that Q4t5= 4 in this realization.
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2.4. Ratio representation for steady-state loss probabilities. Our quantity of interest is the steady-state loss
probability, defined as

P�4loss5 2= lim
T→�

number of losses up to T

number of arrivals up to T
1 (6)

where � denotes the stationary measure (the existence and uniqueness of the steady-state loss probability, as
defined in (6), can be seen by regenerative argument; see Foss and Kalashnikov [15], Example 5). Next, Kac’s
formula (see Breiman [10]) allows to express the loss probability as

P�4loss5=
EANA

�sEA�A
1 (7)

where A is a set that is visited by the chain infinitely often, which we call a recurrent set. The expectation EA6 · 7

denotes the expectation with initial state distributed according to the steady-state distribution conditioned on being
in A. The quantity NA is the number of loss before returning to set A, �A is the return time to A, and �s is the
arrival rate. Depending on the choice of A, the quantities EANA and EA�A can be dependent on the parameter s.
We shall use the term “A-cycle” to refer to the process from one instance of return on A to another return on A on
suitably defined lattice points.

Our choice of A will be given shortly. Before so, let us first explain the difficulty of our problem to motivate
our subsequent choice, and along the way we also summarize our simulation approach.

Note that formula (7) provides a basis for regenerative-type simulation (see Asmussen and Glynn [5], Chap. 4).
Supposing one can identify a recurrent set A, a straightforward crude Monte Carlo strategy would be to run the
system for a long time from some initial state, take a record of NA and �A every time it hits A, and output the
sample means of NA and �A. This strategy is valid as long as the running time is long enough to allow for the
system to be close to stationarity. Moreover, this strategy is basically the same as merely outputting the number of
loss events divided by the run time times �s (excluding the uncompleted last A-cycle).

However, recognizing that loss is a rare event (with exponential decay rate in s as we will show as a by-product
of our analysis), this method will take an exponential amount of time in s to get a specified relative error. This is
regardless of the choice of A: if A is large, it takes short time to regenerate (i.e., �A is small, and consequently the
number of losses reported as the numerator EANA of (7) is almost always zero), whereas if A is small, it takes a
long time to regenerate. To dramatically speed up the computation time, our strategy is the following. We choose
A to be a “central limit” set so that EA�A is not exponentially large in s (and not exponentially small either). This
isolates the rarity of loss to the numerator EANA. In other words, it is very difficult for the process to reach
overflow in an A-cycle. The key, then, is to construct an efficient importance sampling scheme to induce overflow
and to estimate the number of losses in each A-cycle.

We point out two practical observations using this approach: First, �A and NA can be estimated separately;
i.e., one can “split” the process every time it hits A in two processes: one to which we apply importance sampling
to get one sample of NA and is then discarded; to the other one, we apply the original measure to get one sample
of �A and also set the initial position for the next A-cycle (see Asmussen and Glynn [5], Chap. 4). Secondly, to get
an estimate of standard deviation, one has to use batch estimates since the samples obtained this way possess serial
correlations (Asmussen and Glynn [5], Chap. 4). In other words, one has to divide the simulated chain into several
segments of equal number of time units. Then an estimate of the steady-state loss probability is computed from
each chain segment. These estimates are regarded as independent samples of loss probability. The details of batch
sampling will be provided in §6 when we discuss numerical results.

We summarize our approach as follows:

Algorithm 1

(i) Choose a recurrent set A. Initialize the GI/G/s queue’s status as any point in A.
(ii) Run the queue. Each time the queue hits a point in A, say x, do the following: Starting from x,

(a) Use importance sampling to sample one NA, the number of loss in a cycle.
(b) Use crude Monte Carlo to sample one �A, the return time. The final position of this queue is taken as

the new x.
(iii) After running the GI/G/s system for a sufficiently long time applying (ii), divide the queue into several

segments of equal time length. Compute the estimate of steady-state loss probability applying the batch samples
using the ratio (7).
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2.5. Recurrent set. We now describe our recurrent set A. First of all, note that one can pick T = nã for some
ã> 0 and n ∈� in the definition of loss probability given by Equation (6) and send n→ �. The introduction of
the lattice of size ã helps to define return times to the set A only at lattice points. Let us pick a fixed small time
interval ã (one choice, for example, is say 1/5 of the mean of service time) and define

�A 2= inf8t�t =ãn1n ∈�1Q4t1 ·5 ∈A90

The set A is defined to be
A 2= 8� ∈D601�52 �4y5 ∈ J 4y51 y ∈�+90 (8)

Here J 4y5 is the interval

J 4y5 2=

(

�s
∫ �

y
F̄ 4u5du−

√
sC∗�4y51 �s

∫ �

y
F̄ 4u5du+

√
sC∗�4y5

)

(9)

for some well-chosen constant C∗ > 0 (discussed in Remark 2.1 below and in §5) and

�4y5 2= �4y5+�
∫ �

y
�4u5du (10)

where

�4y5 2=

(

�
∫ �

y
F̄ 4u5du

)1/42+�5

(11)

with any constants �, � > 0.
The form of J 4y5 comes from the heavy traffic limit of GI/G/� queue. Pang and Whitt [21] proved the fluid

limit Q�4t1 y5/s → �
∫ t+y

y
F̄ 4u5du a.s. and the diffusion limit 4Q�4t1 y5−�s

∫ t+y

y
F̄ 4u5du5/

√
s ⇒R4t1 y5 for some

Gaussian process R4t1 y5 with var4R4t1 y55→ �c2
a

∫ �

y
F̄ 4u52 du+�

∫ �

y
F 4u5F̄ 4u5du as t → �, where ca is the

coefficient of variation of the interarrival times in the base system, namely U 0
k . Our recurrent set A is thus a

“confidence band” of the steady state of Q�4t1 y5, with the width of the confidence band decaying slower than the
standard deviation of Q�4�1 y5 as y → �. Via a coupling argument, it can be proved (see Proposition 2.1) that
this choice of A indeed leads to a return time for the GI/G/s system that is subexponential in s. The slower decay
rate of the confidence band width is a technical adjustment to enlarge A so that such a subexponential (in s) return
time for the GI/G/s system is guaranteed. In fact, for the case of bounded service time, it suffices to set � = 0.

2.6. Main results. The main result of this paper is the construction and the asymptotic optimality proof of an
efficient importance sampling scheme to simulate NA. In order to show the optimality of the algorithm, on our way,
we obtain large deviations asymptotics for loss probabilities that might be of independent interest.

Theorem 2.1. Under the assumptions in §2.1, the estimator using the recurrent set A in (8) and the importance
sampler given by Algorithm 2 is asymptotically optimal. Moreover, the steady-state loss probability (7) can be seen
to be exponentially decaying in s with decay rate I∗ defined in (19).

An important novel feature of the problem we consider (and our solution) is that it requires a construction based
on a full Markovian representation of the process. Intuitively, the steady-state loss probability of the GI/G/s
system depends on its loss behavior starting from a “normal” or “typical” state under stationarity (which can be
identified via a diffusion limit). It turns out that the loss behavior can vary substantially if one defines this initial
“normal” state only through the system’s queue length (even though a loss event is defined only through the queue
length). However, by defining the “normal” state through the full Markovian representation of the system (which
includes tracking the residual service time for each of the current customer), the loss behavior starting from this
state is characterized by a natural optimal path in the large deviations sense, and as a result we can identify the
efficient importance sampling scheme to induce such losses. These observations ultimately translate to the need of
a recurrent set A that is also defined via the full Markovian representation of the system in the simulation of EANA

in (7).
We next point out two further methodological observations. First, our importance sampling algorithm utilizes the

representation of the coupled GI/G/� as a point process. This point process representation can also be used to
prove results on sample path large deviations for many-server systems; such development will be reported in
Blanchet et al. [8]. Secondly, our algorithm requires essentially the information of the whole sample path of the
system because of the introduction of an auxiliary random time that is independent of the system in the algorithm.
This random time, as will be discussed in detail in §3.3, is important in establishing the efficiency of our algorithm
and will render a likelihood ratio that is measurable with respect to the space of sample paths. This is in sharp
contrast to the algorithm proposed in Szechtman and Glynn [28] for estimating fixed-time probability.
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Finally, the recurrent set A, given by (8), can be seen to possess the following properties:

Proposition 2.1. In the GI/G/s system,

lim
s→�

1
s

logEA�
p
A = 0 (12)

and
lim sup

s→�

1
s

logEAN
p
A ≤ 0 (13)

for any p > 0.

Briefly stated, Proposition 2.1 stipulates that any moments of the time length and number of losses of an
A-cycle are subexponential in s. When p = 1, it in particular states that the expected time length of a cycle is
subexponential in s. As discussed above, this isolates the rarity of loss to the numerator in (7) and ensures the
validity of Algorithm 1. The result on general p in Proposition 2.1 is also used in the optimality proof of the
importance sampling (as will be seen in §4). Interestingly, the proof of Proposition 2.1 requires the use of the
Borell-TIS inequality for Gaussian random fields (Adler [1]). The connection to Gaussian random fields arises in
the diffusion limit of the coupled GI/G/� queue.

We close this section with two remarks on A.

Remark 2.1. The interval J 4y5 in the definition of A in (9) contains a nonnegative integer for any value of y
if C∗ is chosen large enough. In fact, observe that the length of J 4y5 is continuous and decreasing in y, and let

l4s5 2= sup
{

y > 02
√
sC∗�4y5≥ 1/2

}

0 (14)

If y is such that the width of J 4y5 is equal to 1 (equivalently y = l4s5) we have that the center of J 4y5, namely,
�s
∫ �

y
F̄ 4u5du, satisfies

0 ≤ �s
∫ �

y
F̄ 4u5du≤ 4�/4C∗52+�54

√
sC∗�4y552+�/s�/2

= 4�/4C∗52+�541/252+�/s�/20

The right-hand side is less than 1/2 for 4C∗52+� ≥ � and this implies that 809⊂ J 4y5 for y = l4s5. Now, if y > l4s5,
we can ensure that the half-width of J 4y5, namely,

√
sC∗�4y5, is larger than the center, if C∗ is chosen sufficiently

large. To see this, note that a sufficient condition is that

�s
∫ �

y
F̄ 4u5du≤

√
sC∗

(

�
∫ �

y
F̄ 4u5du

)1/42+�5

which is equivalent to

s1/2

(

∫ �

y
F̄ 4u5du

)41+�5/42+�5

≤C∗�−41+�5/42+�5

or
s41+�/25/41+�5

∫ �

y
F̄ 4u5du≤ 4C∗542+�5/41+�5�−10

Now, choosing C∗ ≥ max4�115, we have, for y > l4s5,

s41+�/25/41+�5
∫ �

y
F̄ 4u5du≤ s1+�/2

∫ �

y
F̄ 4u5du≤ 1/4C∗52+�41/252+�

≤ 4C∗542+�5/41+�5�−1

which gives the required implication. So 809⊂ J 4y5 for y > l4s5. Obviously it includes at least one point when
y < l4s5 (because the width of J 4y5 is larger than 1). Therefore J 4y5 always contains a nonnegative integer for any
y ≥ 0, and the recurrent set A is hence well defined.

Remark 2.2. One may ask whether it is possible to define A in a finite-dimensional fashion, instead of
introducing the functional “confidence band” in (8). For example, one may divide the domain of y into segments
6yi1 yi+15, i = 011121 : : : 1 r4s5−1 for some integer r4s5 with y0 = 0 and yr4s5 = �, where the length of each segment
can be dependent on s and nonidentical. One then defines the recurrent set as 8Q4t1 ·52 Q4t1 yi5−Q4t1 yi+15 ∈

Ai for i = 01 : : : 1 r4s5− 19 for some well-defined sets Ai’s. As we will see in the arguments in the subsequent
sections, the important criteria of a good recurrent set are (1) it consists of a significantly large region in the
central limit theorem, so that it is visited often enough, and (2) its deviation from the mean of Q4t1 y5 is small, in
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the sense that the distance between any element in this recurrent set and the mean of the steady state of Q4t1 y5, at
every y ∈ 601�5, has order o4s5. Criterion (2) is important; otherwise, the large deviations of loss starting from two
different elements in the recurrent set can be substantially different. We want to avoid having to consider several
substantially different paths that can contribute to the loss event in a significant way as having such variability
would complicate the design of the importance sampling estimator.

Keeping criterion (2) in mind, we conclude that it is important to fine-tune the scale of the segments 6yi1 yi+15 to
preserve the efficiency of the algorithm. This suggests that a reasonable description of the recurrent set would
involve a dimension that grows at a suitable rate as s → �, thereby effectively obtaining a set of the form that we
propose. The functional definition of A in (8) happens to balance both criteria (1) and (2).

3. Simulation methodology. As discussed, the key idea in our simulation procedure consists of an importance
sampling algorithm. We will now present this in detail.

3.1. Overview of the algorithm. First we shall explain some heuristic in constructing the algorithm. As we
discussed earlier, the choice of A isolates the rarity of steady-state loss probability to EANA, which in turn is small
because of the difficulty in approaching overflow from A. So on an exponential scale, EANA ≈ PA4�s < �A5, where
PA4 · 5 is the probability measure with initial state distributed as the steady-state distribution conditional on A, and
�s = inf8t > 02 Q4t5 > s9 is the first passage time to overflow. Observe that the probability PA4�s < �A5 is identical
for GI/G/s and the coupled GI/G/� system since the systems are identical before �s . The key idea is to leverage
our knowledge of the structurally simpler GI/G/� system. In fact, one can show that the greatest contribution to
PA4�s < �A5 is the probability PA4Q

�4t∗5 > s5 for some optimal time t∗, whereas the contribution by other times is
exponentially smaller.

In view of this heuristic, one may think that the most efficient importance sampling scheme is to exponentially
tilt the process as if we are interested in estimating the probability PA4Q

�4t∗5 > s5. However, doing so does not
guarantee a small “overshoot” of the process at �s . Instead, we introduce a randomized time horizon following the
idea of Blanchet et al. [9]. The likelihood ratio will then comprise a mixture of individual likelihood ratios under
different time horizons and a bound on the overshoot is attained by looking at the right horizon (namely, ��s� as
explained in §4).

Hence our algorithm will take the following steps. Suppose we start from some position in A. First we sample a
randomized time horizon with some well-chosen distribution. Then we tilt the coupled GI/G/� process to
target overflow over this realized time horizon, i.e., as if we are estimating PA4Q

�4K5 > s5 for the realized time
horizon K. This involves sequential tilting of both the arrivals and service times. Once overflow is hit, we switch
back to the GI/G/s system, drop the lost customers, and change back to the arrival rate and service times under
the original measure to run the GI/G/s system until A is reached. At this time one sample of NA is recorded
together with the likelihood ratio.

The key questions now are how to determine (1) the sequential tilting scheme of arrivals and service times given
a realized time horizon, (2) the distribution of the random time, and (3) the likelihood ratio associated with this
mixture scheme. In the following we will explain these ingredients in detail and then lay out our algorithm. The
proof of efficiency will be deferred to §4.

3.2. Sequential tilting scheme. Denote Pr4 · 5 and Er 6 · 7 as the probability measure and expectation with
initial system status r ∈D601�5 (so that r4y5 is the number of initial customers still in the system at time y).
Suppose we want to estimate Pr4Q

�4t5 > s5 efficiently for a GI/G/� system as s ↗ �, where r ∈A. An
important clue is the use of the Gartner-Ellis Theorem (see Dembo and Zeitouni [13], p. 44, Theorem 2.3.6) to
obtain a large deviations result. Although this may not give an immediate importance sampling scheme, it can
suggest the type of exponential tilting needed that can be verified to be efficient. This is proposed by Glynn [16]
and Szechtman and Glynn [28], which we briefly recall here.

To be more specific, let us introduce more notation. Let, for any t > 0,

�t4�5 2=
∫ t

0
�N 4log4e�F̄ 4t − u5+ F 4t − u555du0 (15)

This is the Gartner-Ellis limit (see, for example, Dembo and Zeitouni [13]) of Q̄�4t5 since

1
s

logEe�Q̄
�4t5

=
1
s

logE exp
{

�
Ns4t5
∑

i=1

I4Vi > t −Ai5

}

→

∫ t

0
�N 4log4e�F̄ 4t − u5+ F 4t − u555du1
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where I4 · 5 is the indicator function (see Glynn [16] for a proof). It uses (3) and the definition of Riemann sum;
alternatively, see Lemma 4.2 in §4 as a generalization of this result. Let us state the following properties of �t4 · 5
for later convenience:

Lemma 3.1. �t4 · 5 is defined on �, twice continuously differentiable, strictly convex, and steep.

Next let at 2= 1 −�
∫ �

t
F̄ 4u5du. r ∈A implies that ats + o4s5 is the number of customers needed excluding the

initial ones to reach overflow at time t. In other words,

Pr4Q
�4t5 > s5= P4Q̄�4t5 > ats + o4s550 (16)

Now denote �t as the unique positive solution of the equation �′
t4�5= at . Such solution exists because �t4 · 5

is steep and at = 1 −�
∫ �

t
F̄ 4u5du> �

∫ t

0 F̄ 4u5du=�′
t405. Then under our current assumptions Gartner-Ellis

Theorem implies that 41/s5 logPr4Q
�4t5 > s5→ −It where

It 2= sup
�∈�

8�at −�t4�59= �tat −�t4�t50 (17)

The quantity It is the so-called rate function of Q̄�4t5 evaluated at at .
At this point let us note the following properties of �t and It when regarded as functions of t:

Lemma 3.2. �t satisfies the following:
(i) �t > 0 is nonincreasing in t for all t > 0.

(ii) limt→0 �t = �.
(iii) limt→� �t = �� where �� is the unique positive root of the equation �′

�
4�5= 1, and

��4�5 2=
∫ �

0
�N 4log4e�F̄ 4u5+ F 4u555du0 (18)

Lemma 3.3. It satisfies the following:
(i) It is nonincreasing in t for t > 0.

(ii) limt→� It = inf t>0 It = I∗ where
I∗ 2= �� −��4��50 (19)

(iii) If V has bounded support over 601M7, then I∗ = It for any t ≥M .

To construct an implementable efficient importance sampling scheme, one can look at the derivative of �t4�5,

�′

t4�5=

∫ t

0
�′

N 4log4e�F̄ 4t − u5+ F 4t − u555
e�F̄ 4t − u5

e�F̄ 4t − u5+ F 4t − u5
du1

which is the asymptotic mean of Q̄�4t5/s as s → � under the exponential change of measure with parameter �.
When � = 0, �′

t405=
∫ t

0 �
′
N 405F̄ 4t − u5du= �

∫ t

0 F̄ 4t − u5du. Comparing with �′
t4�t5 suggests a build-up of the

system by accelerating the arrival rate from � to �′
N 4log4e�t F̄ 4t−u5+ F 4t−u555 at time u and changing the

service time distributions such that the probability for an arrival at time u to stay in the system at time t is given
by e�t F̄ 4t−u5/4e�t F̄ 4t−u5+ F 4t−u55. Denote P̃ t4 · 5 and Ẽt6 · 7 as the probability measure and expectation under
importance sampling. The above changes can be achieved by setting an exponential tilting of the i-th interarrival
time Ui by

P̃ t4Ui ∈ dy5

2= exp8�−1
s 4− log4e�t F̄ 4t −Ai5+ F 4t −Ai555y−�s4�

−1
s 4− log4e�t F̄ 4t −Ai5+ F 4t −Ai55559P4Ui ∈ dy5

= e−s�N 4log4e�t F̄ 4t−Ai5+F 4t−Ai555y4e�t F̄ 4t −Ai5+ F 4t −Ai55P4Ui ∈ dy5

given the i-th arrival time Ai (recall the convention Ui =Ai+1 −Ai), and for an arrival at Ai its tilted service time
distribution follows

P̃ t4Vi ∈ dy5 2=



















f 4y5

e�t F̄ 4t −Ai5+ F 4t −Ai5
for 0 ≤ y ≤ t −Ai

e�tf 4y5

e�t F̄ 4t −Ai5+ F 4t −Ai5
for y > t −Ai

0
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The contribution to likelihood ratio P4 · 5/P̃ t4 · 5 by each arrival and service time assignment is accordingly (using
slight abuse of notation)

P4Ui5

P̃ t4Ui5
=

es�N 4log4e�t F̄ 4t−Ai5+F 4t−Ai555Ui

e�t F̄ 4t −Ai5+ F 4t −Ai5
(20)

and
P4Vi5

P̃ t4Vi5
=

e�t F̄ 4t −Ai5+ F 4t −Ai5

e�t I4Vi>t−Ai5
0 (21)

We tilt the process using (20) and (21) until the time that we know overflow will happen at time; t i.e., t ∧ �s6t7
where �s6t7 2= inf8u > 02 r4t5+

∑Ns4u5
i=1 I4Vi > t−Ai5 > s9. The overall likelihood ratio on the set Q�4t5 > s will be

L =

Ns4�s 6t75−1
∏

i=1

es�N 4log4e�t F̄ 4t−Ai5+F 4t−Ai555

e�t F̄ 4t −Ai5+ F 4t −Ai5

Ns4�s 6t75
∏

i=1

e�t F̄ 4t −Ai5+ F 4t −Ai5

e�t I4Vi>t−Ai5

= exp
{

s
Ns4�s 6t75−1
∑

i=1

�N 4log4e�t F̄ 4t −Ai5+ F 4t −Ai555Ui − �t

Ns4�s 6t75
∑

i=1

I4Vi > t −Ai5

}

· 4e�t F̄ 4t −A�s 6t7
5+ F 4t −A�s 6t7

550 (22)

This estimator LI4Q�4t5 > s5 can be shown to be asymptotically optimal in estimating Pr4Q
�4t5 > s5:

Proposition 3.1.
lim sup

s→�

1
s

log Ẽt
r 6L

23Q�4t5 > s7≤ −2It0

Proof. The proof follows from Szechtman and Glynn [28], but for completeness (and also because of
our introduction of �s6t7 that simplifies the argument in their paper slightly), we shall present it here.

Note that
∑Ns4�s 6t75

i=1 I4Vi > t − Ai5 = s + 1 − r4t5 = ats + o4s5 by the definition of �s6t7 and r4t5. Also,
e�t F̄ 4t −A�s 6t7

5+ F 4t −A�s 6t7
5≤ e�t since �t > 0.

Since �N is continuous,
∑Ns4�s 6t75−1

i=1 �N 4log4e�t F̄ 4t −Ai5+ F 4t −Ai555Ui is an approximation to the Riemann
integral

∫ �s 6t7

0 �N 4log4e�t F̄ 4t−u5+ F 4t−u555du, with intervals defined by 0 =A0 <A1 <A2 < · · ·<ANs4�s 6t75
and

within each interval the leftmost function value is used as approximation (with the last interval truncated). Since
�N 4log4e�t F̄ 4t − u5+ F 4t − u555 is nondecreasing in u when �t > 0, and �s6t7≤ t on Q�4t5 > s, we have

Ns4�s 6t75−1
∑

i=1

�N 4log4e�t F̄ 4t −Ai5+ F 4t −Ai555Ui

≤

∫ �s 6t7

0
�N 4log4e�t F̄ 4t − u5+ F 4t − u555du

≤

∫ t

0
�N 4log4e�t F̄ 4t − u5+ F 4t − u555du

= �t4�t5

on Q�4t5 > s. Hence (22) gives
L2

≤ e2s�t4�t5−2�t4ats+o4s55

which yields the proposition. �

3.3. Distribution of random horizon. Denote � as our randomized time horizon. We propose a discrete
power-law distribution for � independent of the process:

P4� = T + k�5=
1

4k+ 152
−

1
4k+ 252

for k = 011121 : : : (23)

where �= �4s5= c/s for some constant c > 0. The power-law distribution of � is to avoid exponential contribution
from the mixture probability to the likelihood ratio that may disturb algorithmic efficiency. Notice that we use a
power law of order 2, and in fact we can choose any power law distribution (with finite mean so that it does not
take a long time to generate the process up to �).

T is a constant to avoid tilting the process on a time horizon too close to 0; otherwise, likelihood ratio would
blow up for paths that hit overflow very early (because limt→0 �t = � in Lemma 3.2 Part ii; see also §4). A good
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choice of T is the following. Let Ĩt 2= sup�∈�8�41 −�EV 5−�N 4�5t9= �̃t41 −�EV 5−�N 4�̃t5t where �̃t is the
solution to the equation �′

N 4�5t = 1 −�EV (which exists for small enough t by the steepness assumption). Ĩt is the
rate function of Ns4t5 evaluated at 1 −�EV .

We choose 0 <T <� that satisfies
ĨT > 2I∗ (24)

which always exists by the following lemma:

Lemma 3.4. Ĩt satisfies the following:
(i) Ĩt is nonincreasing in t for t < � for some small � > 0.

(ii) Ĩt → � as t ↘ 0.

Remark 3.1. In fact by looking at the arguments in §4, one can see that � being merely o415 leads to
asymptotic optimality. However, the coarser the �, the larger is the subexponential factor beside the exponential
decay component in the variance, with the extreme that when � is order 1, asymptotic optimality no longer holds.
The choice of �= c/s is found to perform well empirically, as illustrated in §6.

3.4. Likelihood ratio. After sampling the randomized time horizon, we accelerate the process using the
sequential tilting scheme (20) and (21) with a realized � = T + k�, under a modification: As discussed in §3.1, we
are interested in approximating the first-passage-type probability PA4�s < �A5; consequently, we tilt the process
until 4T + k�5∧ �s ∧ �A (rather than �s6T + k�7 defined in §3.2). If 4T + k�5∧ �s < �A, we continue the GI/G/s
system under the original measure until �A. Also, to prevent a blow-up of likelihood ratio close to time 0, we use
the original measure throughout the whole process whenever the realization of � is T (the proof of efficiency in §4
will illustrate this in detail). We refer Ẽ6 · 7 and P̃ 4 · 5 to the overall importance sampling measure under this
scheme, which is depicted rigorously as follows. Recall from §2.2 that Wu = 4Q4u1 ·51B4u55 represents the state of
the process at time u. We have

P̃ 48Wu10 ≤ u≤ �s ∧ �A9 ∈ S5=

�
∑

k=0

P4� = T + k�5P̃ T+k�48Wu10 ≤ u≤ �s ∧ �A9 ∈ S51

where P̃ T 4 · 5 is set to equate P4 · 5, and for k ≥ 1, P̃ T+k� is the probability measure under the sequential tilting
scheme introduced in §3.2, using time horizon T + k�, with tilting stopped at time 4T + k�5∧ �s ∧ �A. So the
overall likelihood ratio L 2= L4Wu10 ≤ u≤ �s5 on the set �s < �A is given by (with slight abuse of notation)

L =
dP

dP̃
=

P4Wu10 ≤ u≤ �s5
∑�

k=0 P4� = T + k�5P̃ T+k�4Wu10 ≤ u≤ �s5

=
1

∑�

k=0 P4� = T + k�5L−1
T+k�

1 (25)

where Lt 2= Lt4Wu10 ≤ u≤ �s5 is the individual likelihood ratio as a sequential product of (20) and (21) up to
t ∧ �s; i.e.,

Lt =



























exp
{

s
Ns4�s5−1
∑

i=1

�N 4log4e�t F̄ 4t −Ai5+ F 4t −Ai555Ui − �t

Ns4�s5−1
∑

i=1

I4Vi > t −Ai5

}

for t ≥ �s

exp
{

s
Ns4t5−1
∑

i=1

�N 4log4e�t F̄ 4t −Ai5+ F 4t −Ai555Ui − �t

Ns4t5−1
∑

i=1

I4Vi > t −Ai5

}

for t < �s

(26)

for t > T and is 1 for t = T .

3.5. The algorithm. We now state our algorithm. Assuming we start from r ∈A with a given initial age B405,
do the following:

Algorithm 2

(i) Set A0 2= 0. Also initialize NA ← 0, L← 0, and �s ← �.
(ii) Sample � according to (23). Say we get a realization � = T + k�.

(iii) Simulate U0 according to the initial age B405. Set A1 2=U0. Check if �A is reached, in which case go to
Step vii.
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(iv) Starting from i = 1, repeat the following:
(a) Generate Vi according to P̃ T+k�4 · 5, where

P̃ t4Vi ∈ dy5 2=



















f 4y5

e�t F̄ 4t −Ai5+ F 4t −Ai5
for 0 ≤ y ≤ t −Ai

e�tf 4y5

e�t F̄ 4t −Ai5+ F 4t −Ai5
for y > t −Ai

with �t defined as in (17) for t > T and 0 for t = T .
(b) Generate Ui according to P̃ T+k�4 · 5, where

P̃ t4Ui ∈ dy5 2= e−s�N 4log4e�t F̄ 4t−Ai5+F 4t−Ai555y4e�t F̄ 4t −Ai5+ F 4t −Ai55P4Ui ∈ dy5

with �t defined as in (17) for t > T and 0 for t = T .
(c) Set Ai+1 2=Ui +Ai.
(d) If �A is reached in 6Ai1Ai+15, go to Step vi.
(e) Compute Q�4Ai+15. If Q�4Ai+15 > s, then set �s ←Ai+1, remove the new arrival at Ai+1, update

NA ←NA + 1, and go to Step v.
(f) If Ai+1 ≥ t, go to Step v.
(g) Update i ← i+ 1.

(v) Repeat the following:
(a) Generate Vi and Ui under the original measure. Set Ai+1 2=Ui +Ai.
(b) If �A is reached in 6Ai1Ai+15, go to Step vi.
(c) Compute Q4Ai+15. This includes the removal of new arrival Ai+1 from the system in case it is a loss; in

such case update NA ←NA + 1, and set �s ←Ai+1 if �s = �.
(d) Update i ← i+ 1.

(vi) Compute LI4�s < �A5 using (25) and (26).
(vii) Output NALI4�s < �A5.

4. Algorithmic efficiency. In this section we will prove asymptotic optimality of the estimator outputted by
Algorithm 2. We will also identify I∗ defined in (19) as the exponential decay rate of EANA. The key result is the
following:

Theorem 4.1. The second moment of the estimator in Algorithm 2 satisfies

lim sup
s→�

1
s

log Ẽr 6N
2
AL

23 �s < �A7≤ −2I∗

for any r ∈A.

This result, together with Theorem 4.2 in the sequel, will expose a loop of inequalities that leads to asymptotic
optimality and large deviations asymptotic simultaneously. The main technicality of this result is an estimate of the
continuity of the likelihood ratio, or intuitively the “overshoot” at the time of loss. It draws upon a two-dimensional
point process description of the system, in which the geometry of the process plays an important role in estimating
this “overshoot.”

Proof. Denote �x� 2= min8T + k�2 k ∈�1 x ≤ T + k�9. Also recall the definition at 2= 1 −�
∫ �

t
F̄ 4u5du.

Consider the likelihood ratio in (25). We provide an upper bound by isolating the term � = ��s� in the involved
summation. This technique has been used in analyzing rare-event estimators that involve hitting sets coverable by
several half-spaces (see Bucklew [12], Chap. 5, p. 112); a similar idea has also been used in Blanchet et al. [9].
We have

LI4�s < �A5=
1

∑�

k=0 P4� = T + k�5L−1
T+k�

I4�s < �A5≤
L��s�

P4� = ��s�5
I4�s < �A50 (27)

We denote g4 · 5 2= P4� = ·5, a deterministic function defined on �, and hence g4��s�5= P4� = ��s�5 is a random
variable generated by �s . Then (27) is a.s. bounded from above by

g4T 5−1I4�s ≤ T 3 �s < �A5+ g4��s�5
−1 exp

{

s
Ns4�s5−1
∑

i=1

�N 4log4e���s � F̄ 4��s� −Ai5
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+ F 4��s� −Ai555Ui − ���s�

Ns4�s5−1
∑

i=1

I4Vi > ��s� −Ai5

}

I4�s >T 3�s < �A5

≤C1I4�s ≤ T 3 �s < �A5+
C2�

3
s

�3
exp8s���s�

4���s�
5− ���s�

4Q̄�4�s1 ��s� − �s5− 159I4�s >T 3�s < �A5

≤C1I4�s ≤ T 3 �s < �A5+
C2�

3
s

�3
exp8−sI∗

+ ���s�
4sa��s�

+ 1 − Q̄�4�s1 ��s� − �s559I4�s >T 3�s < �A51

where C1 and C2 are positive constants. Note that the second inequality is because
∑Ns4�s5−1

i=1 �N 4log4e���s � ·

F̄ 4��s�−Ai5+ F 4��s�−Ai555Ui is a Riemann sum of the integral ���s�
4���s�

5=
∫ ��s�

0 �N 4log4e���s � F̄ 4��s�− u5+

F 4��s�−u555du (excluding the intervals at the two ends) and that �N 4log4e�
��s�

F̄ 4��s�−u5+ F 4��s�−u555 is

a nondecreasing function in u. Also note that
∑Ns4�s5

i=1 I4Vi > ��s�−Ai5= Q̄�4�s1 ��s�− �s5 is the number of
customers who arrive before �s and leave after ��s�. The last inequality follows from the definition of I��s� and
Lemma 3.3 Part ii. Now we have

Ẽr 6N
2
AL

23 �s < �A7 = Er 6N
2
AL3�s < �A7

≤C1Er 6N
2
A3 �s ≤ T 3 �s < �A7

+
C2

�3
e−sI∗

Er 6N
2
A�

3
s exp8���s�

4sa��s�
+ 1 − Q̄�4�s1 ��s� − �s5593 �s >T 3�s < �A70 (28)

Consider the first summand. By Holder’s inequality Er 6N
2
A3 �s ≤ T 3�s < �A7≤ 4Er 6N

2p
A 751/p4Pr4�s ≤ T 551/q for

1/p+1/q = 1. Also, Pr4�s ≤ T 5≤ P4Ns4T 5 > s−r4T 55≤ P4Ns4T 5 > s41−�EV 5+o4s55 and Gartner-Ellis Theorem
yield lims→�41/s5 logP4Ns4T 5 > s41−�EV 5+o4s55= −ĨT <−2I∗ by our choice of T in (24). Combining these
observations, and using Proposition 2.1, we get

lim sup
s→�

1
s

logEr 6N
2
A3 �s ≤ T 3 �s < �A7≤ lim sup

s→�

1
sp

logEr 6N
2p
A 7+ lim sup

s→�

1
sq

logPr4�s ≤ T 5≤ −2I∗

for q close enough to 1.
In view of (28) and Dembo and Zeitouni [13], Lemma 1.2.15, the proof will be complete once we can prove that

lim sup
s→�

1
s

logEr 6N
2
A�

3
s exp8���s�

4sa��s�
+ 1 − Q̄�4�s1 ��s� − �s5593 �s >T 3�s < �A7≤ −I∗0 (29)

The derivation of (29) requires the analysis of the “overshoot” at the time of loss, briefly discussed after the
statement of Theorem 4.1. To this end, we write

Er 6N
2
A�

3
s exp8���s�

4sa��s�
+ 1 − Q̄�4�s1 ��s� − �s5593 �s >T 3�s < �A7

=Er

[

N 2
A�

3
s exp

{

���s�

(

s + 1 −�s
∫ �

��s�
F̄ 4u5du− Q̄�4�s1 ��s� − �s5

)}

3 �s >T 3�s < �A

]

≤ eC�T
√
sEr 6N

2
A�

3
s exp8���s�

4s + 1 − r4��s�5− Q̄�4�s1 ��s� − �s5593 �s >T 3�s < �A7

= eC�T
√
s

�
∑

k=1

Er 6N
2
A�

3
s exp8���s�

4s + 1 − r4��s�5− Q̄�4�s1 ��s� − �s5593 ��s� = T + k�3 �A >T + 4k− 15�7

≤ eC�T
√
s

�
∑

k=1

4ErN
2p
A 51/p4Er�

3q
A 51/q4Pr4�A >T + 4k− 15�551/h

· 4Er 6exp8l�T+k�4s + 1 − r4T + k�5− Q̄�4�s1 T + k�− �s5593 T + 4k− 15� < �s ≤ T + k�751/l

= eO4
√
s5

�
∑

k=1

4ErN
2p
A 51/p4Er�

3q
A 51/q4Pr4�A >T + 4k− 15�551/h

· 4Er 6exp8l�T+k�4s + 1 − r4�s5− Q̄�4�s1 T + k�− �s5593 T + 4k− 15� < �s ≤ T + k�751/l1 (30)

where C is a positive constant and 1/p+ 1/q + 1/h+ 1/l = 1. The first inequality follows because r4 · 5 ∈ J 4 · 5 and
Lemma 3.3 Part I, whereas the second inequality follows from generalized Holder’s inequality (e.g., Wheeden and
Zygmund [29]). The last equality holds because r4�s5− r4T + k�5= o4s5, again since r ∈A, for T + 4k− 15� <
�s ≤ T + k�.
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V = 0

V = 0 V = 0

V = 0

V2

A1

U0 U1

A2

V1

…

T + (k – 1)�

T + (k – 1)� T + k� z(k, �)

T + k��s

(a) (b)

(c) (d)

Assigned
service time
at arrival

Assigned
service time
at arrival

Assigned
service time
at arrival

Assigned
service time
at arrival

Arrival time Arrival time

Arrival timeArrival time

Residual service time of
the customer at t

Departure time of
first customer =

A1 + V1

T + (k – 1)�

Q∞(t) = number of points inside
the triangular simplex

–

T + k�

Figure 3. Two-dimensional plots of the point process representing customer statuses.

We now analyze

Er 6exp8l�T+k�4s + 1 − r4�s5− Q̄�4�s1 T + k�− �s5593 T + 4k− 15� < �s ≤ T + k�70 (31)

We plot the arrivals on a two-dimensional plane, with x-axis indicating the time of arrival and y-axis indicating the
assigned service time at the time of arrival. Each arrival is represented by a point with a specified 4x1 y5-coordinate
on this two-dimensional plane. Such plot has been used in the study of M/G/� system (see, for example,
Foley [14]). In this representation it is easy to see that the departure time of an arriving customer is the x-intercept
of a straight line, with slope −1, that passes through the customer’s representing point. As a result, Q̄�4t5, for
example, will be the number of all the points inside the triangular simplex created by a vertical line that passes
through the point 4t105 and a straight line with slope −1 that also passes through 4t105. See Figure 3(a).

For notational convenience we denote Q̄�
t11 t2

6t31 t47 2=
∑Ns4t25

i=Ns4t15+1 I4t3 −Ai <Vi ≤ t4 −Ai5 as the number of
customers in the GI/G/� system who arrive sometime in 4t11 t27 and leave the system sometime in 4t31 t47. It is
easy to see, for example, that Q̄�4�s1 T + k�− �s5= Q̄�

01 �s
6T + k�1�7 for T + k�≥ �s .

To proceed with our proof, the key idea is to bound the number of customers involved in (31) by identifying
convenient geometric objects to cover the involved areas in the two-dimensional plot. Figure 3(b) shows the region
filled by Q̄�4�s1 T + k�− �s5= Q̄�

01 �s
6T + k�1�7 as a shifted simplex starting from the point 4�s1 T + k�− �s5.

Note that by definition Q̄�4�s5= s + 1 − r4�s5, and so s + 1 − r4�s5− Q̄�
01 �s

6T + k�1�7 corresponds to the
downward strip ending at 4�s105 and 4�s1 T + k�− �s5, which is obviously smaller than the region represented by
Hk 2= Q̄�

01T+k�6T + 4k− 15�1 T + k�7 in Figure 3(c).
Define Gk 2= Q̄�4T + 4k− 15�5+Ns4T + k�5−Ns4T + 4k− 15�5, which is represented by the trapezoidal

area depicted in Figure 3. Observe that T + 4k− 15� < �s ≤ T + k� implies that one of the triangular simplex
corresponding to Q̄�4t5, for T + 4k− 15� < t ≤ T + k�, has number of points larger than s− r4T + 4k− 15�5. This
in turn implies that the region represented by Gk has more than s − r4T + 4k− 15�5 number of points.

The above observations lead to

Er 6exp8l�T+k�4s + 1 − r4�s5− Q̄�

01�s
6T + k�1�7593 T + 4k− 15� < �s ≤ T + k�7

≤Er 6e
l�T+k�Hk3Gk > s − r4T + 4k− 15�570 (32)
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From now on we focus on the case when service time has unbounded support (the bounded support case is
simpler and will be presented later in the proof). We introduce a time point z= z4k1 s5 and consider the divisions
of areas represented by Hk and Gk in Figure 3(d):

H 1
k 4z5 2= Q̄�

01 z6T + 4k− 15�1 T + k�7⊂G1
k4z5 2= Q̄�

01 z6T + 4k− 15�1�71

H 2
k 4z5 2= Q̄�

z1 T+k�6T + 4k− 15�1 T + k�7⊂G2
k4z5 2= Q̄�

z1 T+k�6T + 4k− 15�1�70

Note that Hk =H 1
k 4z5+H 2

k 4z5 and Gk =G1
k4z5+G2

k4z5.
Moreover, define Ak

i , i = 11 : : : 1Gk to be the arrival times of all the customers that Gk is counting. Note that
given the arrival times Ak

i 1 i = 11 : : : 1Gk, the events whether each of these customers falls into Hk are independent
Bernoulli random variables. Indeed, the probability of each of these Bernoulli variables is the conditional
probability that the customer, with arrival time Ak

i , falls into the region Hk, given that he/she falls into Gk. Note
from Figure 3 that the probability of a customer with arrival time Ak

i falling into Gk is F̄ 4T + 4k− 15�−Ak
i 5 and

the probability of falling into Hk is F̄ 4T + 4k− 15�−Ak
i 5− F̄ 4T + k�−Ak

i 5. Hence the Bernoulli probability that
corresponds to arrival Ak

i is

pk
i 2=

F̄ 4T + 4k− 15�−Ak
i 5− F̄ 4T + k�−Ak

i 5

F̄ 4T + 4k− 15�−Ak
i 5

0 (33)

As a result, we can write (32) as

Er 6e
l�T+k�4H

1
k 4z5+H2

k 4z553Gk > s − r4T + 4k− 15�57

=Er 6Er 6e
l�T+k�4H

1
k 4z5+H2

k 4z55 �Ak
i 1 i = 11 : : : 1Gk73Gk > s − r4T + 4k− 15�57

=Er 6Er 6e
l�T+k�H

1
k 4z5 �Ak

i 1 i = 11 : : : 1G1
k4z57Er 6e

l�T+k�H
2
k 4z5 �Ak

i 1 i =G1
k4z5+ 11 : : : 1G1

k4z5+G2
k4z573

G1
k4z5+G2

k4z5 > s − r4T + 4k− 15�57

≤Er

[

el�T+k�G
1
k4z5

G1
k4z5+G2

k4z5
∏

i=G1
k4z5+1

41 + 4el�T+k� − 15pk
i 53G

1
k4z5+G2

k4z5 > s − r4T + 4k− 15�5
]

0 (34)

Let

pk4z5 2= sup
Ak
i >z

pk
i ≤

C�

F̄ 4T + k�− z5
(35)

for some constant C > 0, where the inequality follows from (33). Also let

�1
s1 z1 k4�5 2= logEe�G

1
k4z5 = s

∫ z

0
�N 4log4e�F̄ 4T + 4k− 15�− u5+ F 4T + 4k− 15�− u555du+ o4s5

�2
s1 z1 k4�5 2= logEe�G

2
k4z5 = s

∫ T+k�

z
�N 4log4e�F̄ 4T + 4k− 15�− u5+ F 4T + 4k− 15�− u555du+ o4s5

where o4s5 is uniform in �, k, and z. This is due to the following lemma, whose proof will be deferred to the
appendix.

Lemma 4.1. We have

1
s

logEe�Q̄
�
w1z6t1�7

→

∫ z

w
�N 4log4e�F̄ 4t − u5+ F 4t − u555du

uniformly over � ∈ 6��1 �T 7, t ≥ T and 0 ≤w ≤ z≤ t +� for any � > 0.

When pk4z5 is small enough, (34) is less than or equal to

Er 6e
l�T+k�G

1
k4z541 + 4el�T+k� − 15pk4z55

G2
k4z53G1

k4z5+G2
k4z5 > s − r4T + 4k− 15�57

=Er 6Er 6e
l�T+k�G

1
k4z5+log41+4el�T+k�−15pk4z55G

2
k4z53G2

k4z5 > s − r4T + 4k− 15�5−G1
k4z5 �G1

k4z51B4z577

≤Er 6exp8l�T+k�G
1
k4z5− �T+4k−15�4s − r4T + 4k− 15�5−G1

k4z55

+�2
s1 z1 k4log41 + 4el�T+k� − 15pk4z55+ �T+4k−15�597
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= exp8�1
s1 z1 k4l�T+k� + �T+4k−15�5− �T+4k−15�4s − r4T + 4k− 15�55

+�2
s1 z1 k4log41 + 4el�T+k� − 15pk4z55+ �T+4k−15�59

= exp
{

s
∫ z

0
�N 4log4el�T+k�+�T+4k−15� F̄ 4T + 4k− 15�− u5+ F 4T + 4k− 15�− u555du

− s
∫ z

0
�N 4log4elog41+4el�T+k�−15pk4z55+�T+4k−15� F̄ 4T + 4k− 15�− u5+ F 4T + 4k− 15�− u555du

− �T+4k−15�4s − r4T + 4k− 15�55+ s�T+4k−15�4log41 + 4el�T+k� − 15pk4z55+ �T+4k−15�5+ o4s5

}

1 (36)

where the inequality follows by Chernoff’s inequality (see for example Bucklew [12], Chap. 8, p. 151), and the last
equality follows from

�2
s1 z1 k4�5= s�T+4k−15�4�5− s

∫ z

0
�N 4log4e�F̄ 4T + 4k− 15�− u5+ F 4T + 4k− 15�− u555du+ o4s5

uniformly, by Lemma 4.1.
The expression (36) is important in controlling each term in the summation in (30) over the index k ∈�. We

shall show that (36) is bounded by the quantity e−sIT+4k−15�+o4s5 uniformly over k ∈� by choosing, for each k ∈�, a
suitable value of z= z4k1 s5 as s → �. First, let �s ↗ � be a sequence satisfying sF̄ 4�s5↗ �, whose existence is
guaranteed by the unbounded support assumption. For a given s, we divide into two cases: For k such that
T + k�≤ �s , we put z= 0 and consequently (36) becomes

exp8−�T+4k−15�4s − r4T + 4k− 15�55+ s�T+4k−15�4log41 + 4el�T+k� − 15pk4055+ �T+4k−15�5+ o4s590 (37)

Since T + k�≤ �s , we have pk405≤C�/F̄ 4�s5 from (35), and hence (37) is bounded by

exp8−�T+4k−15�4s− r4T + 4k− 15�55+ s�T+4k−15�4log41 + 4el�T+k� − 15C�/F̄ 4�s55+ �T+4k−15�5+ o4s590 (38)

For k such that T + k� > �s , we put z= T + k�− �s so that T + k�− z= �s . Hence again pk4z5≤C�/F̄ 4�s5.
Also, now we have

∫ z

0
�N 4log4el�T+k�+�T+4k−15� F̄ 4T + 4k− 15�− u5+ F 4T + 4k− 15�− u555du

=

∫ T+4k−15�

T+4k−15�−z
�N 4log4el�T+k�+�T+4k−15� F̄ 4u5+ F 4u555du

≤

∫ �

T+4k−15�−z
C1�4e

l�T+k�+�T+4k−15� − 15F̄ 4u5du

=C2�
∫ �

�s−�
F̄ 4u5du

for some constants C1, C2 > 0, where the inequality holds for large enough s, since T + 4k− 15�− z= �s and that
log41 + x5≤ x for x > 0 and �′

N 405= �. Hence (36) is bounded by

exp
{

C2�s
∫ �

�s−�
F̄ 4u5du− �T+4k−15�4s − r4T + 4k− 15�55

+ s�T+4k−15�4log41 + 4el�T+k� − 15C�/F̄ 4�s55+ �T+4k−15�5

}

(39)

for large enough s.
Recall that �=O41/s5, and so C�/F̄ 4�s5↘ 0. Hence both (38) and (39) become e−sIT+4k−15�+o4s5. Consequently,

(30) is less than or equal to

e−sI∗/l+o4s5
�
∑

k=1

4ErN
2p
A 51/p4Er�

3q
A 51/q4Pr4�A >T + 4k− 15�551/h

≤ e−sI∗/l+o4s54ErN
2p
A 51/p4Er�

3q
A 51/q

(

4Pr4�A >T 551/h
+

1
�

∫ �

T
4Pr4�A >u551/h du

)

0
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Assigned
service time
at arrival

Arrival time
V = 0

a

T + (k – 1)�   T + k�

M
a

Figure 4. Two-dimensional plot for the case of bounded support service time.

From this, and using Proposition 2.1, we get

lim sup
s→�

1
s

logEr 6N
2
A�

2
s exp8���s�

4sa��s�
+ 1 − Q̄�4�s1 ��s� − �s5593 �s >T 3�s < �A7≤ −

I∗

l
0

Since l can be chosen arbitrarily close to 1, we have proved (29).
Finally, we consider the case when V has bounded support over 601M7. Pick a small constant a > 0, and consider

the set of customers G̃k 2= Q̄4T+4k−15�−M5∨01 T+k�6T + 4k− 15�− a1�7 that consists of Gk and a trapezoidal strip of
width a running through 4T + 4k− 15�− a105, 4T + 4k− 15�105, 44T + 4k− 15�−M5∨ 01M ∧ 4T + 4k− 15�55
and 44T + 4k− 15�−M5∨ 01M ∧ 4T + 4k− 15�5− a5. See Figure 4.

Denote Ãk
i , i = 11 : : : 1 G̃k as the arrival times of customers falling in G̃k. Then we have

Er 6e
l�T+k�Hk3Gk > s − r4T + 4k− 15�57

≤Er 6e
l�T+k�Hk3 G̃k > s − r4T + 4k− 15�57

=Er 6Er 6e
l�T+k�Hk � Ãk

i 1 i = 11 : : : 1 G̃k73 G̃k > s − r4T + 4k− 15�57

=Er

[ G̃k
∏

i=1

41 + 4el�T+k�5p̃k
i 53 G̃k > s − r4T + 4k− 15�5

]

1 (40)

where

p̃k
i 2=

F̄ 4T + 4k− 15�− Ãk
i 5− F̄ 4T + k�− Ãk

i 5

F̄ 4T + 4k− 15�− a− Ãk
i 5

≤ p̃k 2= sup
i=11 : : : 1G̃k

p̃k
i ≤

C�

F̄ 4M − a5
0

Hence (40) is less than or equal to

Er 6e
log41+4el�T+k� 5p̃k5G̃k3 G̃k > s − r4T + 4k− 15�57

≤ e−�T+4k−15�4s−r4T+4k−15�55+�̃k4log41+4el�T+k�−15p̃5+�T+4k−15�51 (41)

where �̃k4�5 2= logEe�G̃k , by Chernoff’s inequality. Now note that by Lemma 4.1 we have

�̃k4�5 = s
∫ T+k�

4T+4k−15�−M5∨0
�N 4log4e�F̄ 4T + 4k− 15�− a− u5+ F 4T + 4k− 15�− a− u555du+ o4s5

= s
∫ 4M−a5∧4T+4k−15�−a5

0
�N 4log4e�F̄ 4u5+ F 4u555du+ s�N 4�54a+ �5+ o4s5

≤ s�T+4k−15�4�5+ saC + o4s5

for some constant C > 0, uniformly in � and k. Hence (41) is less than or equal to

e−�T+4k−15�4s−r4T+4k−15�55+s�T+4k−15�4�T+4k−15�5+saC+o4s5

= e−sIT+4k−15�+saC+o4s50
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Thus (30) is less than or equal to

e−sI∗/l+saC/l+o4s5
�
∑

k=1

4ErN
2p
A 51/p4Er�

3q
A 51/q4Pr4�A >T + 4k− 15�551/h0

This gives

lim sup
s→�

1
s

logEr 6N
2
A�

3
s exp8���s�

4sa��s�
+ 1 − Q̄�4�s1 ��s� − �s5593 �s >T 3�s < �A7≤ −

I∗

l
+

aC

l
0

Since l and a can be chosen arbitrarily close to 1 and 0, respectively, (29) holds and conclusion follows. �
Remark 4.1. The proof can be simplified in the M/G/s system. In particular, there is no need to condition on

Ak
i nor introduce the constant a in the case V has bounded support. Since arrival is Poisson, the two-dimensional

description of arrivals via the arrival time and the required service time at the time of arrival leads to a Poisson
random measure. Hence all the points in Gk are independently sampled, each with probability of falling into Hk

being

pk 2=

∫ T+k�

0 4F̄ 4T + 4k− 15�− u5− F̄ 4T + k�− u55du
∫ T+k�

0 F̄ 4T + 4k− 15�− u5du
≤

C�4M + �5
∫ T+4k−15�

0 F̄ 4u5du+Ns44k− 15�1 k�5
=O4�5

for some constant C > 0; then (31) immediately becomes

Er 64pke
l�T+k� + 1 −pk5

Gk3Gk > s − r4T + 4k− 15�57

=Er 6e
O4�5Gk3Gk > s − r4T + 4k− 15�570

The rest follows similarly as in the proof.

Remark 4.2. Note that the result coincides with Erlang’s loss formula in the case of M/G/s (see for example
Asmussen [4]), which states that the loss probability is exactly given by

P�4loss5=
4�sEV 5s/s!

1 +�sEV + · · · + 4�sEV 5s/s!
0

A simple calculation reveals that 41/s5 logP�4loss5→ log4�EV 5+ 1 −�EV = −I∗.

The next result we will discuss is the lower bound:

Theorem 4.2. For any r ∈A, we have

lim inf
s→�

1
s

logPr4�s < �A5≥ −I∗0

It suffices to prove that lim inf s→�41/s5 logPr4�s < �A5≥ −Itn for a sequence tn ↗ � thanks to Lemma 3.3,
Parts i and ii. In fact we will take tn = nã. In the case of bounded support V , it suffices to only consider
nã= �M� because of Lemma 3.3 Part iii. For each nã, the idea then is to identify a so-called optimal sample path
(or more precisely a neighborhood of such a path) that possesses a rate function Inã and has the property �s < �A.
Note that the probability in consideration is the same for GI/G/s and GI/G/� systems. Henceforth we will
consider paths in GI/G/�.

The way we define A in (8) implies that it suffices to focus on the process on the time-grid 801ã12ã1 : : : 9
for checking the condition �s < �A. For a path to reach s at time nã, the form of �′

nã4�nã5 hints that
E6Q̄�

4k−15ã1kã64j−15ã1 jã7 �Q�4nã5> s7= s�kj +o4s5 and E6Q̄�

4k−15ã1kã6nã1�7 �Q�4nã5> s7= s�k +o4s5,
where

�kj 2=
∫ kã

4k−15ã
�′

N 4log4e�nã F̄ 4nã− u5+ F 4nã− u555
F 4jã− u5− F 44j − 15ã− u5

e�nã F̄ 4nã− u5+ F 4nã− u5
du

and

�k 2=
∫ kã

4k−15ã
�′

N 4log4e�nã F̄ 4nã− u5+ F 4nã− u555
e�nã F̄ 4nã− u5

e�nã F̄ 4nã− u5+ F 4nã− u5
du

for k= 11 : : : 1 n, j = k1 : : : 1 n. Our goal is to rigorously justify that such a path is the optimal sample path
discussed above.
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We now state two useful lemmas. The first is a generalization of Glynn [16], whose proof resembles this earlier
work and is deferred to the appendix. The second one argues that the path we identified indeed satisfies �s < �A:

Lemma 4.2. Let ä 2= 4�kj1 �k·5k=11 : : : 1n1 j=k1 : : : 1n ∈�n4n+15/2+n, and define

�̄4ä5 2=
n
∑

k=1

∫ kã

4k−15ã
�N

(

log
( n
∑

j=k

e�kjP44j − 15ã− u< V ≤ jã− u5+ e�k· F̄ 4nã− u5

))

du0

We have
1
s

logE exp
{ n
∑

k=1

( n
∑

j=k

�kjQ̄
�

4k−15ã1kã64j − 15ã1 jã7+ �k·Q̄
�

4k−15ã1kã6nã1�7

)}

→ �̄4ä50

Lemma 4.3. Starting with any r ∈A, the sample path with Q�

4k−15ã1kã64j − 15ã1 jã7 ∈ 44�kj +�kj5s1 4�kj + �5s5,
Q�

4k−15ã1kã6nã1�7∈ 44�k +�k5s1 4�k + �5s5 for all k= 11 : : : 1 n and j = k1 : : : 1 n satisfies �s < �A. Here �kj ,
�k > 0,

∑

k=11 : : : 1n
j=k1 : : : 1n

�kj +
∑

k=11 : : : 1n �k = � <� and � > �kj , � > �k.

Proof. For l = 11 : : : 1 n, consider

Q̄�4lã5 =

l
∑

k=1

Q�

4k−15ã1kã6lã1�7

>
l
∑

k=1

( n
∑

j=l+1

akjs + bks

)

+

l
∑

k=1

( n
∑

j=l+1

�kjs +�ks

)

= s
l
∑

k=1

( n
∑

j=l+1

∫ kã

4k−15ã
�′

N 4log4e�nã F̄ 4nã− u5+ F 4nã− u555
F 4jã− u5− F 44j − 15ã− u5

e�nã F̄ 4nã− u5+ F 4nã− u5
du

+

∫ kã

4k−15ã
�′

N 4log4e�nã F̄ 4nã− u5+ F 4nã− u555
e�nã F̄ 4nã− u5

e�nã F̄ 4nã− u5+ F 4nã− u5
du

)

+ s
l
∑

k=1

( n
∑

j=l+1

�kj +�k

)

= s
∫ lã

0
�′

N 4log4e�nã F̄ 4nã− u5+ F 4nã− u555
e�nã F̄ 4nã− u5+ F 4nã− u5− F 4lã− u5

e�nã F̄ 4nã− u5+ F 4nã− u5
du

+ s
l
∑

k=1

( n
∑

j=l+1

�kj +�k

)

> �s
∫ lã

0
F̄ 4lã− u5du+C1

√
s

for any given constant C1, when s is large enough. The last inequality follows from the monotonicity of �′
N . Note

that we then have Q�4lã5= Q̄�4lã5+ r4lã5 > �s +C2

√
s for any given constant C2 and large enough s. Hence

�A is not reached in time nã when s is large.
On the other hand,

Q̄�4nã5 =

n
∑

k=1

Q�

4k−15ã1kã6nã1�7

>
n
∑

k=1

�ks +

n
∑

k=1

�ks

= s
m
∑

k=1

∫ kã

4k−15ã
�′

N 4log4e�nã F̄ 4nã− u5+ F 4nã− u555
e�nã F̄ 4nã− u5

e�nã F̄ 4nã− u5+ F 4nã− u5
du+ s

n
∑

k=1

�k

= s
∫ nã

0
�′

N 4log4e�nã F̄ 4nã− u5+ F 4nã− u555
e�nã F̄ 4nã− u5

e�nã F̄ 4nã− u5+ F 4nã− u5
du+ s

n
∑

k=1

�k

= s�′

nã4�nã5+ s
n
∑

k=1

�k1
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where the last equality follows from the definition of �nã. So Q�4nã5= Q̄�4nã5+ r4nã5 > s when s is large
enough. This concludes our proof. �

We now prove Theorem 4.2:

Proof of Theorem 4.2. Note that by Lemma 4.3, for any r ∈A and s large enough,

Pr4�s < �A5

≥ Pr4Q
�

4k−15ã1kã64j − 15ã1 jã7 ∈ 44�kj +�kj5s1 4�kj + �5s51 Q�

4k−15ã1kã6nã1�7 ∈ 44�k +�k5s1 4�k + �5s51

k = 11 : : : 1 n1 j = k1 : : : 1 n5 (42)

for large enough s given arbitrary �kj , �k and � satisfying conditions in Lemma 4.3. Denote â 2=
4�kj1 �k5k=11 : : : 1n1 j=k1 : : : 1n. Let

Sâ 2=
n
∏

k=1

n
∏

j=k

4�kj +�kj1�kj + �5×

n
∏

k=1

4�k +�k1�k + �5⊂�n4n+15/2+n0

Using Gartner-Ellis Theorem for (42) and Lemma 4.2, we have

1
s

logPr4Q
�

4k−15ã1kã64j − 15ã1 jã7 ∈ 44�kj +�kj5s1 4�kj + �5s51

Q�

4k−15ã1kã6nã1�7 ∈ 44�k +�k5s1 4�k + �5s51 k = 11 : : : 1 n1 j = k1 : : : 1 n5

→ −Iâ 1 (43)

where Iâ 2= infx∈Sâ
I4x5 and

I4x5 2= sup
ä∈�n4n+15/2+n

8�ä1x� − �̄4ä59

with �̄4ä5 defined in Lemma 4.2. But note that for k = 11 : : : 1 n, j = k1 : : : 1 n,

¡

¡�kj
4�ä1x� − �̄4ä55= xkj −

∫ kã

4k−15ã
�′

N

(

log
( n
∑

j=k

e�kjP44j − 15ã− u< V ≤ jã− u5+ e�k· F̄ 4nã− u5

))

·
e�kjP44j − 15ã− u< V ≤ jã− u5

∑m
j=k e

�kjP44j − 15ã− u< V ≤ jã− u5+ e�k· F̄ 4nã− u5
du (44)

¡

¡�k
4�ä1x� − �̄4ä55= xk −

∫ kã

4k−15ã
�′

N

(

log
( n
∑

j=k

e�kjP44j − 15ã− u< V ≤ jã− u5+ e�k· F̄ 4nã− u5

))

·
e�k F̄ 4nã− u5

∑m
j=k e

�kjP44j − 15ã− u< V ≤ jã− u5+ e�k· F̄ 4nã− u5
du0 (45)

Define x∗ 2= 4�kj1�k5k=11 : : : 1n1 j=k1 : : : 1n. For x = x∗, it is straightforward to verify that ä∗ = 4�∗
kj1 �

∗
k·5, where

�∗
kj = 01 �∗

k· = �nã for k = 11 : : : 1 n, j = k1 : : : 1 n, satisfies (44) and (45). Since �ä1x�− �̄4ä5 is concave in ä, we
have

I4x∗5 = �ä∗1x∗
� − �̄4ä∗5

= �nã

n
∑

k=1

�k −

n
∑

k=1

∫ kã

4k−15ã
�N 4log4F 4nã− u5− F 44k− 15ã− u5+ e�nã F̄ 4nã− u555du

= �nã�
′

nã4�nã5−�nã4�nã5

= I∗0

Now since �ä1x� − �̄4ä5 is continuously differentiable in ä and x, by implicit function theorem, I4x5 is
continuous in x. This implies that

Iâ ≤ I4x∗
+â5→ I4x∗5= I∗

as â → 0. Together with (42) and (43) gives the conclusion. �
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Theorems 4.1 and 4.2 together imply both the asymptotic optimality of Algorithm 2 and the large deviations of
the loss probability:

Proof of Theorem 2.1. Note that by Jensen’s inequality

Pr4�s < �A5
2
≤ 4ErNA5

2
≤ Ẽr 6N

2
AL

270

Hence using Theorems 4.1 and 4.2 yields

−2I∗
≤ lim

s→�

1
s

logPr4�s < �A5
2
≤ lim

s→�

1
s

log4ErNA5
2
≤ lim

s→�

1
s

log Ẽr 6N
2
AL

27≤ −2I∗0

Combining Proposition 2.1, we conclude that the steady-state loss probability given by (7) decays exponentially
with rate I∗ and that Algorithm 2 is asymptotically optimal. �

5. Logarithmic estimate of return time. In this section we will lay out the argument for Proposition 2.1. The
first step is to reduce the problem to a GI/G/� calculation. Define x4t5 2= sup8y2 Q�4t1 y5 > 09 as the maximum
residual service times among all customers present at time t.

Lemma 5.1. We have �A ≤ � ′
A where

� ′

A 2= inf8t ∈ 8ã12ã1 : : : 92 x4t − u5≤ l1 Q�4w5 < s for w ∈ 6t − u1 t7 for some u> l1 Q�4t1 ·5 ∈ J 4 · 59

for any l > 0.

Proof. The way we couple the GI/G/� system implies that at any point of time the number of customers in
the GI/G/s system is at most that of the coupled GI/G/� system (in fact, the served customers in the GI/G/s
system is a subset of those in GI/G/�). Suppose at time t − u we have Q�4t − u5 < s and x4t − u5 < l. Then
Q�4w5 < s for w ∈ 6t − u1 t7 means that all the arrivals in this interval are not lost; i.e., they all get served in both
the GI/G/� and the GI/G/s system. Since x4t − u5≤ l, all the customers present at time t come from arrivals
after time t − u. This implies that Q4t1 ·5≡Q�4t1 ·5. Hence the result of the lemma. �

The next step is to find a mechanism to identify the instant t − u and set an appropriate value for l so that � ′
A is

small. We use a geometric trial argument. Divide the time frame into blocks separated at T0 = 01 T11 T21 : : :
in such a way that (1) a “success” in the block would mean � ′

A is reached before the end of the block and
(2) 8Wu1 Ti <u≤ Ti+191 i = 0111 : : : are roughly independent, where Wu = 4Q4u1 ·51B4u55 is the system status
representation defined in §2.2. We then estimate the probability of “success” in a block and also the length of a
block to obtain a bound for � ′

A.
At this point let us also introduce a fixed constant t0 and state the following result:

Lemma 5.2. For any fixed t0 > 0,

P

(

Q̄�4t1 y5 ∈

(

�s
∫ t+y

y
F̄ 4u5du±

√
sC1�4y5

)

for all t ∈ 601 t071 y ∈ 601�5

∣

∣

∣

∣

B405
)

≥C2 > 0 (46)

and

P

(

Q̄�4t1 y5y

(

�s
∫ t+y

y
F̄ 4u5du±

√
sC1�4y5

)

for some t ∈ 601 t071 y ∈ 601�5

∣

∣

∣

∣

B405
)

≥C3 > 0 (47)

for large enough C1 > 0 and some constants C2 and C3, all independent of s, uniformly for all initial age B405.
�4y5 is defined in (11).

To prove this lemma, the main idea is to consider the diffusion limit of Q�4t1 y5 as a two-dimensional Gaussian
field and then invoke the Borell-TIS inequality (Adler [1]). By Pang and Whitt [21] we know

Q�4t1 y5−�s
∫ t+y

y
F̄ 4u5du

√
s

⇒ R4t1 y5

in the space DD601�5601�5, where
R4t1 y5 2=R14t1 y5+R24t1 y5 (48)
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is a two-dimensional Gaussian field given by

R14t1 y5 2=
∫ t

0

∫ �

0
I4u+ x > t + y5dK4u1x5 (49)

and
R24t1 y5 2=

√

�c2
a

∫ t

0
F̄ 4t + y− u5dW4u51 (50)

where W4 · 5 is a standard Brownian motion, and K4u1x5 2=W4�u1F 4x55−F 4x5W4�u115 in which W4 · 1 · 5 is a
standard Brownian sheet on 601�5× 60117. W4 · 5 and K4 · 1 · 5 are independent processes. ca is the coefficient of
variation, i.e., ratio of standard deviation to mean, of the interarrival times in the base system defined in §2.1.

The key step is then to show an estimate of this limiting Gaussian process:

Lemma 5.3. Fix t0 > 0. For i = 112, we have

P4�R4t1 y5� ≤C∗�4y5 for all t ∈ 601 t071 y ∈ 601�55 > 0

for a well-chosen constant C∗ > 0, where R4 · 1 · 5 and �4 · 5 are defined in (48), (49), (50) and (11).

This lemma relies on the Borell-TIS inequality on the Gaussian process Ri4t1 y5 for i = 112. The verification of
the conditions for the application of such inequality are tedious but routine and hence will be deferred to the
appendix. Here we provide a brief outline of the arguments: For i = 112,

Step 1: Define a di-metric (in fact a pseudo metric)

di44t1 y51 4t
′1 y′55 2=E4R̃i4t1 y5− R̃i4t1 y55

2

where R̃i4t1 y5 2=Ri4t1 y5/�4y5. Show that the domain 601 t07× 601�7 can be compactified under this (pseudo)
metric.

Step 2: Use an entropy argument (see for example Adler [1]) to show that E supS R̃i4t1 y5 <�. In particular,
R̃i4t1 y5 is a.s. bounded over S.

Step 3: Invoke the Borell-TIS inequality; i.e., for x ≥E supS R̃i4t1 y5,

P

(

sup
S

R̃i4t1 y5≥ x

)

≤ exp
{

−
1

2�2
i

(

x−E sup
S

R̃i4t1 y5

)2}

where
�2
i 2= sup

S

ER̃i4t1 y5
20

From these steps, it is straightforward to conclude Lemma 5.3. The rest of the proof of Lemma 5.2 is to show
the uniformity over U0 in the weak limit of Q̄� to R. This is done by restricting to the set U0 ≤ x for x =O41/s5
and using the light tail property of U0. The details are provided in the appendix.

We need one more lemma:

Lemma 5.4. Let Vk be r.v. with distribution function F 4 · 5 satisfying the light-tail assumption in (4). For any
p > 0, we have

E

(

max
k=11 : : : 1n

Vk

)p

=O4lp4n5
p5= o4n�51

where

lp4n5 2= inf
{

y2 np
∫ �

y
up−1F̄ 4u5du< �

}

(51)

for a constant � > 0 and � is any positive number.

Proof. Let F̄n4x5= P4maxk=11 : : : 1n Vk > x5. Note that

E

(

max
k=11 : : : 1n

Vk

)p

= p
∫ �

0
up−1F̄n4u5du≤ yp + np

∫ �

y
up−1F̄ 4u5du

for any y ≥ 0. Pick y = lp4n5. Then

E

(

max
k=11 : : : 1n

Vk

)p

=O4lp4n5
p50

Using (5) we have O4lp4n5
p5=O4n�5 for any � > 0. �
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We are now ready to prove Proposition 2.1, for which we need the following construction. Pick � = 1/t0 where
� is introduced in (11) and �4y5 is defined in (10). Recall C1 as in Lemma 5.2. Define Ti, i= 011121 : : : as
follows: Given Ti−1, define

v4s5 2= inf
{

y2
√
sC1�4y5 < 1/2

}

z 2= inf8kt02 k = 1121 : : : 1 kt0 ≥ v4s5+ã9

xi 2= x4Ti−15

wi 2= inf8kt01 k = 1121 : : : 2 kt0 ≥ xi9

di 2= ANs4Ti−1+Si5+1 − 4Ti−1 + Si5 i.e., di is the time of the first arrival after Ti−1 + Si

Ti 2= Ti−1 +wi +di + z0

Note that wi and z are multiples of t0. For convenience define, for u < t, Q̄�
u 4t1 y5 2= Q̄�4u+ t1 y5− Q̄�4u1 t+y5 as

the number of arrivals after time u that have residual service time larger than y at time u+ t. We define a “success”
in block i to be the event �i that all of the following occur: (1) Q̄�

Ti−1+4k−15t0
4t1 y5 ∈ 4�s

∫ t+y

y
F̄ 4u5du±

√
sC1�4y55

for all t ∈ 601 t07, for every k = 1121 : : : 1wi/t0. (2) di ≤ c/s for a small constant c > 0. (3) Q�

Ti−1+wi+di+4k−15t0
4t1 y5 ∈

4�s
∫ t+y

y
F̄ 4u5du±

√
sC1�4y55 for all t ∈ 601 t07, for every k = 1121 : : : 1 z/t0.

Roughly speaking, �i occurs when the GI/G/� system behaves “normally” for a long enough period so that
Q�4t5 keeps within capacity for that period and the steady-state confidence band J 4 · 5 is reached at the end. More
precisely, starting from Ti−1 and given x4Ti−15, Ti−1 +wi is the time when all customers in the previous block have
left. Adjusting for the age at time Ti−1 +wi, starting from Ti−1 +wi + di, z is a long enough time so that the system
would fall into J 4 · 5 if it behaves normally in each steps of size t0 throughout the period. It can be seen by summing
up the interval boundaries that the occurrence of �i ensures � ′

A is reached during the last ã units of time before Ti.

Proof of Proposition 2.1. We first check that the occurrence of event �i implies that � ′
A is reached during

the last ã units of time before Ti. As discussed above, since wi ≥ xi, all the customers at time Ti−1 +wi will be
those arriving after time Ti−1. Hence the occurrence of �i implies that

Q�4Ti−1 +wi1 y5

∈

(

�s
wi/t0
∑

k=1

∫ kt0+y

4k−15t0+y
F̄ 4u5du±

√
sC1

wi/t0
∑

k=1

�44k− 15t0 + y5

)

⊂

(

�s
∫ wi+y

y
F̄ 4u5du±

√
sC1

[

�4y5+
1
t0

∫ �

y
�4u5du

])

⊂

(

�s
∫ wi+y

y
F̄ 4u5du±

√
sC1�4y5

)

(52)

and

Q�4Ti−1 +wi +di1 y5 ∈

(

�s
∫ wi+di+y

di+y
F̄ 4u5du±

√
sC1�4di + y5

)

0

For each t ∈ 44k− 15t01 kt07, denote 6t7= t − 4k− 15t0, for k = 11 : : : 1 z/t0. Then

Q�4Ti−1 +wi +di + t1 y5

∈

(

�s
∫ t+y

y
F̄ 4u5du+�s

∫ wi+di+y+t

di+y+t
F̄ 4u5du

±
√
sC1

[wi/t0
∑

j=1

�44j − 15t0 +di + 4k− 15t0 + 6t7+ y5+ �4y5+

k
∑

j=2

�44j − 25t0 + 6t7+ y5I4k > 15
])

⊂

(

�s
∫ t+y

y
F̄ 4u5du+�s

∫ wi+di+y+t

di+y+t
F̄ 4u5du±

√
sC1

[wi/t0+k−1
∑

j=1

�44j − 15t0 + 6t7+ y5+ �4y5

])

⊂

(

�s
∫ t+y

y
F̄ 4u5du+�s

∫ wi+di+y+t

di+y+t
F̄ 4u5du±

√
sC1

[

2�4y5+
1
t0

∫ �

y
�4u5du

])

⊂

(

�s
∫ t+y

y
F̄ 4u5du+�s

∫ wi+di+y+t

di+y+t
F̄ 4u5du±

√
sC ′�4y5

)

1 (53)

where C ′ = 2C1 (which depends on �).
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It is now obvious that �i implies Q�4t5 < s for 6Ti−1 +wi1 Ti7. By the definition of v4s5, (52), and that
�s
∫ �

y
F̄ 4u5du is smaller and decays faster than

√
sC1�4y5 for y ≥ v4s5 when s is large, we get x4Ti−1 +wi5≤

v4s5≤ z. Let T̃i = sup8kã2 kã≤ Ti9 be the largest time before Ti such that A can possibly be hit in the ã-skeleton.
It remains to show that Q�4T̃i1 y5 ∈ J 4y5 to conclude that �i implies a hit on � ′

A.
From (53), for t ∈ 6Ti−1 +wi +di1 Ti7,

Q�4t1 y5 ∈

(

�s
∫ t−Ti−1+y

y
F̄ 4u5du−�s

∫ t−Ti−1−wi+y

t−Ti−1−wi−di+y
F̄ 4u5du±

√
sC ′�4y5

)

0

In particular,

Q�4T̃i1 y5 ∈

(

�s
∫ T̃i−Ti−1+y

y
F̄ 4u5du−�s

∫ T̃i−Ti−1−wi+y

T̃i−Ti−1−wi−di+y
F̄ 4u5du±

√
sC ′�4y5

)

=

(

�s
∫ �

y
F̄ 4u5du−�s

∫ �

T̃i−Ti−1+y
F̄ 4u5du−�s

∫ T̃i−Ti−1−wi+y

T̃i−Ti−1−wi−di+y
F̄ 4u5du±

√
sC ′�4y5

)

0 (54)

Now note that

�s
∫ �

T̃i−Ti−1+y
F̄ 4u5du+�s

∫ T̃i−Ti−1−wi+y

T̃i−Ti−1−wi−di+y
F̄ 4u5du≤ 2�s

∫ �

v4s5+y
F̄ 4u5du

and we claim that it is further bounded from above by
√
sC�4y5 for arbitrary constant C when s is large

enough, uniformly over y ∈ 601�5. In fact, we have v4s5≥ inf8y2 s
∫ �

y
F̄ 4u5≤ �9 for any �> 0 when s is large

enough. Now when
√
sC�4y5 < �/42�5, s

∫ �

v4s5+y
F̄ 4u5du≤ s

∫ �

y
F̄ 4u5du, which is smaller and decays faster than

√
sC�4y5 when s is large. When

√
sC�4y5≥ �/42�5, we have s

∫ �

v4s5+y
F̄ 4u5du≤ s

∫ �

v4s5
F̄ 4u5du≤ �/42�5. Picking

C∗ =C ′ +C where C∗ is defined in (9), we conclude that �i implies � ′
A is reached at T̃i.

Now let N 2= inf8i2 �i occurs9. Consider (suppressing the initial conditions), for any p > 0,

E4� ′

A5
p

=E

[ N
∑

i=1

4wi +di + z5

]p

=E

[

�
∑

i=1

4wi +di + z5I4N ≥ i5

]p

≤

(

�
∑

i=1

4E64wi +di + z5p3N ≥ i751/p

)p

≤

(

�
∑

i=1

4E4wi +di + z5pq51/4pq54P4N ≥ i551/4pr5

)p

(55)

where q, r > 0 and 1/q + 1/r = 1, by using Minkowski’s inequality and Holder’s inequality in the first and second
inequality, respectively.

For i = 2131 : : : , we have

E4wi +di + z5pq ≤ 64Ew
pq
i 51/4pq5

+ 4Ed
pq
i 51/4pq5

+ z7pq (56)

by Minkowski’s inequality again.
We now analyze E4wi +di + z5p for any p > 0. From now on C denotes constant, not necessarily the same

every time it appears. First note that

4Ed
p
i 5

1/p
≤ d4p5 2= sup

b≥0
4E6d

p
i � B4Ti−1 +wi5= b751/p

=
1
s

sup
b≥0

4E64U 0
− b5p � B0405= b751/p

=O

(

1
s

)

(57)

and z≤ v4s5+ã+ t0 = o4s�5 for any � > 0. The last equality of (57) comes from the light-tail assumption on U 0.
Indeed, since U 0 is light tailed, we have

exp
{

−

∫ x

0
hU 4u5du

}

= F̄U 4x5≤ e−cx
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for some c > 0, where hU 4 · 5 and F̄ 4x5 are the hazard rate function and tail distribution function, respectively, of
U 0. This implies that h4x5≥ c for all x ≥ 0. Then

sup
b≥0

P4U 0
− b > x �U 0 > b5= sup

b≥0
exp

{

−

∫ x+b

b
h4u5du

}

≤ e−cx

and so

sup
b≥0

E64U 0
− b5p � B0405= b7= sup

b≥0
p
∫ �

0
xp−1P4U 0

− b > x �U 0 > b5dx ≤ p
∫ �

0
xp−1e−cx dx <�0

For i = 1, w1 ≤ l4s5 + t0 = o4s�5 where l4s5 is defined in (14). Hence E4w1 + d1 + z5p ≤ 64Ew
p
1 5

1/p +

4Ed
p
1 5

1/p + z7p = o4s�5 for any � > 0.
Now

Ew
p
i ≤ E

[(

max
i=11 : : : 1Ns4Ti−15−Ns4Ti−25

Vi

)p]

= E

[

E

[(

max
i=11 : : : 1Ns4Ti−15−Ns4Ti−25

Vi

)p ∣
∣

∣

∣

Ns4Ti−15−Ns4Ti−25

]]

≤ CE6lp4Ns4Ti−15−Ns4Ti−255
p7 for some constant C =C4p5 and lp4 · 5 defined in (51)

≤ CE64Ns4Ti−15−Ns4Ti−255
�7 for constant C =C4p1 �5 (58)

for any � > 0, by Lemma 5.4. Pick � < 1. By Jensen’s inequality and the elementary renewal theorem, (58) is less
than or equal to

C4E6Ns4Ti−15−Ns4Ti−2575
�

=C4E6Ns4Ti−15−Ns4Ti−25 � Ti−1 − Ti−275
�

≤C4E6�̃s4Ti−1 − Ti−2575
� for some �̃ > �

=C�̃�s�4E6Ti−1 − Ti−275
�

=C�̃�s�4E6wi−1 +di−1 + z75�0 (59)

Let yi 2=E6wi +di + z7. We then have

yi =Cs�y�i−1 +d415
+ z0

By construction yi ≥ t0, and since v4s5= o4s�5, for any � > 0 we have

d415
+ z≤Cs�t�0 ≤Cs�y�i

for large enough s, uniformly over i. Hence

yi ≤Cs�y�i−1 +d415
+ z≤Cs�y�i−10

Now we can write

yi ≤ Cs�y�i−1 ≤Cs�4Cs�y�i−25
�
=C1+�s�+�2

y�
2

i−2

· · · ≤ 4C1/41−�5
∨ 15s�/41−�5y�

i−1

1 = o4s�5 (60)

for any �> 0 by choosing �, uniformly over i.
Therefore from (56), (59) and (60), we get

E4wi +di + z5pq = o4s�5 (61)

for any � > 0 uniformly over i.
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Now consider

P4N ≥ 15 = P4�c
1 5= 1 −P4�15

≤ 1 −P
(

d1 ≤ c/s
)

C
4w1+z5/t0
2

where C2 is defined in Lemma 5.2 and c is defined in the discussion of �i

≤ 1 − be−a4w1+z5

= 1 − be−o4s�5 (62)

for some constants a> 0 and 0 < b < 1 and any � > 0. Moreover, for i = 2131 : : : ,

P4N ≥ i5 = P4N ≥ i− 15P4�c
i−1 �N ≥ i− 15

≤ P4N ≥ i− 15E61 − be−a4wi−1+z5
�N ≥ i− 17

≤ P4N ≥ i− 1541 − be−a4E6wi−1 �N≥i−17+z55 (63)

by Jensen’s inequality and that the function 1 − be−a4·+z5 is concave.
Consider E6wi �N ≥ i7 for any i = 2131 : : : . We have

E6wi �N ≥ i7=E6E6wi � �
c
i−11wi−1 +di−1 + z7 �N ≥ i70 (64)

Now by singling out failure in the first trial of t0 (see the discussion on �i), we get

P4�c
i−1 �wi−1 +di−1 + z5≥C3

where C3 is defined in Lemma 5.2, uniformly over wi−1 +di−1 + z. Hence

C3E6wi � �
c
i−11wi−1 +di−1 + z7 ≤

∫

P4�c
i−1 �wi−1 +di−1 + z5E6wi � �

c
i−11wi−1 +di−1 + z7P4wi−1 +di−1 + z ∈ dx5

≤ Ewi1

which gives

E6wi � �
c
i−11wi−1 +di−1 + z7≤

Ewi

C3

uniformly over wi−1 +di−1 + z. Therefore, (64) is bounded from above by Ewi/C3.
From (59) and (60) we know that Ewi = o4s�5 for any � > 0, so (63) is less than or equal to

P4N ≥ i− 1541 − be−a4Ewi−1/C3+z55= P4N ≥ i− 1541 − be−o4s�55 (65)

for any � > 0 uniformly over i.
By (55), (62), (61), and (65) we get

E� ′

A
p

≤ o4s�5

(

�
∑

i=1

4P4N ≥ i551/4pr5

)p

≤ o4s�5

(

�
∑

i=1

41 − be−o4s�55i/4pr5
)p

≤ o4s�5
1

61 − 41 − be−o4s�551/4pr57p

≤ o4s�5eo4s
�50

Hence
1
s

logE� ′

A
p
≤

�

s
+

o4s�5

s
→ 0

as s → �. On the other hand, we pick A such that �A ≥ã and so

1
s

logE�p
A ≥

1
s

logãp
→ 00

Conclusion follows for (12).
For (13), note that NA ≤Ns4�A5≤Ns4�

′
A5 and ENs4t5

p =O4st5 since 41/s5 logEe�Ns4t5 → −�N 4�5t. Hence

ENs4�
′

A5
p
≤O4sp5E4� ′

A5
p

and the result follows from (12). �
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Table 1. Simulation results from crude Monte Carlo and importance sampler.

Crude Monte Carlo Importance sampler

s Estimate R.E. C.I. Estimate R.E. C.I.

10 0005318 000265 40005252100053845 0.05412 00130 40005084100057405
30 00003174 00111 4000030091000033385 0.003204 00570 4000023491000040605
60 700922 × 10−5 10388 4204847 × 10−51101700 × 10−45 602585 × 10−5 20258 4−305529 × 10−61102872 × 10−45

80 609444 × 10−7 40472 4−705904 × 10−71201479 × 10−65 405001 × 10−8 10879 4504365 × 10−91804565 × 10−85

100 0 N /A N /A 801178 × 10−10 20296 4−600511 × 10−111106841 × 10−95

120 0 N /A N /A 103025 × 10−10 40472 4−104237 × 10−101400286 × 10−105

Remark 5.1. The proof of Proposition 2.1 can be simplified when the service time has bounded support, say
on 601M7. In this case the GI/G/� system is “M +U0-independent”; i.e., W�

t , the state of the system at time t,
and W�

ANs 4t5+1+M , the state of the system at M time units after the first arrival since time t, are independent. As a
result we can merely set v4s5 2=M and xi 2=M for any i, and the same argument as above will apply.

6. Numerical example. We close this paper with a numerical example for GI/G/s. We set the interarrival
times in the base system to be Gamma41/211/25 so �= 1. For illustrative convenience we set the service times as
Uniform40115. Hence traffic intensity is 1/2. In this case, we can simply set C∗ = 1 and �4y5= sd4R4�1 y55∨C1 =
√

�
∫ �

y
F 4u5F̄ 4u5du+�c2

a

∫ �

y
F̄ 4u52 du∨C1 with C1 = 101 (note that �= 0, and we use a truncated �4y5; the

validity of this simpler choice than the one displayed in §2.5 can be verified from the arguments in §5 specialized
to the case of bounded service time). Also we choose ã= 1, �= c/s with c = 1, and T = 1054, which satisfies (24).
To test the numerical efficiency of our importance sampling algorithm, we compare it with crude Monte Carlo
scheme using increasing values of s; namely, s = 10, 30, 60, 80, 100, and 120.

As discussed in §3, since we run our importance sampler every time we hit set A, the initial positions of the
importance samplers are dependent. To get an unbiased estimate of standard error, we group the samples into
batches and obtain statistics based on these batch samples (see Asmussen and Glynn [5]). To make the estimates
and statistics comparable, for each experiment we run the computer for roughly 120 seconds CPU time and always
use 20 batches. In Table 1, we output the estimates of loss probability, the relative errors (ratios of sample standard
deviation to sample mean), and 95% confidence intervals for both crude Monte Carlo scheme and importance
sampler under different values of s.

When s is small we see that crude Monte Carlo performs slightly better than our importance sampler. However,
when s is greater than 80, importance sampler starts to perform better. When s is greater than 100, crude Monte
Carlo totally breaks down while our importance sampler still gives estimates that have encouragingly small relative
error.

We can also analyze the graphical depiction of the sample paths. Figures 5(a) and (b) are two sample paths run
by Algorithm 2, initialized at the mean of Q4t1 y5, i.e., �s

∫ �

y
F̄ 4u5du. Figure 5(a) is a contour plot of Q4t1 y5,

(a) Contour plot (b) Three-dimensional plot
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Figure 5. Plots of Q4t1 y5.
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whereas Figure 5(b) is a three-dimensional plot of another Q4t1 y5. As we can see, the number of customers (the
shading intensity along the t-axis) increases from time 0 to around 0.95 when it hits overflow in the contour plot.
Similar trajectory appears in the three-dimensional plot. These plots are potentially useful for operations manager
to judge the possibility of overflow over a finite horizon given the current state.

Acknowledgments. The authors are grateful to the referees for useful comments which improved the quality of the paper.
National Science Foundation support [Grant DMS 1320550, CMMI 1069064] for the first author, and National Security Agency
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Appendix A. Technical proofs.

A.1. Proof of Lemma 3.1. The domain of �t4 · 5 is easily seen to inherit from �N 4 · 5. Write

�t4�5=

∫ t

0
�N 4log4e� F̄ 4u5+ F 4u555du0

Note that
¡

¡�
�N 4log4e� F̄ 4u5+ F 4u555= �′

N 4log4e� F̄ 4u5+ F 4u555
e� F̄ 4u5

e� F̄ 4u5+ F 4u5

is continuous in u and �. Hence

�′

t4�5=

∫ t

0
�′

N 4log4e� F̄ 4u5+ F 4u555
e� F̄ 4u5

e� F̄ 4u5+ F 4u5
du

(see Rudin [25], p. 236, Theorem 9.42). Moreover, �′
N 4log4e� F̄ 4u5+F 4u555e� F̄ 4u5/4e� F̄ 4u5+F 4u55 is uniformly continuous in

u and a neighborhood of �, for any � ∈�. Hence �′
t4�5 is continuous in �. Also the strict monotonicity of �′

N 4 · 5 implies that
�′
t4�5 too is strictly increasing for any � > 0.
Following the same argument, we have

�′′

t 4�5=

∫ t

0

[

�′′

N 4log4e� F̄ 4u5+ F 4u555

(

e� F̄ 4u5

e� F̄ 4u5+ F 4u5

)2

+�′

N 4log4e� F̄ 4u5+ F 4u555
F 4u5F̄ 4u5e�

4e� F̄ 4u5+ F 4u552

]

du1

which is continuous in �.
Finally, note that as � ↗ �, �′

N 4log4e� F̄ 4u5+F 4u555e� F̄ 4u5/4e� F̄ 4u5+F 4u55↗ � for any u ∈ supp F̄ since �N 4 · 5 is steep.
By monotone convergence theorem we conclude that �t4 · 5 is steep.

A.2. Proof of Lemma 3.2. (i) Denote �4t5= �t for convenience. Since �′
t4 · 5 is continuously differentiable by Lemma 3.1,

by implicit function theorem, we can differentiate �′
t4�4t55= at with respect to t on both sides to get

�′

N 4log4e�4t5F̄ 4t5+ F 4t555
e�4t5F̄ 4t5

e�4t5F̄ 4t5+ F 4t5
+

∫ t

0

[

�′′

N 4log4e�4t5F̄ 4u5+ F 4u555

(

e�4t5F̄ 4u5

e�4t5F̄ 4u5+ F 4u5

)2

+�′

N 4log4e�4t5F̄ 4u5+ F 4u555
F 4u5F̄ 4u5e�4t5

4e�4t5F̄ 4u5+ F 4u552

]

du�′4t5= �F̄ 4t5

which gives

�′4t5

=
�F̄ 4t5−�′

N 4log4e�4t5F̄ 4t5+F 4t555e�4t5F̄ 4t5/4e�4t5F̄ 4t5+F 4t55
∫ t

0 6�
′′
N 4log4e�4t5F̄ 4u5+F 4u55544e�4t5F̄ 4u55/4e�4t5F̄ 4u5+F 4u5552 +�′

N 4log4e�4t5F̄ 4u5+F 4u55544F 4u5F̄ 4u5e�4t55/4e�4t5F̄ 4u5+F 4u55257du

≤00

The inequality holds because

gt4�5 2= �′

N 4log4e� F̄ 4t5+ F 4t555
e� F̄ 4t5

e� F̄ 4t5+ F 4t5
(66)

is nondecreasing in � and gt405= �F̄ 4t5 and �N 4 · 5 is nondecreasing and convex. Hence �4t5 is nonincreasing.
(ii) Since at ≥ 1 −�EV , �t ≥ �̄t where �̄t satisfies �′

t4�̄t5= 1 −�EV , well defined when t is small enough. Moreover,
it is easy to check that �′

t4�5 ≤ �′
N 4�5t for any �, t > 0 (either by the formula of �′

t and �′
N or by definition in terms

of the Gartner-Ellis limit). This implies that �′−1
t 4y5≥ 4�′−1

N 4y/t55 for any y in the domain. Putting y = 1 −�EV gives
�̄t ≥ �′−1

N 441 −�EV 5/t5. By steepness of �N we have �′−1
N 441 −�EV 5/t5↗ � as t ↘ 0. So �t ↗ � as t ↘ 0.
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(iii) Consider �′
t4�t5= at , or �t = �′−1

t 4at5. Now from (18) we have

�′

�4�5=

∫ �

0
�′

N 4log4e� F̄ 4u5+ F 4u555
e� F̄ 4u5

e� F̄ 4u5+ F 4u5
du

and that �′
�4�5 is increasing in �, by the same argument as in the proof of (1). Moreover, by monotone convergence we have

�′
t ↗ �′

� as t ↗ �.
By Billingsley [6], p. 287, or Resnick [23], p. 5, Proposition 0.1, we have �′−1

t → �′−1
� as t ↗ �. Moreover, since �′−1

t is
increasing over the compact interval 6�EV 117, the convergence is uniform. By Resnick [23], p. 2, this implies continuous
convergence, and hence �′−1

t 4at5→ �′−1
� 415, or �t → ��.

A.3. Proof of Lemma 3.3. (i) As in the proof of Lemma 3.2 Part i, denote �4t5= �t . Consider

d

dt
It = �4t5�F̄ 4t5+ �′4t5at −�′

t4�4t55�
′4t5−�N 4log4e�4t5F̄ 4t5+ F 4t555

= �4t5�F̄ 4t5−�N 4log4e�4t5F̄ 4t5+ F 4t555

since �′
t4�4t55= at . Note that ht4�5 2= �N 4log4e� F̄ 4t5+ F 4t555 is convex in � for any t ≥ 0 and so

ht4�4t55≥ ht405+h′

t405�4t51

which gives

�N 4log4e�4t5F̄ 4t5+ F 4t555≥ �F̄ 4t5�4t50

Hence 4d/dt5It ≤ 0 and so It is nonincreasing.
(ii) Write It = at�t −�t4�t5. By Lemma 3.2 Part iii, �t ↘ �� on 6��1 �T 7 for t ≥ T for some T > 0. Since �t4�5 is

increasing in �, by continuous convergence (see Resnick [23], p. 2), we have �t4�t5→ ��4��5. Hence It → I∗ defined in (19).
(iii) Note that in case V is supported on 601M7, it is easy to check that It = IM is the same for any t ≥M . Hence the

conclusion.

A.4. Proof of Lemma 3.4. (i) Following the spirit of the proof of Lemma 3.3 Part i, denote �̃4t5= �̃t for convenience and
consider

d

dt
Ĩt = �̃′4t541 −�EV 5−�′

N 4�̃4t55t�̃
′4t5−�N 4�̃4t55= −�N 4�̃4t55≤ 0

for small t, using �′
N 4�̃t5t = 1 −�EV . Hence the conclusion.

(ii) Consider �̃t = �′−1
N 441 − �EV 5/t5, well-defined by the strict monotonicity of �′

N . By steepness of �N we have
4�′−1

N 441 −�EV 5/t5↗ � as t ↘ 0. So �̃t ↗ � as t ↘ 0.
Now write

Ĩt = �̃t41 −�EV 5−�N 4�̃t5t = 41 −�EV 5

(

�̃t −
�N 4�̃t5

�′
N 4�̃t5

)

→ �

where the convergence follows from (2) and Part i.

A.5. Proof of Lemma 4.1. To prove Lemma 4.1, we first need the following analytical lemma:

Lemma A.1. Let hm2 D ⊂ �n → � be a sequence of monotone functions, in the sense that hm4x11 x21 : : : 1 xi−11 yi1

xi+11 : : : 1 xn5 is either nondecreasing or nonincreasing in yi fixing x11 : : : 1 xi−11 xi1 : : : 1 xn, for any i = 11 : : : 1 n. Moreover,
suppose D is compact. If hm → h pointwise, where h is continuous, then the convergence is uniform over D.

Proof. Since D is compact, continuity of h implies uniform continuity. Therefore, given � > 0, there exists � > 0 such that
�x1 − x2�< � implies �h4x15−h4x25�< �. Compactness of D implies that there is a finite collection of these �-balls to cover D.
Let 8N�4x59x∈E be such collection. Note that hm → h uniformly over E.

For any x = 4x11 : : : 1 xn5 ∈D, consider

�hm4x −h4x5� ≤ �hm4x5−hm4x̃5� + �hm4x̃5+h4x̃5� + �h4x̃5−h4x5�

where x̃ = 4x̃11 : : : 1 x̃n5 is chosen to be the closet point to x in E that satisfies the following: For i = 11 : : : 1 n, x̃i ≥ xi if h is
nondecreasing in the i-th component, and x̃i ≤ xi if h is nonincreasing in the i-th component.

By construction we have �h4x̃5−h4x5�< 2� and �hm4x̃5−h4x̃5�< � when m is large enough.
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Now

�hm4x5−hm4x̃5�

= hm4x̃5−hm4x5 by our choice of x̃ and monotonicity property of hm

≤ hm4x̃5−hm4 ˜̃x5 where ˜̃x is chosen to be the closet point to x in E that satisfies the following:

For i = 11 : : : 1 n, ˜̃xi ≤ xi if h is nondecreasing in the i-th component, and

˜̃xi ≥ xi if h is nonincreasing in the i-th component.

≤ �hm4x̃5−h4x̃5� + �h4x̃5−h4 ˜̃x5� + �hm4 ˜̃x5−h4 ˜̃x5�

≤ �+ 2�+ �

when m is large enough.
Combining the above, we have �hm4x5−h4x5� ≤ 7� for all x ∈D. Hence the conclusion. �
Proof of Lemma 4.1. For convenience write �s4�3w1 z1 t5 2= logEeQ̄

�
w1z6t1�7 and

�4�3w1 z1 t5 2=
∫ z

w
�N 4log4e� F̄ 4t − u5+ F 4t − u555du

defined for � ∈ 6��1 �T 7, t ≥ T and 0 ≤w ≤ z≤ t +� for some � > 0. We can extend the domain by putting �s4�3w1 z1 t5 2=
�s4�3w1 t +�1 t5 and �4�3w1 z1 t5 2= �4�3w1 t +�1 t5 for z > t +�, and �s4�3w1 z1 t5= �4�3w1 z1 t5 2= 0 for w > z.

Note that �s4�3w1 z1 t5 defined as such is nondecreasing in �, nonincreasing in w, nondecreasing in z, and nonincreasing in t.
Also, �s4�3w1 z1 t5→ �4�3w1 z1 t5 pointwise with �4�3w1 z1 t5 continuous. Hence the convergence is uniform over the compact
set � ∈ 6��1 �T 7 and 4w1 z1 t5 ∈ 601K +�7× 601K +�7× 601K7 by Lemma A.1, for any K > 0. By our construction we can
extend the set of uniform convergence to 4w1 z1 t5 ∈ 601�52 × 601K7.

We now choose K as follows. Given � > 0, there exists K > 0 such that for all t > K, z≤ t −K, we have

�4�3w1 z1 t5 =

∫ z

w
�N 4log4e� F̄ 4t − u5+ F 4t − u555du

=

∫ t−w

t−z
�N 4log4e� F̄ 4u5+ F 4u555du

≤

∫ �

K
�N 4log4e� F̄ 4u5+ F 4u555du

≤ C1�
∫ �

K
log41 + 4e� − 15F̄ 4u55du

≤ C2�
∫ �

K
F̄ 4u5du

< �

for some C1, C2 > 0, uniformly over � ∈ 6��1 �T 7. Hence for z≤ t−K, �s4�3w1 z1 t5≤ �s4�301 t−K1 t5→ �4�301 t−K1 t5 < �
uniformly over � ∈ 6��1 �T 7 and so ��s4�3w1 z1 t5−�4�3w1 z1 t5�< 3� for large enough s.

For z > t −K, we write

�s4�3w1 z1 t5=
1
s

logEe�Q̄
�
w1 t−K 6t1�7I4w<t−K5+�Q̄�

4t−K5∨w1z
6t1�7

1

which is bounded from above by

1
s

log4Ee�Q̄
�
w1 t−K 6t1�7I4w<t−K5E0e

�Q̄�
01 4z−t+K5∧4z−w5

6K1�7
5

= �s4�3w1 t −K1 t5I4w < t −K5+
1
s

logE0e
�Q̄�

01 4z−t+K5∧4z−w5
6K1�7

and bounded from below by

1
s

log4Ee�Q̄
�
01 t−K 6t1�7I4w<t−K5E00e

�Q̄�
01 4z−t+K5∧4z−w5

6K1�7
5

= �s4�3w1 t −K1 t5I4w < t −K5+
1
s

logE00e
�Q̄�

01 4z−t+K5∧4z−w5
6K1�7 (67)

where E06 · 7 denotes the expectation conditioned that a customer arrives at time 0 and is counted in Q̄�
01 4z−t+K5∧4z−w56t1�7,

whereas E006 · 7 denotes the expectation conditioned on delayed arrival with tail distribution (in the base system) given
by supb P4U

0 −b > x �U 0 −b5. Note that supb P4U
0 −b > x �U 0 >b5 is a valid tail distribution because of the light-tail

assumption on U 0. Indeed, it is obvious that supb P4U
0 − b > 0 � U 0 > b5= 1, and by the same argument following that of (57),

we have supb P4U
0 − b > x �U 0 > b5≤ e−cx → 0 for some c > 0. Moreover, it is obvious that supb P4U

0 − b > x �U 0 > b5 is
nonincreasing. Now by construction this tail distribution is stochastically at most as large as P4U 0 − b > x �U 0 >b5 for
any b ≥ 0, and hence (67). Note that 41/s5 logE0e

�Q̄�
01 4z−t+K5∧4z−w5

6K1�7 and 41/s5 logE00e
�Q̄�

01 4z−t+K5∧4z−w5
6K1�7 both converge to
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�4�301 4z− t +K5∧ 4z−w51K5 uniformly by the argument earlier (as a special case when t ≤K). Also we have shown that
�s4�3w1 t−K1 t5 converges to �s4�3w1 t−K1 t5 uniformly for t >K (as a special case when z≤ t−K and t >K). The
sandwich argument concludes the lemma. �

A.6. Proof of Lemma 4.2. Consider

1
s

logE exp
{ n
∑

k=1

( n
∑

j=k

�kjQ
�

4k−15ã1kã64j − 15ã1 jã7+ �k·Q
�

4k−15ã1kã6nã1�7

)}

=
1
s

logE exp
{ n
∑

k=1

( n
∑

j=k

�kj

Ns 4kã5
∑

i=Ns 44k−15ã5+1

I44j − 15ã< Vi +Ai ≤ jã5+ �k·

Ns 4kã5
∑

i=Ns 44k−15ã5+1

I4Vi +Ai >nã5

)}

=
1
s

logE
n
∏

k=1

Ns 4kã5
∏

i=Ns 44k−15ã5+1

( n
∑

j=k

e�kjP44j − 15ã< Vi +Ai ≤ jã5+ e�k· F̄ 4nã−Ai5

)

=
1
s

logE exp
{ n
∑

k=1

∫ kã

4k−15ã
hk4u5dNs4u5

}

where

hk4u5 2= log
( n
∑

j=k

e�kjP44j − 15ã< Vi + u≤ jã5+ e�k· F̄ 4nã− u5

)

0

Now

1
s

logE exp
{ n
∑

k=1

m
∑

w=1

hk4�kw5

[

Ns

(

4k− 15ã+
wã

m

)

−Ns

(

4k− 15ã+
4w− 15ã

m

)]}

≤
1
s

logE exp
{ n
∑

k=1

∫ kã

4k−15ã
hk4u5dNs4u5

}

≤
1
s

logE exp
{ n
∑

k=1

m
∑

w=1

hk4�̄kw5

[

Ns

(

4k− 15ã+
wã

m

)

−Ns

(

4k− 15ã+
4w− 15ã

m

)]}

where �kw 2= arg min8hk4u52 4k − 15ã + 4w − 15ã/m ≤ u ≤ 4k − 15ã + wã/m9 and �̄kw 2= arg max8hk4u52 4k − 15ã
+ 4w− 15ã/m≤ u≤ 4k− 15ã+wã/m9. The existence of �kw and �̄kw is guaranteed by the continuity of hk4 · 5, which is
implied by our assumption that Vi has density.

Letting s → � and by (3) we have

n
∑

k=1

m
∑

w=1

�N 4hk4�kw55
ã

m
≤ lim inf

s→�

1
s

logE exp
{ n
∑

k=1

∫ kã

4k−15ã
hk4u5dNs4u5

}

≤ lim sup
s→�

1
s

logE exp
{ n
∑

k=1

∫ kã

4k−15ã
hk4u5dNs4u5

}

≤

n
∑

k=1

m
∑

w=1

�N 4hk4�̄kw55
ã

m
0

By continuity of hk4 · 5 and �N 4 · 5, �N 4hk4 · 55 is Riemann integrable. Letting m→ � yields the conclusion.

A.7. Proof of Lemma 5.2 and 5.3. Our goal here is to prove Lemma 5.2, via Lemma 5.3. For convenience let
G4y5 2=

∫ �

y
F̄ 4u5du, so �4y5=G4y51/42+�5 where � is defined in (11). Note that by L’Hospital’s rule and Assumption (4), we

have

lim
y→�

yF̄ 4y5

G4y5
= lim

y→�

F̄ 4y5− yf 4y5

−F̄ 4y5
= lim

y→�
4yh4y5− 15= �0 (68)

As discussed before, the key step to show Lemma 5.2 is an estimate of the limiting Gaussian process given by Lemma 5.3.
The proof of this inequality takes three steps. We first consider the case when i = 1. The first step is to define a pseudo metric
(i.e., a distance function that satisfies all the axioms of a metric except that two distinguishable points can have zero distance)

d144t1 y51 4t
′1 y′55 2=E4R̃14t1 y5− R̃14t

′1 y′5521 (69)

where R̃14t1 y5 2=R14t1 y5/�4y5, and show that the domain is compact under this (pseudo) metric. For convenience we call (69)
the d1-metric. Then we can prove that the Gaussian process R̃14t1 y5 is a.s. bounded by an entropy argument. The third step
invokes Borell’s inequality.

For convenience let S 2= 601 t07× 601�5.
Before these steps, we need an estimate of the d1-metric:
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Lemma A.2. Let 4t1 y5 and 4t′1 y′5 be two points on S = 601 t07× 601�5. Also, let t1 = t ∨ t′ and y1 be the corresponding y

or y′, and similarly t2 = t ∧ t′ and y2 be the corresponding y or y′. Then

d144t1 y51 4t
′1 y′55 =

�

�4y52

∫ t2

0
F̄ 4t + y− u5F 4t + y− u5du+

�

�4y′52

∫ t2

0
F̄ 4t′ + y′

− u5F 4t + y− u5du

−
2�

�4y5�4y′5

∫ t2

0
4F̄ 4t + y− u5∨ F̄ 4t′ + y′

− u5− F̄ 4t + y− u5F̄ 4t′ + y′
− u5du

+
1

�4y15
2

∫ t1

t2

F̄ 4t1 + y1 − u5F 4t1 + y1 − u5du0 (70)

The proof of this lemma follows the approach in Lemma 5.1 of Krichagina and Puhalskii [20]. Hence we only sketch the
proof here:

Proof (Sketch). Recall that

R̃14t1 y5 2=

∫ t

0

∫ �

0 I4u+ x > t + y5dK4u1x5

�4y5
0

For a partition 8u0 = 01 u11 u21 : : : 1 uk9 of 601 t07, define

Ikt+y4u1 x5 2=
k
∑

i=1

I4u ∈ 4ui−11 ui75I4x > t + y− ui50

Let

R̃k
14t1 y5 2=

∫ t

0

∫ �

0 Ikt+y4u1 x5dK4u1x5

�4y5

be a discretized version of R̃14t1 y5. One can check that R̃k
14t1 y5 converges to R̃14t1 y5 in mean square as the mesh of the

partition goes to 0.
Now take 4t1 y5 and 4t′1 y′5 in S. Define t1 2= t ∨ t′ and y1 be the corresponding y or y′, and define t2 2= t ∧ t′ and y2 be the

corresponding y or y′. Also define k2 such that uk2
≤ t1 <uk2+1. Using (5.4) and (5.5) in Krichagina and Puhalskii [20], we

have

E4R̃k
14t1 y5− R̃k

14t
′1 y′552

=E

[(

∫ t2
0

∫ �

0 Ikt+y4u1 x5dK4u1x5

�4y5
−

∫ t2
0

∫ �

0 Ikt′+y′ 4u1 x5dK4u1x5

�4y′5

)2]

+E

[(

∫ t1
t2

∫ �

0 Ikt1+y1
4u1 x5dK4u1x5

�4y15

)2]

=
1

�4y52
E

[(

∫ t1

0

∫ �

0
Ikt+y4u1 x5dK4u1x5

)2]

+
1

�4y′52
E

[(

∫ t1

0

∫ �

0
Ikt′+y′ 4u1 x5dK4u1x5

)2]

−
2

�4y5�4y′5
E

[

∫ t2

0

∫ �

0
Ikt+y4u1 x5dK4u1x5

∫ t2

0

∫ �

0
Ikt′+y′ 4u1 x5dK4u1x5

]

+
1

�4y15
2
E

[(

∫ t1

t2

∫ �

0
Ikt1+y1

4u1 x5dK4u1x5

)2]

=
1

�4y52

k2
∑

i=1

�4ui − ui−15F̄ 4t + y− ui5F 4t + y− ui5+
1

�4y′52

k2
∑

i=1

�4ui − ui−15F̄ 4t
′
+ y′

− ui5F 4t
′
+ y′

− ui5

−
2

�4y5�4y′5

k2
∑

i=1

�4ui − ui−156F̄ 4t + y− ui5∨ F̄ 4t′ + y′
− ui5− F̄ 4t + y− ui5F̄ 4t

′
+ y′

− ui57

+
1

�4y15
2

k1
∑

i=k2+1

�4ui − ui−15F̄ 4t1 + y1 − ui5F 4t1 + y1 − ui5+ o415

which converges to (70) as the mesh goes to 0. �

Lemma A.3. We can compactify the space 601 t07× 601�7 with the d1-metric defined in (69).

Proof. Consider the mapping 4i1 tan5 2 601 t07× 601�/27→ 601 t07× 601�7, where i is the identity map. Here the domain is
equipped with the Euclidean metric, and the image is equipped with the d1-metric. We will show that the mapping 4i1 tan5 is
continuous and well-defined over its domain, including the points 4t1 x5 where x =�/2, and hence its image is compact.

Suppose first that 4t1 x5→ 4t∗1 x∗5 where x∗ 6=�/2. Since tan4 · 5 is continuous, and
∫ t+y

y
F̄ 4u5du and �4y5 are continuous in

t and y (under Euclidean metric), it is easy to see that d144t1 tan x51 4t∗1 tan x∗55→ 0 by using (70).
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We now show that d14 · 1 · 5 is still a (pseudo) metric when including the points 4t1 y5 with y = �. Define, for y′ = �, that

d144t1 y51 4t
′1 y′55

2=
�
∫ t2

0 F̄ 4t + y− u541 + F 4t + y− u55du

�4y52
+











�
∫ t

t′
F̄ 4t + y− u5F 4t + y− u5du

�4y52
if t > t′

0 if t ≤ t′

and d144t1 y51 4t
′1 y′55 2= 0 if y = y′ = �. It is straightforward to check that d14 · 1 · 5 is continuous at y′ = � by using (70)

(note that the second term of (70) goes to 0 since for y′ large enough it is less than or equal to �
∫ y′+t′

y′+4t′−t25
F̄ 4du5du/�4y′52 ≤

�G4y51−2/42+�5 → 0). Hence both the commutativity and triangle inequality hold also at y′ = �, which implies that d14 · 1 · 5
is a pseudo metric on 601 t07× 601�7. Now consider x∗ =�/2. It is now easy to see that d144t1 tanx51 4t∗1�55→ 0 as
4t1 x5→ 4t∗1�/25. �

Lemma A.4. E supS R̃14t1 y5 <�. In particular, R̃14t1 y5 is a.s. bounded over S.

Proof. We use C here to denote constants, not necessarily the same every time it appears. We carry out an entropy
argument (see, for example, Adler [1])

E sup
S

R̃14t1 y5≤K
∫ �

0
H1/24�5d� =K

∫ diam4S5/2

0
H1/24�5d�

where K > 0 is a universal constant; H4�5 2= logN4�5, with N4�5 the �-th order entropy of S, i.e., the minimum number of
�-balls (under d1-metric) to cover S; and diam4S5 is the diameter of S given by sup4t1y514t′1y′5∈S d144t1 y51 4t

′1 y′55.
Let 4t1 y5 and 4t′1 y′5 be two points on 601 t07× 601�7, and let t1, t2, y1, y2 be as defined in Lemma A.2. Note that from (70)

we have

d144t1 y51 4t
′1 y′55 ≤

�

�4y52

∫ t2

0
F̄ 4t + y− u5du+

�

�4y′52

∫ t2

0
F̄ 4t′ + y′

− u5du+
�

�4y15
2

∫ t1

t2

F̄ 4t1 + y1 − u5du

≤
�
∫ t+y

y
F̄ 4u5du

�4y52
+

�

�4y′52

∫ t′+y

y
F̄ 4u5du+

�

�4y15
2

∫ �t−t′ �+y1

y1

F̄ 4u5du

≤ �G4y5�/42+�5
+�G4y′5�/42+�5

+�G4y15
�/42+�5

≤ 3�G4y∧ y′5�/42+�5 (71)

which implies that diam4S5 is bounded.
Now pick any � > 0. Since G4 · 5 is continuous we can define G−14 · 5 to be the inverse of G4 · 5. From (71) we have

d144t1 y51 4t
′1 y′55 < � for y, y′ >G−144�/43�5542+�5/�5.

Now also note that we can write

d144t1 y51 4t
′1 y′55 = �

(

1
�4y52

−
1

�4y5�4y′5

)

∫ t2

0
F̄ 4t + y− u5F 4t + y− u5du

+�

(

1
�4y′52

−
1

�4y5�4y′5

)

∫ t2

0
F̄ 4t′ + y′

− u5F 4t′ + y′
− u5du

−
�

�4y5�4y′5

∫ t2

0
42F̄ 4t + y− u5∨ F̄ 4t′ + y′

− u5− 2F̄ 4t + y− u5F̄ 4t′ + y′
− u5

− F̄ 4t + y− u5F 4t + y− u5− F̄ 4t′ + y′
− u5F 4t′ + y′

− u55du

+
�

�4y15

∫ t1

t2

F̄ 4t1 + y1 − u5F 4t1 + y1 − u5du1

where the integral in the third term can be written as
∫ t2

0
42F̄ 4t + y− u5∨ F̄ 4t′ + y′

− u5− 2F̄ 4t + y− u5F̄ 4t′ + y′
− u5

− F̄ 4t + y− u5F 4t + y− u5− F̄ 4t′ + y′
− u5F 4t′ + y′

− u55du

=

∫ t2

0
42F̄ 4t + y− u5∨ F̄ 4t′ + y′

− u5− 2F̄ 4t + y− u5F̄ 4t′ + y′
− u5

− F̄ 4t + y− u5+ F̄ 4t + y− u52
− F̄ 4t′ + y′

− u5+ F̄ 4t′ + y′
− u525du

=

∫ t2

0
42F̄ 4t + y− u5∨ F̄ 4t′ + y′

− u5− F̄ 4t + y− u5− F̄ 4t′ + y′
− u5+ 4F̄ 4t + y− u5− F̄ 4t′ + y′

− u5525du

=

∫ t2

0
4�F̄ 4t + y− u5− F̄ 4t′ + y′

− u5� + 4F̄ 4t + y− u5− F̄ 4t′ + y′
− u5525du0
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Hence

d144t1 y51 4t
′1 y′55 ≤

2�
�4y∧ y′5

∣

∣

∣

∣

1
�4y5

−
1

�4y′5

∣

∣

∣

∣

+
�

�4y15
2
�t − t′�

≤
2�

�4y∧ y′5

F̄ 4ȳ5

G4ȳ51+1/42+�5
�y− y′

� +
�

�4y15
2
�t − t′�

where ȳ is between y and y′, by mean value theorem on 1/�4 · 5

≤
2�

G4y∧ y′544+�5/42+�5
�y− y′

� +
�

G4y∧ y′52/42+�5
�t − t′�

≤
�

G4y∧ y′544+�5/42+�5
42�y− y′

� + �t − t′�50

When at least one of y and y′ is less than or equal to G−144�/43�5542+�5/�5, we then get

d144t1 y51 4t
′1 y′55≤

344+�5/��44+2�5/�

�44+�5/�
42�t − t′� + �y− y′

�50

Hence we can fill up the space S by

N4�5=O

(

1
4� · �44+�5/�52

·G−1

((

�

3�

)42+�5/�))

=O

(

1
�442+�5/�

·G−1

((

�

3�

)42+�5/�))

number of �-balls. By (5) we get that G4y5≤C/y1/p for any p > 0, and so G−14�5≤C/�1/p. This gives

N4�5=O

(

1
�442+�5/�

·
1
�p

)

=O

(

1
�442+�5/�+p

)

and hence
∫ diam4S5

0
H1/24�5d� =O

(

∫ C

0

√

log
(

1
�

)

d�+C

)

<�0 �

Lemma A.5. The Borell-TIS inequality holds; i.e., for x ≥E supS R̃14t1 y5,

P

(

sup
S

R̃14t1 y5≥ x

)

≤ exp
{

−
1

2�2
1

(

x−E sup
S

R̃14t1 y5

)2}

where
�2

1 2= sup
S

ER̃14t1 y5
20

Proof. Note that

ER̃14t1 y5
2
=

�
∫ t

0 F̄ 4t + y− u5F 4t + y− u5du

�4y52
≤

�
∫ t+y

y
F̄ 4u5du

G4y52/42+�5
≤ �G4y5�/42+�5

and so
�2

1 = sup
S

ER̃14t1 y5
2
≤C

for some constant C. By Lemma A.4 R̃14t1 y5 is a.s. bounded and Borell-TIS inequality holds. �
We now carry out the same scheme for R24t1 y5. Let R̃24t1 y5 2=R24t1 y5/�4y5. Indeed it is straightforward to show that the

d2-metric of R̃24t1 y5 is given by

d244t1 y51 4t
′1 y′55 2= E4R̃24t1 y5− R̃24t

′1 y′552

= �c2
a

∫ t2

0

(

F̄ 4t + y− u5

�4y5
−

F̄ 4t′ + y′ − u5

�4y′5

)2

du+�c2
a

∫ t1

t2

(

F̄ 4t1 + y1 − u5

�4y15

)2

du (72)

where again t1 2= t ∨ t′, t2 2= t ∧ t′, and y1, y2 are the corresponding y or y′.

Lemma A.6. We can compactify the space S with the d-metric defined in (72).

Proof. For 4t1 y51 4t′1 y′5 such that y1 y′ 6= �, write

d244t1 y51 4t
′1 y′55

= �c2
a

(

∫ t2
0 F̄ 4t + y− u52 du

�4y52
+

∫ t2
0 F̄ 4t′ + y′ − u52 du

�4y′52
−

2
∫ t2

0 F̄ 4t + y− u5F̄ 4t′ + y′ − u5du

�4y5�4y′5

+

∫ t1
t2
F̄ 4t1 + y1 − u52 du

�4y15
2

)

and define, for y′ = �, that

d244t1 y51 4t
′1 y′55 2= �c2

a

∫ t

0

F̄ 4t + y− u52

�4y52
du

and d244t1 y51 4t
′1 y′55 2= 0 if both y1 y′ = �.
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Then d244t1 y51 4t
′1 y′55 is continuous at y′ = � since

∫ t2
0 F̄ 4t′ + y′ − u5du

�4y′52
≤

∫ t0+y′

y′ F̄ 4u5du

�4y′52
=G4y′5�/42+�5

→ 0

and

∫ t2
0 F̄ 4t + y− u5F̄ 4t′ + y′ − u5du

�4y5�4y′5
≤

√

∫ t2
0 F̄ 4t + y− u52 du

∫ t2
0 F̄ 4t′ + y′ − u52 du

�4y5�4y′5

≤

√

∫ t0+y

y
F̄ 4u5du

�4y52
·

√

√

√

√

∫ t0+y′

y′ F̄ 4u5du

�4y′52

≤ G4y5�/4242+�55G4y′5�/4242+�55

→ 00

If t′ > t, then
∫ t′

t
F̄ 4t′ + y′ − u52 du

�4y′52
≤

∫ t0+y′

y′ F̄ 4u5du

�4y′52
≤G4y′5�/42+�5

→ 00

Hence d24 · 1 · 5 is continuous at y′ = �. The rest follows as in the proof of Lemma A.3. �

Lemma A.7. E supS R̃24t1 y5 <�. In particular, R̃24t1 y5 is a.s. bounded over S.

Proof. From (72) we have the estimate

d244t1 y51 4t
′1 y′55

≤ 2�c2
a

(

∫ t

0

(

F̄ 4t + y− u5

�4y5

)2

du∨

∫ t′

0

(

F̄ 4t′ + y′ − u5

�4y′5

)2

du

)

+�c2
a

∫ t2

t1

(

F̄ 4t1 + y1 − u5

�4y15

)2

du

≤ 2�c2
a4G4y5�/42+�5

∨G4y′5�/42+�55+�c2
aG4y15

�/42+�50 (73)

On the other hand, using multivariate Taylor series expansion,

F̄ 4t + y− u5

�4y5
−

F̄ 4t′ + y′ − u5

�4y′5

≤ sup
t1 y

∣

∣

∣

∣

f 4t + y− u5

�4y5

∣

∣

∣

∣

�t − t′� + sup
t1 y

∣

∣

∣

∣

1
2 +�

F̄ 4t + y− u5F̄ 4y5

G4y51+1/42+�5
−

f 4y5

G4y51/42+�5

∣

∣

∣

∣

�y− y′
�

≤
C

G4y543+�5/42+�5
4�t − t′� + �y− y′

�5

and hence
d244t1 y51 4t

′1 y′55≤
C

G4y543+�5/42+�5
4�t − t′� + �y− y′

�5 (74)

where C are constants not necessarily the same every time they appear. With (73) and (74), the rest follows as in the proof of
Lemma A.4. �

Lemma A.8. The Borell-TIS inequality holds; i.e., for x ≥E supS R̃24t1 y5,

P

(

sup
S

R̃24t1 y5≥ x

)

≤ exp
{

−
1

2�2
2

(

x−E sup
S

R̃24t1 y5

)2}

where
�2

2 2= sup
S

ER̃24t1 y5
20

Proof. Note that

ER̃24t1 y5
2
=

�c2
a

∫ t

0 F̄ 4t + y− u52du

�4y52
≤

�c2
a

∫ t+y

y
F̄ 4u5du

G4y52/42+�5
≤ �c2

aG4y5�/42+�50

The rest follows as in the proof of Lemma A.5. �

Lemma 5.3 is now an immediate corollary of Lemma A.5 and A.8:
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Proof of Lemma 5.3.

P4�R4t1 y5� ≤C∗�4y5 for all t ∈ 601 t071 y ∈ 601�55

≥ P

(

sup
S

�R̃14t1 y5� + sup
S

�R̃24t1 y5� ≤C∗

)

≥ P

(

sup
S

�R̃14t1 y5� ≤
C∗

2

)

P

(

sup
S

�R̃24t1 y5� ≤
C∗

2

)

> 01

when C∗ is large enough, by the independence of R̃14 · 1 · 5 and R̃24 · 1 · 5 in the second inequality. �
With Lemma 5.3, we now prove Lemma 5.2.

Proof of Lemma 5.2. First consider (46). Take C1 = 3C∗ where C∗ is the constant in Lemma 5.3. We have

P

(

Q̄�4t1 y5 ∈

(

�s
∫ t+y

y
F̄ 4u5du±

√
sC1�4y5

)

for all t ∈ 601 t071 y ∈ 601�5

∣

∣

∣

∣

B405
)

≥ P

(

U0 ≤ x1 0 ∈

(

�s
∫ t+y

y
F̄ 4u5du±

√
sC1�4y5

)

for t ∈ 601U071 y ∈ 601�51

Q̄�4t1 y5 ∈

(

�s
∫ t+y

y
F̄ 4u5du±

√
sC1�4y5

)

for all t ∈ 6U01 t071 y ∈ 601�5

∣

∣

∣

∣

B405
)

0
(75)

Letting x = 1/4�s5, we will show that 0 ∈ 4�s
∫ t+y

y
F̄ 4u5du±

√
sC1�4y55 for t ∈ 601U07 and y ∈ 601�5 in the expression is

redundant. In fact, let m4s5= inf8
√
sC∗�4y5 <

1
2 9. When y =m4s5, �s

∫ t+y

y
F̄ 4u5du is less than 1 for large enough s, and when

y ≥m4s5, it decays faster than
√
sC1�4y5 <

1
2 (see Remark 2.1 for a similar argument). Hence 4�s

∫ t+y

y
F̄ 4u5du±

√
sC1�4y55

contains 0 when y ≥m4s5. When y <m4s5, the choice of x gives

�s
∫ t+y

y
F̄ 4u5du≤ �stF̄ 4y5≤ �sx = 1

for t ∈ 601U07 and U0 ≤ x. Hence 4�s
∫ t+y

y
F̄ 4u5du±

√
sC1�4y55 also contains 0 when y <m4s5.

In fact with the same choice of x, by similar argument we have 4�s
∫ t+y

y
F̄ 4u5du±

√
sC∗�4y55 contains only 0 for t ∈ 601U07

and y ≥m4s5, and that 0 ∈ 4�s
∫ t+U0+y

y
F̄ 4u5du±

√
sC1�4y55 for t ∈ 601U07 and y ≥m4s5. This will be useful later on in the

proof.
The same choice of x, and because F̄ 4 · 5 is decreasing, also guarantees that

�s
∫ t+U0+y

t+y
F̄ 4u5du≤ 2C∗

√
s�4y5 (76)

when s is large enough. In fact, when y = m4s5, �s
∫ t+U0+y

t+y
F̄ 4u5du is less than 1 when s is large enough, and when

y ≥m4s5 it decays faster than 2C∗

√
s�4y5. Hence the inequality (76) when y ≥m4s5. When y <m4s5, U0 ≤ x leads to

�s
∫ t+U0+y

t+y
F̄ 4u5du≤ 1, and hence the conclusion. Again this will be useful later on.

Hence (75) is greater than or equal to

P4U0 ≤ x � B4055P
(

Q̄�

0 4t1 y5 ∈

(

�s
∫ t+U0+y

y
F̄ 4u5du±

√
sC�4y5

)

for all t ∈ 601 t07

∣

∣

∣

∣

U0 ≤ x1B405
)

where Q̄�
0 4t1 y5 is independent of U0 and has the same distribution as Q̄�4t1 y5 with the first customer arriving at time 0.

For any U0 ≤ x, we have

P

(

Q̄�

0 4t1 y5 ∈

(

�s
∫ t+U0+y

y
F̄ 4u5du±

√
sC1�4y5

)

for all t ∈ 601 t071 y ∈ 601�5

)

≥ P

(

Q̄�

0 4t1 y5 ∈

(

�s
∫ t+U0+y

y
F̄ 4u5du±

√
sC1�4y5

)

for all t ∈ 601 t071 y ∈ 601m4s551

Q̄�

0 4t1 y5 ∈

(

�s
∫ t+y

y
F̄ 4u5du±

√
sC∗�4y5

)

for all t ∈ 601 t071 y ∈ 6m4s51�5

)

4since the interval
(

�s
∫ t+y

y
F̄ 4u5du±

√
sC∗�4y5

)

only contains 0 while

0 ∈

(

�s
∫ t+U0+y

y
F̄ 4u5du±

√
sC1�4y5

)

when y >m4s5 as discussed above5

≥ P

(

sup
y∈601m4s55

∣

∣

∣

∣

Q̄�
0 4t1 y5−�s

∫ t+y

y
F̄ 4u5du

√
s

∣

∣

∣

∣

+ sup
y∈601m4s55

�
√
s
∫ t+U0+y

t+y
F̄ 4u5du≤C1�4y51

Q̄�

0 4t1 y5 ∈

(

�s
∫ t+y

y
F̄ 4u5du±

√
sC∗�4y5

)

for all t ∈ 601 t071 y ∈ 6m4s51�5

)
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≥ P

(

∣

∣

∣

∣

Q̄�
0 4t1 y5−�s

∫ t+y

y
F̄ 4u5du

√
s

∣

∣

∣

∣

≤C∗�4y5 for all t ∈ 601 t071 y ∈ 601�5

)

(by (76))

→ P4�R4t1 y5� ≤C∗�4y5 for all t ∈ 601 t071 y ∈ 601�55 > 0

by Lemma 5.3. The convergence follows from the functional central limit theorem (see Pang and Whitt [21]) and that the set
8f 2 �f 4t1 y5� ≤C∗�4y5 for all t ∈ 601 t071 y ∈ 601�59 is a continuity set.

Lastly, since U 0 is light tailed, by the argument following (57) in the proof of Proposition 2.1, we have

inf
b≥0

P

(

U0 ≤
1
�s

∣

∣

∣

∣

B405= b

)

= inf
b≥0

P

(

U 0
− b ≤

1
�

∣

∣

∣

∣

U 0 > b

)

≥ 1 − e−c/� > 0

for some constant c > 0. Hence (46) holds. Inequality (47) is obvious since one can isolate any point inside S and the
projection of the process on the point will possess Gaussian distribution. For example, we can write

P

(

Q̄�4t1 y5y

(

�s
∫ t+y

y
F̄ 4u5du±

√
sC1�4y5

)

for some t ∈ 601 t071 y ∈ 601�5

∣

∣

∣

∣

B405
)

≥ P4U0 ≤ x5P

(

Q̄�

0 4t
∗1 y∗5≥ �s

∫ t∗+x+y∗

y∗

F̄ 4u5du+
√
sC1�4y

∗5

)

> 0

for any t∗ ∈ 601 t07 and y∗ ∈ 601�5. �
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