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Abstract

We analyze two non-work-conserving variations of the M/G/1 preemptive last-in first-out
(LIFO) queue with emphasis on deriving explicit expressions for the limiting (stationary)
distribution of workload. In the first model, we assume that preempted customers are
returned to the front of the queue with a new independent and identically distributed
service time. In the second, we assume they are returned to the front of the queue with
their original service time. Our analysis is based on queueing theory methods such as the
Rate Conservation Law, PASTA, regenerative process theory and Little’s Law (l = λw)
as well as some classic results about the standard (work-conserving) M/G/1 preemptive
LIFO model. Along the way, we obtain stability results as well as explicit expressions for
the limiting distribution of the service time found in service by an arrival. For the second
model we even derive the joint distribution of age and excess (remaining service time) of such
a service time, and they are quite different from what is found in standard work-conserving
models; in fact, we prove that the excess is stochastically larger than the age. For example,
in the M/M/1 case, they are independent exponentials but with different rates. We also
give heavy-traffic limits and tail asymptotics for stationary workload.
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1 Introduction

In this paper we consider two non-work-conserving variations of the M/G/1 preemptive LIFO
(PL) queue. As with the classic/standard (work-conserving) M/G/1 PL model, when a new
customer arrives they immediately bump out any customer in service and start service themself
with their own independent and identically distributed (i.i.d) service time, while the preempted
customer returns to the front of the queue. But in the classic model, the preempted cus-
tomer retains its remaining service time and thus the model is work-conserving; in particular,
the workload process is identical sample-path by sample-path to the standard first-in-first-out
(FIFO) M/G/1 model. In the two models we analyze here, the preempted customer either
receives a new i.i.d. service time (Model I), or retains its original service time (Model II), hence
losing any progress that had been made (workload thus makes a jump upward larger than just
the new arriving customer’s service time).

These two models were presented and analyzed in the recent paper of Asmussen and
Glynn [1] in which the focus was on determining the moments of sojourn time and estab-
lishing the stability conditions. They refer to Model I as ‘preemptive-repeat different’ (PRD)
and to Model II as ‘preemptive-repeat identical’ (PRI), and their methods of analysis involve
branching processes, Galton-Watson family trees and stochastic fixed point equations.

Our focus in the present paper, however, is on deriving the entire limiting (stationary)
distribution of workload. We do so by giving an explicit random variable representation for the
workload very much in the spirit of the classic Pollaczek-Khinichine formula for the standard
M/G/1 queue in which the limiting distribution of the workload is expressed as a geometric
sum of i.i.d. random variables endowed with the equilibrium (stationary excess) distribution of
service. (See for example, Pages 386-387 in [6]) As part of this we show that for both Models I
and II the limiting distribution of the number of customers in the system is geometric, and do
so by using a classic queueing method going back to [3].

But as we discover by explicitly computing them, the parameters of these geometric distri-
butions involves the entire distribution of service, not just its mean, and the distribution of the
i.i.d. random variables is not the equilibrium distribution, nor the stationary spread distribution
as found in the inspection paradox.

Along the way we also obtain (in two different ways) the stability results found in [1]–
but with more of a ‘queueing’ interpretation–as well as explicit expressions for the limiting
distribution of the service time found in service by an arrival. For Model II we even derive
the joint distribution of age and excess (remaining service time) of such a service time, and
discover that they are quite different from what is found in standard work-conserving models.
Our analysis is based on queueing theory methods such as Rate Conservation Law, PASTA,
regenerative process theory and Little’s Law (l = λw). We also present both heavy-traffic limits
and tail asymptotics for the stationary workload.

1.1 Basic M/G/1 model notation and set up

The M/G/1 queue has a Poisson point process of customer arrival times {tn : n ≥ 1} at rate λ,
and (independently) i.i.d. service times {Sn : n ≥ 1} brought by each customer distributed as
a general distribution G(x) = P (S ≤ x), x ≥ 0, where S denotes a generic such service time.
We assume that 0 < E(S) = 1/µ < ∞. T denotes a generic interarrival time distributed as
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exponential at rate λ, and then we define ρ
def
= λ/µ. (A priori all we can say about ρ is that

0 < ρ <∞).
The workload V (t) at time t is the sum of all whole or remaining service times in the system

at time t: the sum of any service times of customers in the queue plus the remaining service
time of the customer in service (if any). {V (t) : t ≥ 0} then denotes the workload stochastic
process; its sample paths are continuous from the right with left hand limits. V (tn−) denotes
the amount of work found in the system by the nth arrival, and V (tn+) is the amount of work
right after they arrive. For example, for work-conserving disciplines V (tn+) = V (tn−) + Sn.

The times at which an arrival finds the system empty, V (tn−) = 0, serve as regeneration
points with i.i.d. cycles. In the case when the cycle length distribution is proper and has finite
first moment–the positive recurrent case–we are ensured the existence of a (proper) limiting
(stationary) distribution of workload, and that is what we mean by stability in the present
paper. We let V denote a random variable with this distribution and can define the distribution
via w.p. 1 limits:

P (V ≤ x) = lim
t→∞

1

t

∫ t

0
I{V (s) ≤ x}, x ≥ 0. (1)

Because we are assuming Poisson arrivals we can use Poisson Arrivals See Time Averages
(PASTA) (see for example Theorem 6, Page 294 in [6]) to also express this distribution as a
w.p. 1 customer average:

P (V ≤ x) = lim
n→∞

1

n

n∑
j=1

I{V (tj−) ≤ x}, x ≥ 0. (2)

Of crucial importance in the present paper is computing

p0
def
= P (V = 0), (3)

which, because of PASTA, can be viewed as both the long-run proportion of time that the
system is empty and as the long-run proportion of arriving customers who find the system
empty. We can use the above limits to determine stability in advance: it is precisely the case
when p0 exists and satisfies 0 < p0 < 1 (we avoid the trivial case of p0 = 1).

For work-conserving M/G/1 models it is well known that 0 < p0 < 1 if and only if 0 < ρ < 1
in which case p0 = 1 − ρ, but in the present paper with non-work-conservation in play, we
will see that this does not hold in general. Moreover, in the work-conserving case workload
{V (t) : t ≥ 0} forms a Markov process, but it does not in the non-work-conserving models here.

2 PRD: Computing p0 and the distribution of V

We begin with the M/G/1 LIFO preemptive repeat-different queue (PRD). We recall this is the
preemptive LIFO model in which each time a customer in service is preempted, they go to the
front of the queue with a new i.i.d. service time S distributed as G.

Let Sr denote time-stationary remaining service time (of the customer, if any, in service);
we then observe that P (Sr = 0) = P (V = 0) = p0. Let Ŝr denote a random variable distributed
as Sr conditional on Sr > 0; (Sr | Sr > 0). From PASTA and the memoryless property of the
exponential distribution, the following lemma follows immediately.
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Lemma 2.1 For the M/G/1 PRD model

Ŝr
d
= (S − T | S > T ). (4)

We next compute E(Ŝr) = E(S − T | S > T ):

Lemma 2.2 For the M/G/1 PRD model

E(Ŝr) =

1
µ

1− E(e−λS)
− 1

λ
. (5)

Proof : We re-write

E(S − T | S > T ) =
E(S − T ;S > T )

P (S > T )
,

where the denominator is computed as 1−E(e−λS). To compute the numerator, we condition on
T = t, use the “integrate the tail” method for computing the expected value of a non-negative
random variable, and switch the order of integration via Fubini’s (Tonelli’s) Theorem:∫ ∞

0

∫ ∞
t

P (S > x)λe−λtdxdt =

∫ ∞
0

∫ x

0
P (S > x)λe−λtdtdx

=

∫ ∞
0

P (S > x)(1− e−λx)dx

= E

∫ S

0
(1− e−λx)dx

= E(S)− E
∫ S

0
e−λxdx

=
1

µ
− 1

λ
(1− E(e−λS))

Dividing the numerator by the denominator then yields the result.
We now derive a formula for p0. Using the Rate Conservation Law (RCL) (see for example

Theorems 5.5 and 5.6, Page 116 in [5]) with {X(t)} as the stochastic process {V (t)}, we obtain
the following proposition.

Proposition 2.1 When the M/G/1 PRD model is stable,

p0 =
1− 2ρ+ λE(Ŝr)

1− ρ+ λE(Ŝr)
. (6)

Proof : For X(t) = V (t), we have X ′(t) = −I{V (t) > 0} (right derivative) w.p. 1. Meanwhile,
jumps occur at customer arrival times {tj} at rate λ, but we break them up into two disjoint
streams (type 0 and 1, respectively): customers who find the system empty which arrive at rate

λ0
def
= λp0, and those that find the system busy who arrive at rate λ1

def
= λ(1− p0). This leads

to
P (V > 0) = λ0E

0(−J(0)) + λ1E
1(−J(1)), (7)
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where −J(0) denotes a jump amount (V (tj+)− V (tj−)) of type 0, and −J(1) denotes a jump
amount of type 1. We obtain E0(−J(0)) = E(S) and E1(−J(1)) = E(S1 + S2 − Ŝr) (where
S, S1 and S2 are i.i.d. distributed as G and independent of Ŝr).

Then Equation 7 becomes

1− p0 = ρp0 + 2ρ(1− p0)− λ(1− p0)E(Ŝr),

which solving for p0 yields Equation 6.

As a sanity check, using Equation 6 on the special case when G is exponential at rate µ
(the M/M/1 case), we know that Ŝr ∼ exp(µ) and hence λE(Ŝr) = ρ and Equation 6 yields
p0 = 1− ρ as it should. (And of course we must have that ρ < 1 in this special case.)

In fact, a little thought reveals that the M/M/1 PRD model has the property that although
the workload stochastic process {V (t) : t ≥ 0} does not have the same distribution as the
workload process of the standard M/M/1 (because the sample paths are not work-conserving
for PRD and can even take a jump downward), it does hold from the memoryless property of
the exponential distribution of service that for each fixed t, V (t) has the same distribution as
the standard M/M/1, and hence has the same limiting distribution; V is the same for both,
hence p0 is the same for both.

Remark 2.1 Equation 6 still remains valid for general renewal arrivals at rate λ except then
we no longer have a closed form expression for Ŝr: Equation 4 no longer holds in general. In
our use of RCL, Ŝr must have the stationary remaining service time distribution with respect
to customer arrivals finding the system busy.

Remark 2.2 Our use of RCL requires verifying a priori that all three of the following are finite
which they certainly are in our application: E|X ′| (since |X ′| ≤ 1), E(S) and E(|S1 +S2− Ŝr|)
(because G is assumed to have finite first moment in the model).

2.1 Relating p0 to the stability condition of PRD

Clearly, Equation 6 makes sense (proportion of time) only if the p0 it yields satisfies

0 ≤ p0 ≤ 1.

Putting aside null recurrence, we would require that 0 < p0 ≤ 1 to ensure stability/positive
recurrence of workload, and to avoid trivialities we thus would require that

0 < p0 < 1.

A little thought reveals (since ρ > 0) that this happens if and only if the numerator in Equation 6
is strictly positive:

1− 2ρ+ λE(Ŝr) > 0, (8)

which from Equation 4 is precisely

1− 2ρ+ λE(S − T | S > T ) > 0. (9)

5



From Equation 5 we have

λE(S − T | S > T ) = −1 +
ρ

1− E(e−λS)
, (10)

and hence the stability condition 9 becomes

E(e−λS) >
1

2
; (11)

we obtain the same condition as in Theorem 5 on Page 15 in [1], which asserts that the PRD
queueing model empties infinitely often if and only if

P (S < T ) = E(e−λS) ≥ 1

2
. (12)

(The case when equality holds corresponds to null recurrence.)
Furthermore, plugging Equation 10 back into the p0 formula in Equation 6 furnishes a closed

form solution for p0:

Proposition 2.2 For a stable M/G/1 PRD model

p0 =
2E(e−λS)− 1

E(e−λS)
. (13)

Remark 2.3 An alternative way of proving stability and deriving p0 is by creating a regular
(equivalent) FIFO M/G/1 queue (with a new service-time distribution different from the original
G) and showing stability. Observe that

τ = min{n ≥ 1 : Sn < Tn},

is (in distribution) the total number of times that a customer enters service before departing. It
has a geometric distribution with success probability P (S < T ) = E(e−λS), and hence expected
value

E(τ) =
1

E(e−λS)
.

τ−1 ≥ 0 then is the total number of times that a customer gets preempted. We thus can define
an effective service time denoted by S as the total amount of work required by a customer in
the system:

S d
= (S | S < T ) +

τ−1∑
j=1

(Tj | Tj < Sj),

where the S and T are independent of the i.i.d. {Tj} and {Sj} in the sum; each preemption
adds in another independent Tj conditional on Tj < Sj . The first piece is the final service time,
the one that did not get preempted. The second piece is the sum of all the preempted work
that was already processed. These effective service times are i.i.d. among customers and can
be viewed as “service times” to a standard FIFO M/G/1 queue with mean

E(S) = E(S | S < T ) + (E(τ)− 1)E(T | T < S),

and stability holds if and only if
λE(S) < 1.

Carrying out the computation yields that the condition is exactly as in Equation 11. Moreover,
when stable, p0 = 1− λE(S) for standard M/G/1 queues, and the computation yields exactly
the p0 as in Equation 13.
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2.2 An interesting PRD example

Consider the case when service times are a mixture of a point mass at 0 and an exponential at
rate 0.01:

S
d
= (0.99)δ0 + (0.01)exp(0.01).

Thus E(S) = 1 = µ, and ρ = λ.

Clearly, Ŝr
d
= exp(0.01) since the 0 ones are never found in service, and so E(Ŝr) = 100.

Thus Equation 6 becomes

p0 =
1− 2λ+ λ(100)

1− λ+ λ(100)
=

1 + 98λ

1 + 99λ
,

and we see that the system is stable for all values of λ and as λ→∞, p0 decreases monotonically
to 98/99. This is quite intuitive: any non-zero remaining service time that gets preempted is
replaced by a 0 service time 99% of the time; the faster the arrival rate, the more likely any
positive service time will be found by an arrival and get bumped out.

2.3 Deriving the distribution of V

With p0 in hand via Proposition 2.2, we now obtain an explicit random variable expression for
V . To prepare, let Q̂ denote a rv with a geometric distribution (with mass at 0) with success
probability p0:

P (Q̂ = n) = (1− p0)np0, n ≥ 0.

The rv Q̂ and the i.i.d. service time sequence {Sj} distributed as G, and the random variable
Ŝr (distributed as in Lemma 4), are taken as independent in what follows.

Proposition 2.3 For the stable M/G/1 PRD model,

(V | V > 0)
d
= Ŝr +

Q̂∑
j=1

Sj . (14)

Thus the distribution of V , FV , is a mixture

FV = p0δ0 + (1− p0)FV̂

where FV̂ denotes the distribution of (V | V > 0) given in Equation 14, and δ0 denotes the
point mass at 0.

Proof : The key to the proof is in recalling that for a regular M/G/1 PL queue, the stationary
number of customers NPL in system is geometric with success probability 1− ρ:

P (NPL = n) = ρn(1− ρ), n ≥ 0,

and we can still use the simple kind of proof going back to Fakinos in 1981([3], [4]) (In the
textbook [6], this is given nicely (guided along) as exercise 9-14 on Page 434.) We use the same
method of proof here, the only difference being that ρ is replaced by 1 − p0. Before doing so,
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let us see how this yields a proof to our Proposition. We let N here denote stationary number
in system for the PRD model. Assume that we have proved that

P (N = n) = (1− p0)np0, n ≥ 0. (15)

Given V > 0, the workload is equal to the work in queue (line) plus the (> 0) work in service
Ŝr. But the event {V > 0} is the same as {N ≥ 1}, and the distribution of the number in
queue is simply that of (N − 1 | N ≥ 1) which is exactly that of Q̂ given in our statement of
the proposition, the very same geometric distribution as N . But unlike the regular PL model,
the service times in queue are, under PRD, i.i.d. distributed as G. (And they are independent
of Ŝr.) Thus the work in queue is the second piece in our expression; Equation 14 is derived.

We now prove Equation 15 holds. We recall from PASTA that we can assume N is con-
structed as a customer-stationary distribution; the distribution found by an arriving customer
(denoted by C0) at arrival time t0 = 0 given that the system started at time −∞. We already
know that P (N ≥ 1) = P (V > 0) = 1 − p0. Now let us consider the event {N ≥ 2}. This
means that the arriving customer C0 found a customer C−k in service (who arrived in the past
at time t−k for some k ≥ 1) and C−k found a customer in service when they arrived. The
customers in the queue found by C0 upon arrival are precisely the same customers that C−k
found upon arrival at time t−k. But these events are independent because of the PL discipline
so we get P (N ≥ 2) = P (N ≥ 1)2 = (1 − p0)2. The proof continues similarly for any n ≥ 0,
with each customer independently having found the system busy thus obtaining our result that
P (N ≥ n) = (1− p0)n, n ≥ 1; Equation 15 is derived.

2.4 Heavy-traffic limits for stationary workload V

We now give a simple argument to characterize the asymptotic behavior of stationary workload
in the heavy-traffic regime. =⇒ denotes convergence in distribution, while

p
=⇒ denotes conver-

gence in probability in what follows. Here we consider a heavy-traffic regime analogous to how
it is considered for a regular (work-conserving) M/G/1 queue with G fixed (with tail denoted by
G(x), x ≥ 0) in which by letting λ ↑ µ (equivalently ρ ↑ 1) it holds that (1−ρ)V=⇒exp(α) (the
exponential distribution at rate α). In that classic case α−1 = E(Se) = E(S2)/2E(S), where
Se has density ge(x) = µG(x), the equilibrium (or stationary excess) distribution of G. For the
PRD model we replace 1 − ρ by p0 = p0(λ), from Equation 13 and consider what happens to
p0V as p0 → 0. Stability for PRD is that E(e−λS) > 1/2, and thus by increasing λ to the value
λ2 such that E(e−λ2S) = 1/2 results in p0 ↓ 0; heavy-traffic.

Theorem 2.1 Let λ2 > λ be the solution to E[e−λ2S ] = 1/2 (which exists by the monotone
convergence theorem). Then as λ ↑ λ2,

p0V=⇒exp(µ),

where µ−1 = E(S).

Proof : Let N(λ) denote the stationary number-in-system. By Proposition 2.3, N(λ) is a

geometric random variable with success probability p0(λ) = 2E(e−λS)−1
E(e−λS)

from Equation 13.

Since p0(λ) ↓ 0 as λ ↑ λ2, it is easily seen that

p0(λ)N(λ)=⇒exp(1), (16)
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as λ ↑ λ2. (Based on the fact that (1 − 1/a)a → e−1 as a → ∞.) Because p0 → 0, it follows

from Proposition 2.3 that we only need to consider V̂
d
= (V | V > 0) and we have

p0(λ)V̂ (λ)
d
= p0(λ)Sr(λ) + p0(λ)

N(λ)∑
i=1

Si (17)

But p0(λ)Sr(λ)
p

=⇒0 hence can be ignored. Indeed, take x > 0 arbitrary. Applying Markov’s
Inequality and using Lemma 5 gives

P (p0(λ)Sr(λ) > x) ≤ p0(λ)E[Sr(λ)]
1

x

= p0(λ)

(
1
µ

1− E(e−λS)
− 1

λ

)
1

x

≤ p0(λ)

(
1
µ

1− E(e−λS)

)
1

x

→ 0× 2/µ = 0,

as λ ↑ λ2.
Now to handle the second term, we write

p0(λ)

N(λ)∑
i=1

Si =

∑N(λ)
i=1 Si
N(λ)

p0(λ)N(λ), (18)

and note that because 1
n

∑n
i=1 Si

a.s.→ E[S] as n→∞ and N(λ)
p

=⇒∞ as λ ↑ λ2, we have∑N(λ)
i=1 Si
N(λ)

p
=⇒E[S] =

1

µ
, (19)

as λ ↑ λ2. Thus it follows from Equations 16 and 18 that

p0(λ)

N(λ)∑
i=1

Si =⇒ exp(µ)

2.5 Average sojourn time

Since N has a geometric distribution as explained in the proof of Proposition 2.3, we obtain
the time average number in system as

l = E(N) =
1− p0
p0

.
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Using our solution to p0 from Equation 13 then yields

l =
ρ

1− 2ρ+ λE(Ŝr)
=

1− E(e−λS)

2E(e−λS)− 1
= −1 +

E(e−λS)

2E(e−λS)− 1
.

From Little’s law (l = λw) we thus can also solve for average sojourn time w = l/λ:

w =
1

λ

[
−1 +

E(e−λS)

2E(e−λS)− 1

]
. (20)

Remark 2.4 In [1], the formula given for w in Proposition 6, Page 17 is incorrect as has been
confirmed by the authors (private communication). The error is only an algebraic one; carrying
out the computation as they suggest, one indeed obtains our Equation 20.

Remark 2.5 In all the PL models, the distribution of sojourn time W is identical to that
of a busy period. So Equation 20 is also the expected value of a busy period in the M/G/1
PRD case. Moreover, from PASTA, p0 is equal to the long-run proportion of arrivals who find
the system empty (hence begin a busy period, hence begin a regenerative cycle). Thus by
regenerative process theory,

p0 =
1

E(NB)
,

where NB denotes the number of customers served during a busy period. Using Proposition 2.2,
we thus can solve for E(NB) yielding

E(NB) =
1

p0
=

E(e−λS)

2E(e−λS)− 1
. (21)

3 PRI Model

We now consider the LIFO repeat-identical M/G/1 queue (PRI) as introduced in [1]. In this
model, whenever a customer is preempted, it retains its identical whole original service time S,
as opposed to a new i.i.d. one when it gets sent to the front of the queue. This model is more
complicated to analyze than PRD as we shall see, but we first give some preliminary results.

Once again we let V denote stationary workload, p0 = P (V = 0), and N denotes stationary
number in system. (We will solve for p0 later.)

One important distinction concerning assumptions is that:

We can and will assume without loss of generality that P (S > 0) = 1.
Why? Because any arriving customer with a 0 service time will pass through without
notice; they have no effect on anything, they will never get preempted. A customer
can be preempted only if S > 0 in which case, what gets placed back in queue (first
time of preemption) is an (S | S > 0) which remains the identical positive service
time forever after. In the PRD model, if S > 0, the customer if preempted gets
placed back in queue with a new i.i.d. copy distributed as G and hence will still have
the possibility of entering service later with a 0. Thus, for PRI: If P (S > 0) < 1,
then one can replace λ with λP (S > 0) and G with the conditional distribution of
(S | S > 0) reducing the model to assuming that P (S > 0) = 1.
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Unlike Ŝr for PRD in Proposition 6, deriving the distribution of such things for PRI appears
to be much more challenging, thus solving for p0 is less direct than for PRD. The difficulty is
that although Ŝr is of the form (S − T | T < S), the S here has a biased distribution (different
from G) since it may have been preempted in the past. (The more times it has already been
preempted, the more biased it is.) We also have the stationary age of the service found when
preempted; we denote it by B̂, and we have the sum of the two which is the whole service time
of the customer found in service when preempted (in stationarity),

Ŝ = B̂ + Ŝr. (22)

In stationarity, it is Ŝ that gets placed back in queue when preempted; it is biased and not
(in general) distributed as G. For the standard M/G/1 PL model, what gets placed back is
an i.i.d. copy of Ŝr distributed as the equilibrium distribution of service time, Ge, with density
ge(x) = µP (S > x), x ≥ 0. So, it might be tempting to “guess” that for PRI the distributions
of both B̂ and Ŝr are that of Ge and the distribution of Ŝ is that of the stationary spread
distribution of G found in the inspection paradox (if G has a density g(x), then the spread has
a density µxg(x)). This is not true. For example in the case when P (S = 1) = 1, the PRI
model is identical to the PRD model and hence Ŝr is distributed as (1 − T | T < 1) and B̂
is that of (T | T < 1), while Ge is the uniform distribution over (0, 1); all three are different.
(Ŝ = S = 1 is the spread but that is a triviality because the spread of a constant is itself).

3.1 Preliminary results

3.1.1 Solving for p0 via computing E(B̂)

Using RCL on workload V (t) similar to the derivation of Proposition 6 yields the following
equation

1− p0 = ρ+ λ(1− p0)E(B̂), (23)

where B̂ denotes the stationary age of the service time of the customer found in service by an
arrival. Age here refers to the amount of the service time that was already processed before
getting preempted by the arrival.

Solving for p0 yields

p0 =
1− ρ− λE(B̂)

1− λE(B̂)
. (24)

We now proceed to compute E(B̂) by first determining the distribution of the number of
times that an arrival enters service before completing service and departing.

Proposition 3.1 For a fixed service time S distributed as G, of an arriving customer, let
τ = τ(S) ≥ 1 denote the total number of times that it enters service before completion, hence
τ − 1 ≥ 0 denotes the total number of times it was preempted. Then conditional on S, the
distribution of τ is geometric with success probability e−λS and hence the expected total number
of times a job enters service is given by

E(τ) = E(eλS). (25)
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Proof : Let {Tn : n ≥ 1} denote i.i.d. exponential random variables at rate λ. By the memoryless
property of the exponential distribution in the Poisson arrival process, we have that each time
the service time enters service it will be preempted if, after an independent exponential (at rate
λ) amount of time, it is still in service, and thus

P (τ = 1) = P (S ≤ T1)
P (τ = n) = P (S > T1, . . . , S > Tn−1, S ≤ Tn), n ≥ 2.

Thus, conditional on S,

P (τ = n | S) = (1− e−λS)n−1e−λS , n ≥ 1,

the geometric distribution with success probability e−λS and hence

E(τ | S) =
1

e−λS
= eλS .

Finally
E(τ) = E(E(τ | S)) = E(eλS).

3.1.2 Computing the stationary mean and distribution of B̂ and determining sta-
bility

Recalling Equation 22 and the various definitions of B̂, Ŝ and Ŝr which are defined the same
here for PRI, let K = τ − 1 ≥ 0 denote the number of times that a service time S is preempted
as defined in Proposition 3.1. Then E(K) = E(eλS)− 1 from Proposition 3.1.

Note that if a service time S is preempted then, because of the Poisson arrival process and
the memoryless property of the exponential distribution, the age of the service time at that
point (how much service has been completed ) is an i.i.d. length Tj distributed as exponential
at rate λ conditional on Tj > S. Conditional on S, the Tj up to time τ are i.i.d.

From PASTA we know that time averages are the same as customer averages; for example
the time-stationary distribution of age in service at time t, B(t), is the same as the average

found by arriving customers; in particular w.p. 1 it holds that (for all non-negative measurable
functions f)

lim
t→∞

1

t

∫ t

0
f(B(s))ds = lim

n→∞

1

n

n∑
j=1

f(B(tj−)).

We let B denote stationary age, and thus B̂ = (B | B > 0).
To compute E(B̂), we focus on the customer average and let N1(n) denote the number of

arrivals out of the first n for which B(tj−) > 0, and consider the average

E(B̂) = E(B | B > 0) = lim
n→∞

1

N1(n)

N1(n)∑
j=1

B(tj−)I{B(tj−) > 0}. (26)

12



When the system is stable (actually in this case we only need assume that the long-run
departure rate equals the arrival rate λ thus ensuring that each customer completes service),
each arriving customer will be included in the limit in Equation 26 until they finally depart.

As explained in the proof of Proposition 3.1, we can thus take each customer alone with their
independent service time S and their own i.i.d. sequence of interarrival times {Tn} and sum
up their ages when preempted as if they form one regenerative cycle which ends at interarrival
time K = τ − 1. Doing this sequentially for the i.i.d. service times {Sn : n ≥ 1}, the cycles
are i.i.d. and thus can be used to form a regenerative process in discrete time (equivalently a
renewal reward process).

The sum over a cycle is the sum of the K ages T1 + · · ·+ TK (defined to be 0 if K = 0; the
service was not preempted.) The cycle length is K.

Using regenerative process theory, we thus can express, for any non-negative measurable
function f ,

E(f(B̂)) =
E
[∑K

j=1 f(Tj)
]

E(K)
. (27)

K is not a stopping but τ = K + 1 is;

τ = min{n ≥ 1 : Tn > S},

the first time that S completes service. Thus we can compute the numerator of E(f(B̂))
(expected sum over a cycle) using Wald’s equation and subtracting the last piece:

E
[ K∑
j=1

f(Tj)
]
= E(τ)E(f(T ))− E(f(Tτ )). (28)

For f(b) = b this then yields

E(B̂) =
1
λE(eλS)− E(Tτ )

E(eλS)− 1
. (29)

We next compute E(Tτ ) and obtain (on its own) a very interesting result:

Lemma 3.1

E(Tτ ) =
1

µ
+

1

λ
= E(S + T ). (30)

Proof : We re-write

E(Tτ ) =

∞∑
n=1

E(Tτ ; τ = n), (31)

where
E(Tτ ; τ = 1) = E(T1;T1 > S),

E(Tτ ; τ = n) = E(Tn ; Tn > S, Tn−1 < S, . . . , T1 < S), n ≥ 2.

But conditional on S, the Tj are i.i.d. and so conditional on S we have

E(Tτ ; τ = n | S) = E(T ;T > S | S)(1− e−λS)n−1, n ≥ 1.

13



Thus conditional on S, using Equation 31 yields (via a geometric series)

E(Tτ | S) = E(T ; T > S | S)
∞∑
n=1

(1− e−λS)n−1 = eλSE(T ;T > S | S). (32)

A quick calculation yields

E(T ;T > S | S) = Se−λS +
1

λ
e−λS ,

and hence

E(Tτ | S) = S +
1

λ
,

and the result then follows by taking expected values,

E(Tτ ) = E(E(Tτ | S)) =
1

µ
+

1

λ
.

Inserting Equation 30 into Equation 29 then yields

Proposition 3.2 For the M/G/1 PRI model

E(B̂) =
1

λ
−

1
µ

E(eλS)− 1
(33)

From Equation 33 for E(B̂) we plug it into to obtain

Proposition 3.3 For the M/G/1 PRI model

p0 = 2− E(eλS).

Stability 0 < p0 < 1 is thus
E(eλS) < 2.

(In particular, S must have a finite moment generating function in a neighborhood of 0.)

3.1.3 A FIFO M/G/1 proof of stability

Here, we proceed along the same lines of what is explained in Remark 2.3.

Proposition 3.4 The PRI model is stable if and only if E(eλS) < 2.

Proof : Let S denote the total amount of work required by a customer (arriving with i.i.d.
service time S ∼ G) during their sojourn time. Then

S d
= S +

K∑
j=1

Tj ,

that is, S itself plus all the ages added on due to preemption. This is the effective service
time of a customer and they are i.i.d. among customers. If we operate the system under FIFO

14



sequentially using these effective i.i.d. service times {Sn : n ≥ 1} for each Poisson arrival, we
have an ordinary FIFO M/G/1 queue with G distributed as S. The two pieces (S and the sum)
are not independent but we can still take the expected value:

E(S) = E(S) + E
[ K∑
j=1

Tj

]
.

We already computed the second piece (added on ages) when proving Proposition 3.2:

E
[ K∑
j=1

Tj

]
=

1

λ
E(eλS)− (

1

µ
+

1

λ
),

so by adding on E(S) = 1/µ yields

E(S) =
1

λ
E(eλS)− 1

λ
,

and hence
ρ

def
= λE(S) = E(eλS)− 1.

Recalling that a standard M/G/1 queue is stable if and only if ρ < 1, we get the result;
E(eλS)− 1 < 1 if and only if E(eλS) < 2.

As a final observation, we note that using Proposition 3.1 reveals a nice intuitive interpre-
tation of stability:

The PRI model is stable if and only if the expected number of times a customer is
preempted is strictly less than 1.

3.1.4 Computing the distribution of B̂

Using the same Wald’s equation method from Equation 28 we can determine the probability
distribution of B̂. For a fixed x ≥ 0 we use f(b) = I{b > x} to first compute the tail P (B̂ > x).
Then obtain the cdf via 1− P (B̂ > x). We also obtain the density, denoted by fB̂(x).

Proposition 3.5 For the M/G/1 PRI model, the cumulative distribution function (cdf), FB̂(x)

of B̂ is given by

FB̂(x) =
E(eλS)− e−λxE(eλS ;S > x)−G(x)

E(eλS)− 1
, x ≥ 0.

B̂ always has a density (it is always a continuous r.v.) given by

fB̂(x) =
λe−λxE(eλS ;S > x)

E(eλS)− 1
, x ≥ 0.
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Proof : From Equation 28, we have

P (B̂ > x) =
E
[∑K+1

j=1 I{Tj > x}
]
− P (Tτ > x)

E(K)
(34)

=
E(eλS)e−λx − P (Tτ > x)

E(eλS)− 1
. (35)

Similar to Equation 32 we obtain

P (Tτ > x) = E(eλSP (T > S, T > x | S)) (36)

= E(eλS(e−λSI{S > x}+ e−λxI{S ≤ x})) (37)

= P (S > x) + e−λxE(eλS ;S ≤ x). (38)

Since E(eλS) − E(eλS ;S ≤ x) = E(eλS ;S > x), when we subtract P (Tτ > x) in Equation 35
we obtain

P (B̂ > x) =
e−λxE(eλS ;S > x)− P (S > x)

E(eλS)− 1
.

Using FB̂(x) = 1− P (B̂ > x) then yields the cdf. Because of the presence of G(x) = P (S ≤ x)
in the cdf formula, it appears at first sight that we need G to have a density g(x) (so that we
can differentiate G) in order to obtain a density for B̂, so we will first assume that G has such
a density, just so as to quickly get the formula for fB̂(x) given in the Proposition, but then we
will show that the existence of g(x) is not required. Writing out

E(eλS ;S ≤ x) =

∫ x

0
eλsg(s)ds,

we observe its derivative with respect to x is eλxg(x) so fB̂(x) = F ′
B̂

(x) yields the density in our
Proposition. But this formula for the density does not contain g(x) in it. So we will integrate
our density formula for fB̂(x) and see that we always get back out our cdf formula thus proving
that the existence of a density for G is not required. That is, we will show that∫ x

0
fB̂(y)dy = FB̂(x);

equivalently that for c = E(eλS)− 1, that

c

∫ x

0
fB̂(y)dy = cFB̂(x).

To this end due to non-negativity, we use Fubini’s (Tonelli’s) Theorem via

16



∫ x

0
cfB̂(y)dy =

∫ x

0
λe−λyE(eλS)I{S > y}dy

= E(eλS
∫ x

0
λe−λyI{S > y})dy

= E(eλS
∫ min{x,S}

0
λe−λy)dy

= E(eλS(1− e−λmin{x,S}))

= E(eλS)− E(eλSe−λmin{x,S})

= E(eλS)− E(eλS ;S > x)− P (S ≤ x)

= cFB̂(x).

Interestingly, when G is exponential at rate µ (M/M/1 case), we get

fB̂(x) = µe−µx; (39)

B̂ is exponential at rate µ, the same as G. Hence E(B̂) = 1
µ .

As a check in general, it is easy to verify that Equation 33 can be derived using the density
in Proposition 3.5; ∫ ∞

0
xfB̂(x)dx =

1

λ
−

1
µ

E(eλS)− 1
.

The following holds using exactly the same proof given in Proposition 2.3 for the PRD
model:

Proposition 3.6 When stable, N has a geometric distribution with success probability p0:

P (N = n) = (1− p0)np0, n ≥ 0.

3.1.5 Computing E(Ŝ) and E(Ŝr) of a service time preempted from service

We also can also compute E(Ŝ) which represents the mean (in stationarity) of the total service
time found in service by a customer who preempts them.

Proposition 3.7 For the M/G/1 PRI model

E(Ŝ) =
E(SeλS)− 1

µ

E(eλS)− 1
(40)

Proof : We directly compute it as (similar to how we computed E(B̂), but no need to use
Wald’s equation):

E(Ŝ) =
E
[∑K

j=1 S
]

E(K)
.
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Conditioning the numerator on S yields it as

E(K | S)S = (eλS − 1)S = SeλS − S.

Taking expected values then dividing by E(K) = E(eλS)− 1 yields the result.
Finally since E(Ŝ) = E(B̂) + E(Ŝr) we can compute the mean remaining service time

E(Ŝr) = E(Ŝ)− E(B̂) using Equations 40 and 33:

Proposition 3.8 For the M/G/1 PRI model

E(Ŝr) =
E(SeλS)

E(eλS)− 1
− 1

λ
. (41)

When we apply Proposition 3.7 to the M/M/1 case, recalling Equation 39, we get

E(Ŝ) =
1

µ
+

1

µ− λ
,

which implies that

E(Ŝr) =
1

µ− λ
;

in particular, this shows that B̂ and Ŝr do not have the same distribution. We will determine
the distribution of Ŝr and even the joint distribution of (B̂, Ŝr) next.

3.2 Distributions of Ŝ, Ŝr and the joint distribution of (B̂, Ŝr)

Proposition 3.9 The cumulative distribution function (cdf) of Ŝ, FŜ(x) = P (Ŝ ≤ x) is given
by

FŜ(x) =
E(eλS ;S ≤ x)−G(x)

E(eλS)− 1
, x ≥ 0.

In particular, if G has a density g(x) then so does Ŝ and it is given by (via differentiation)

fŜ(x) =
g(x)(eλx − 1)

E(eλS)− 1
, x ≥ 0.

Proof :
Following the proof of Proposition 3.7, we can express

FŜ(x) =
E(E(K | S)I{S ≤ x})

E(eλS)− 1
, x ≥ 0.

The numerator becomes
E(eλS ;S ≤ x)−G(x);

the cdf follows. With density g(x),

E(eλS ;S ≤ x) =

∫ x

0
g(s)eλsds,
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thus differentiating the numerator yields

eλxg(x)− g(x) = g(x)(eλx − 1).

We now proceed to obtain the distribution of Ŝr and the joint distribution of (B̂, Ŝr).
G(x) = P (S > x), denotes the tail of G.

Proposition 3.10 The cumulative distribution function (cdf) of Ŝr, FŜr(x) = P (Ŝr ≤ x) is
given by

FŜr(x) =
eλxG(x) + E(eλS ;S ≤ x)− 1

E(eλS)− 1
, x ≥ 0.

Ŝr always has a density (it is alway a continuous r.v.) and it is given by

fŜr(x) =
λeλxG(x)

E(eλS)− 1
, x ≥ 0.

Proof : (Sketch) Here we follow the Wald’s equation method used in Proposition 3.2. We have

E(f(Ŝr)) =
E
[∑K

j=1 f(S − Tj)
]

E(K)
.

Using f(b) = I{b ≤ x} we have

P (Ŝr ≤ x) =
E
[∑K

j=1 I{S − Tj ≤ x}
]

E(K)
.

We note that conditional on S, the sum

K+1∑
n

f(S − Tn)

is a stopping time sum of i.i.d. random variables and hence has conditional (given S) expected
value

E(K + 1 | S)Ef(S − Tj | S) = eλSEf(S − Tj | S).

Taking expected values then subtracting E(f(S − Tτ )) then yields then numerator which we
then divide by E(K) = E(eλS)− 1. To obtain the density, we use the same trick that we used
in the proof of Proposition 3.5: We first assume that G has a density g(x) so as to obtain our
formula for the density fŜr(x) by differentiation, and then by integration, show that g(x) is not
required.

In the M/M/1 case, the above yields that Ŝr is exponential at rate µ− λ. Recalling that in
this case we also have that B̂ is exponential at rate µ, it begs the question of whether in this
M/M/1 case, Ŝr and B̂ are independent. We will answer that question in the affirmative next
by computing, in general, the joint distribution of (B̂, Ŝr).
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Proposition 3.11 For the M/G/1 PRI model,

P (B̂ > x, Ŝr > y) =
e−λxE(eλS ;S > x+ y)− eλyP (S > x+ y)

E(eλS)− 1
, x ≥ 0, y ≥ 0.

Thus, if G has a density g, then the joint density of (B̂, Ŝr) exists and is given by

f(B̂,Ŝr)(x, y) =
λeλyg(x+ y)

E(eλS)− 1
, x ≥ 0, y ≥ 0.

Proof : We again use the regenerative method and conditional Wald’s equation via the expres-
sion

P (B̂ > x, Ŝr > y) =
E
[∑K+1

n=1 I{Tn > x, S − Tn > y}
]
−P (Tτ > x, S − Tτ > y)

E(K)
.

First off, it is immediate that P (Tτ > x, S − Tτ > y) = 0 since by definition of τ it must
hold that Tτ > S which excludes Tτ < S − y. Thus the numerator conditional on S becomes

eλSP (x < T < S − y | S).

It must hold that S > x+ y or else P (x < T < S − y | S) = 0; thus we end up with

eλS(e−λx − e−λ(S−y))I{S > x+ y} = e−λxeλSI{S > x+ y} − eλyI{S > x+ y}.

Taking expected values and dividing by E(K) then yields the joint tail result.
To obtain the density we compute it as ∂

∂y
∂
∂xP (B̂ > x, Ŝr > y): Letting c = E(eλS)− 1, we

have (after a cancellation via −eλyg(x+ y) + eλyg(x+ y) = 0)

c
∂

∂x
P (B̂ > x, Ŝr > y) = −λe−λxE(eλS ;S > x+ y).

Then

− ∂

∂y
λe−λxE(eλS ;S > x+ y) = λeλyg(x+ y).

As the reader can check: using Propositions 3.10 and 3.5 (using the tail), it is confirmed
that P (B̂ > x) = P (B̂ > x, Ŝr > 0) and P (Ŝr > y) = P (B̂ > 0, Ŝr > y) as should be.
Moreover, as promised, in the M/M/1 case Proposition 3.11 yields

P (B̂ > x, Ŝr > y) = e−µx × e−(µ−λ)y;

B̂ and Ŝr are independent exponentials. (The stability condition for the M/M/1 PRI is easily
seen to be ρ < 1/2, i.e. λ < µ/2)

We now present some relationships between the tails of Ŝr and B̂.

Corollary 3.1 For a stable M/G/1 PRI model it holds that

P (Ŝr > x) = eλxP (B̂ > x), x ≥ 0, (42)

and hence

20



1. Ŝr is stochastically larger than B̂; that is,

P (Ŝr > x) ≥ P (B̂ > x), x ≥ 0.

2. If P (S > x) > 0 for all x, then

P (Ŝr > x)

P (B̂ > x)
→∞ as x→∞;

the tail of Ŝr is heavier the the tail of B̂.

Proof : Using Proposition 3.11 to compute the individual tails, we have

P (Ŝr > x) =
E[eλS ;S > x]− eλxP (S > x)

E(eλS)− 1
,

while

P (B̂ > x) =
e−λxE[eλS ;S > x]− P (S > x)

E(eλS)− 1
,

immediately yielding Equation 42, and from which the next two statements directly follow.

3.3 Ŝr for PRI can be heavy-tailed even though S must be light-tailed

Corollary 3.1 begs the question as to just how heavy the tail of Ŝr can be. Recall from Propo-
sitions 3.3 and 3.4 the stability condition for PRI, E(eλS) < 2. In particular S must be
light-tailed, by which we mean here that it has a finite moment generating function in a neigh-
borhood of the origin; in this case E(esS) < ∞, s ∈ (0, λ]. What about Ŝr? We give here an
example where E(eλS) < 2 but

E(esŜr) =∞, s > 0; (43)

Ŝr is heavy-tailed.
In what follows we let MX(s) = E(esX), s ≥ 0, denote the moment generating function of

a non-negative r.v. X, and we note that it can be computed in terms of the tail P (X > x) via∫ ∞
0

esxP (X > x)dx =
1

s
(MX(s)− 1). (44)

From Proposition 3.10, the density of Ŝr is given by

fŜr(x) =
λeλxP (S > x)

E(eλS)− 1
, x ≥ 0.

Thus using Equation 44 yields

MŜr
(s) = b(MS(s+ λ)− 1), (45)

where

b =
λ

(s+ λ)(E(eλS)− 1)
.
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This implies that we need, for our example, an S such that MS(λ) < ∞ but MS(λ + s) =
∞, s > 0. We consider density functions for S of the form

g(x) = c(p)e−λx(1 + x)−p, p > 1,

where c(p) is the normalizing constant, given explicitly by

c(p) = (p− 1)eλ
2/2.

It is immediate that with this type of g(x), it always holds that MS(λ) <∞ and MS(λ+ s) =
∞, s > 0. But we need to ensure stability, that is, find a value of λ such that

MS(λ) = c(p)

∫ ∞
0

(1 + x)−pdx = eλ
2/2 < 2.

We note that eλ
2/2 < 2 if and only if λ <

√
ln (4) ≈ 1.177.

Remark 3.1 By using the relation in Equation 45 and the fact that
P (B̂ > x) = e−λxP (Ŝr > x) (recall Corollary 3.1), it is straightforward to prove that MB̂(s) <

∞, s < λ; stationary age is always light-tailed. But interestingly, MB̂(λ) = 1 + λE(Ŝr), and
hence involves E(SeλS), from Proposition 3.8, and hence could be infinite: MB̂(λ) <∞ if and

only if E(Ŝr) <∞.

3.3.1 Expected sojourn time

As with the PRD model, we can use Little’s law (l = λw) to obtain expected sojourn time.

l = E(N) =
1− p0
p0

= λw, (46)

and hence that

w =
1

λ

[1− p0
p0

]
=
[ 1

2− E(eλS)
− 1
]
. (47)

We note that this formula (using different methods) was given as Theorem 2 on Page 6 in
[1] (Equation 2.8).

Remark 3.2 In all the PL models, the distribution of sojourn time W is identical to that of a
busy period. So Equation 47 is also the expected value of a busy period in the M/G/1 PRI case.
Moreover, from PASTA, p0 is equal to the long-run proportion of arrivals who find the system
empty (hence begin a busy period, hence begin a regenerative cycle). Thus by regenerative
process theory,

p0 =
1

E(NB)
,

where NB denotes the number of customers served during a busy period. Using Equation 3.3,
we thus can solve for E(NB) yielding

E(NB) =
1

p0
=

1

2− E(eλS)
. (48)
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3.4 Deriving the distribution of V for PRI

From Proposition 3.6, and Proposition 3.3 the stationary distribution of number in system N
is geometric with success probability p0 = 2 − E(eλS). A perusal of the standard M/G/1 PL
queue proof that we used to determine the geometric distribution property also yields that
conditional on N = n, the n service times (whole) are i.i.d. distributed as Ŝ = B̂ + Ŝr. So we
can extract from this a representation of stationary workload. In what follows the rv Q̂ and
the i.i.d. service times {Ŝj}, and the random variable Ŝr, are taken as independent (with their
distributions provided in Propositions 3.9 and 3.10) with Q̂ having a geometric distribution
(with mass at 0) and success probability p0 = 2− E(eλS).

Proposition 3.12 For the M/G/1 PRI model,

(V | V > 0)
d
= Ŝr +

Q̂∑
j=1

Ŝj . (49)

Thus the distribution of V , FV , is a mixture

FV = p0δ0 + (1− p0)FV̂

where FV̂ denotes the distribution of (V | V > 0) given in Equation 49.

From the above, we can now compute E(V ), for example, by utilizing the solved value of
p0 and the various expected value results and the fact that Q̂ is geometric:

E(V ) = (1− p0)
[
E(Ŝr) + E(Q̂)E(Ŝ)

]
.

= (E(eλS)− 1)
[ E(SeλS)

E(eλS)− 1
− 1

λ
+
[ 1

2− E(eλS)
− 1
][E(SeλS)− 1

µ

E(eλS)− 1

]]
.

For the M/M/1 case this becomes

E(V ) =
ρ

1− ρ

[ 1

µ− λ
+

ρ

1− 2ρ
(
1

µ
+

1

µ− λ
)
]
.

3.5 Heavy-traffic limits for stationary workload V

Here we include a result for PRI in the same spirit as in Theorem 2.1 but requiring more care in
its proof do to the additional complexity of stationary workload for PRI as compared to PRD.
Of importance too is the fact that unlike PRI, there may not be a solution λ2 > λ to p0(λ) = 0
(equivalently for PRI a solution to E(eλS) = 2); recall the counterexample given in Section 3.3.

Theorem 3.1 Suppose that there exists a λ2 > λ such that as λ ↑ λ2, E(eλS)→ E(eλ2S) = 2,
and that E(Seλ2S) <∞. Then as λ ↑ λ2

p0V=⇒exp(α),

where α−1 = E(Ŝ(λ2)) = E(Seλ2S)− 1/µ.
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Proof : The proof follows the same steps as in Theorem 2.1, while now using the workload
representation from Proposition 3.12, but there is additional complexity in establishing the
convergence in probability as in Equation 19 due to the fact that Ŝ = Ŝ(λ) depends on λ, and
iid copies of it are included in the sum; we need to establish∑N(λ)

i=1 Ŝi(λ)

N(λ)

p
=⇒ E(Ŝi(λ2)), (50)

as λ ↑ λ2.
To get around this, we first construct the rvs by using the inverse transform method from

simulation to couple them (see for example, Pages 37-38 in [2]): Let U,U1, U2 . . . denote iid
copies of Unif(0, 1) rvs (one can take, for example, as the probability space for a uniform U ,
the interval (0, 1) under Lesbesgue measure and take U(ω) = ω, the identity map). We use
the same U for constructing N(λ) for all λ < λ2, and we use Ui for constructing Ŝi(λ) for all
λ ≤ λ2. Then we re-write ∑N(λ)

i=1 Ŝi(λ)

N(λ)
=

∑N(λ)
i=1 Ŝi(λ2)

N(λ)
+A, (51)

where

A =
1

N(λ)

N(λ)∑
i=1

(Ŝi(λ2)− Ŝi(λ)),

the error term. If we can show that A converges to 0 in probability as λ ↑ λ2, hence can be
ignored, then in the right-hand side of Equation 51 the iid summands only depend on λ2, and
we get the result exactly as was done for the PRD case of Theorem 2.1. To this end, observe
that since N(λ) is independent of the iid Ŝi(λ2) − Ŝi(λ), we have (via first conditioning on
N(λ)) that

E(|A|) ≤ E(|Ŝ(λ2)− Ŝ(λ)|),

where Ŝ(λ2)− Ŝ(λ) denotes Ŝ1(λ2)− Ŝ1(λ).
It thus suffices to show that E(|Ŝ(λ2)− Ŝ(λ)|)→ 0.
We now note that from the coupling using the inverse transform method (and the fact that

from Proposition 3.9, it follows that Ŝ(λ) converges in distribution to Ŝ(λ2) as λ ↑ λ2), that
Ŝ(λ)→ Ŝ(λ2) wp1 as λ ↑ λ2, and thus |Ŝ(λ2)− Ŝ(λ)| → 0, wp1.

It thus suffices to show that the collection {|Ŝ(λ2) − Ŝ(λ)|} is uniformly integrable (in
λ ≤ λ2). We do so by noting further that

|Ŝ(λ2)− Ŝ(λ)| ≤ X(λ) = Ŝ(λ2) + Ŝ(λ),

and {X(λ)} is uniformly integrable: It is a non-negative collection such that X(λ)→ X(λ2) =
2Ŝ(λ2) wp1, and E(X(λ))→ E(X(λ2)) = 2E(Ŝ(λ2)) <∞ (finite by assumption).
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