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Introduction and Motivation

I We consider two variations of the M/G/1 preemptive
LIFO queue which are non-work-conserving: customers
do not retain their remaining service time when they are
preempted.
I Preemptive-repeat different (PRD): preempted

customers are put back in the front of the line and
assigned a new i.i.d. service time.

I Preemptive-repeat identical (PRI): preempted
customers are put back in the front of the line and
retain their original service time.

I Studied recently in a paper due to Asmussen and Glynn
via branching processes, Galton-Watson family trees,
and stochastic fixed point equations.
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Basic M/G/1 set-up

I Poisson point process of customer arrival times
{tn : n ≥ 1} at rate λ.

I Independent from the arrival process, each customer
brings i.i.d non-negative service times {Sn : n ≥ 1}
distributed according to some G (x) = P(S ≤ x), with
0 < E [S ] = 1/µ <∞.

I The workload process {V (t) : t ≥ 0} is defined as the
sum of the service times of all customers in the queue
plus the remaining service time of any customer in
service.

I The times at which an arrival finds the system empty,
V (tn−) = 0, serve as regeneration points with i.i.d.
cycles. So long as the cycle length distribution is proper
and has finite first moment, we are ensured the
existence of a limiting, stationary distribution of
workload, which we denote by V .
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Warm-up: an always-stable PRD queue

Take the service time distribution S = .99δ0 + .01exp(.01),
so the time-stationary remaining service time of a customer
found in service is Ŝr = exp(.01).

Then we will turn out to have p0 = 1−2λ+λ(100)
1−λ+λ(100) = 1+98λ

1+99λ , so
stability is ensured for all λ and as λ→∞, p0 decreases
monotonically to 98/99.
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PRD queue - a nice remark for the exponential
service time case

Suppose we take exponential service times. Then in both the
work-conserving PL and the non-work-conserving PRD
disciplines, the distribution of the service times of the
customers returned to the line are the same - exponential!
Hence, for each fixed t, the distributions of workload V (t) in
the two models coincide, though the stochastic processes
{V (t) : t ≥ 0} do not.
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PRD model results

Lemma (PRD Idle Time)

For a stable M/G/1 PRD model,

p0
d
= P(V = 0) =

2E [e−λS ]− 1

E [e−λS ]

Proof idea: Note that P(S < T ) = E [e−λS ]. Let Sr denote
time-stationary remaining service time of the customer in
service. Let Ŝr = (Sr | Sr > 0). Then

Ŝr
d
= (S − T | S > T )

This allows us to compute E [Ŝr ] = −1 + ρ
1−E(e−λS )

.

Now apply the Rate Conservation Law to {V (t)}, and you
too can solve for p0.
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PRD model results

Lemma (PRD Stability Condition)

An M/G/1 PRD queue is stable if and only if

E [e−λS ] > 1/2

Alternative proof: Construct an equivalent FIFO M/G/1
queue and show stability. τ = min{n ≥ 1 : Sn < Tn} is (in
distribution) the total number of times that a customer
enters service. It is a geom(P(S < T )) random variable.
Thus we can define an effective service time

S d
= (S |S < T ) +

τ−1∑
j=1

(Tj |Tj < Sj)

The stability condition for this queue is λE [S] < 1, and
carrying out the requisite computation leads to the exact
condition as above.
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PRD model results

Theorem (PRD Stationary Workload)

For the stable M/G/1 PRD model, let Q be a geometric
random variable with mass at 0 and parameter

p0 = 2E [e−λS ]−1
E [e−λS ]

. Then we have

(V |V > 0)
d
= Ŝr +

Q∑
j=1

Sj

and thus
FV = p0δ0 + (1− p0)FV̂
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Stationary workload proof idea

Proof idea: The same classical approach applied by Fakinos
in 81 to the work-conserving model works here. Let N
denote the time-stationary number-in-system. Then
P(N ≥ 1) = 1− p0. Now the event {N ≥ 2} means that the
arriving customer C0 finds a customer C−k in system, and
customer C−k found a customer as well. But these events
are independent because of the PL discipline, and hence
P(N ≥ 2) = P(N ≥ 1)2 = (1− p0)2.
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PRD heavy-traffic limit

Theorem (PRD Heavy-traffic limit)

Let λ2 > λ be the solution to E [e−λ2S ] = 1/2. Then as
λ ↑ λ2,

p0V −→ exp(µ),

where µ−1 = E (S).

Proof sketch: We write

p0(λ)V̂ (λ)
d
= p0(λ)Sr (λ) + p0(λ)

N(λ)∑
i=1

Si

First term goes to 0 by Markov’s, p0(λ)N(λ) −→ exp(1) is

standard, and WLLN gives 1/N(λ)
∑N(λ)

i=1 Si
p→ E [S ].
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PRD average sojourn time

Using Little’s law, we now have all the ingredients to
immediately arrive at the average sojourn time. It aligns
with that found in Asmussen and Glynn’s work, modulo a
small error.

W =
1

λ
L =

1

λ
E [geom(

2E [e−λS ]− 1

E [e−λS ]
)]

=
1

λ

[
−1 +

E (e−λS)

2E (e−λS)− 1

]
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Average number of customers served in a busy
period

In all preemptive LIFO models, the distribution of sojourn
time is identical to the distribution of the length of a busy
period, so the expression for the average sojourn time is
exactly the expected length of a busy period. Since by
PASTA p0 is the long-run proportion of customers who find
the system empty, we get by regenerative process theory that

p0 =
1

E [NB ]

where NB is the number of customers served during a busy
period. Hence we can compute

E [NB ] =
E [e−λS ]

2E [e−λS ]− 1
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PRI Model

Here we can assume WLOG P(S > 0) = 1: customers with
service times of 0 are never seen, they pass right through
and do not impact the model.
Thus if P(S = 0) > 0, we replace λ with λP(S > 0) and G
with the conditional distribution of (S |S > 0), reducing us
to the case where as assume S is almost surely positive.
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PRI Model

The analysis here is more difficult: though Ŝr is of the form
(S − T |T < S), the S here has a biased distribution. The
more times it has been preempted, the more biased it
becomes).
We will let B̂ denote the stationary age of the service found
when preempted, and summing this with Ŝr will give the
whole service time of the customer found in service when
preempted.

Ŝ = B̂ + Ŝr

In stationarity, it is this Ŝ which is placed back into the
queue when a customer is preempted.
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Applying the RCL to PRI

When we apply the RCL to the workload process, we
immediately arrive at the equation

1− p0 = ρ+ λ(1− p0)E [B̂]

And thus to solve for p0, it remains only to solve for E [B̂].
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The emergence of the MGF

Lemma (Distribution of the number of preemptions)

For a fixed service time S, let τ denote the number of times
it enters service before completion. Conditional on S, τ is a
geometric random variable with success probability e−λS ,
and hence E [τ ] = E [eλS ]

Proof sketch: Let {Tn : n ≥ 1} denote i.i.d. exponential
random variables at rate λ. Then we have

P(τ = 1) = P(S ≤ T1) = E [e−λS ]

P(τ = n) = P(S > T1, . . . ,S > Tn−1,S ≤ Tn)

Hence, conditioning on S furnishes

P(τ = n|S) = (1− e−λS)n−1e−λS
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Finding B̂

We can take each customer alone with their independent
service time S and their own i.i.d. sequence of interarrival
times {Tn} and sum up their ages when preempted as if
they form one regenerative cycle which ends at interarrival
time K = τ − 1. We can thus write, for any non-negative
measurable function f ,

E [f (B̂)] =
E [
∑K

j=1 f (Tj)]

E [K ]
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Finding B̂

K is not a stopping time - but τ = K + 1 is. Thus we can
compute the numerator by using Wald’s and subtracting the
last piece

E [
K∑
j=1

f (Tj)] = E [τ ]E [f (T )]− E [f (Tτ )]

Letting f (b) = b,

E [B̂] =
1
λE [eλS ]− E [Tτ ]

E [eλS ]− 1

And after computing E [Tτ ] = 1
µ + 1

λ , we can arrive at the
stability condition.
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PRI model results

Lemma (PRI Stability Condition)

The PRI model is stable if and only if E [eλS ] < 2.

Lemma (PRI Idle Time)

For a stable M/G/1 PRI model,

p0 = 2− E [eλS ]

Since the expected number of times a customer is preempted
is E [eλS ]− 1, we can interpret the stability condition as: the
PRI model is stable if and only if the expected number of
times a customer is preempted is strictly less than 1.
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CDF of B̂

Lemma

For the M/G/1 PRI model, the CDF of B̂ is as follows:

FB̂(x) =
E [eλS ]− e−λxE [eλS ;S > x ]− G (x)

E [eλS ]− 1

and B̂ is in fact always a continuous random variable, with
density

fB̂(x) =
λe−λxE [eλS ; S > x ]

E [eλS ]− 1
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CDF of Ŝ

Lemma

For the M/G/1 PRI model, the CDF of Ŝ is as follows:

FŜ(x) =
E [eλS ; S ≤ x ]− G (x)

E [eλS ]− 1

and if S has a density, then so does Ŝ and it is given by

fŜ(x) =
g(x)eλx − 1

E [eλS ]− 1
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CDF of Ŝr

Lemma

The cumulative distribution function (cdf) of Ŝr ,
FŜr (x) = P(Ŝr ≤ x) is given by

FŜr (x) =
eλx Ḡ (x) + E (eλS ;S ≤ x)− 1

E (eλS)− 1
, x ≥ 0.

Ŝr always has a density (it is alway a continuous r.v.) and it
is given by

fŜr (x) =
λeλx Ḡ (x)

E (eλS)− 1
, x ≥ 0.
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Joint CDF of B̂ , Ŝr

Lemma

For the M/G/1 PRI model,

P(B̂ > x , Ŝr > y) =

e−λxE (eλS ; S > x + y)− eλyP(S > x + y)

E (eλS)− 1
, x ≥ 0, y ≥ 0

Thus, if G has a density g, then the joint density of (B̂, Ŝr )
exists and is given by

f(B̂,Ŝr )(x , y) =
λeλyg(x + y)

E (eλS)− 1
, x ≥ 0, y ≥ 0.
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Relationship between Ŝr and B̂

We can immediately deduce that
P(Ŝr > x) = eλxP(B̂ > x), from which we can conclude

I Ŝr is stochastically larger than B̂.

I If S has unbounded support, then

P(Ŝr > x)

P(B̂ > x)
→∞

as x →∞; the tail of Ŝr is heavier than the tail of B̂.
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PRI Stationary Workload

Theorem (PRI Stationary Workload)

For the stable M/G/1 PRI model, with Q̂ geometric with
mass at 0 and parameter p0 = 2− E [eλS ],

(V |V > 0)
d
= Ŝr +

Q̂∑
j=1

Ŝj

and thus
FV = p0δ0 + (1− p0)FV̂

We can now for example compute

E (V ) = (1− p0)
[
E (Ŝr ) + E (Q̂)E (Ŝ)

]
= (E (eλS)−1)

[ E (SeλS)

E (eλS)− 1
− 1

λ
+
[ 1

2− E (eλS)
−1
][E (SeλS)− 1

µ

E (eλS)− 1

]]
.
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PRI heavy-traffic limit

Theorem (PRI heavy-traffic limit)

Suppose that there exists a λ2 > λ such that as λ ↑ λ2,
E (eλS)→ E (eλ2S) = 2, and that E (Seλ2S) <∞. Then as
λ ↑ λ2

p0V −→ exp(α),

where α−1 = E (Ŝ(λ2)) = E (Seλ2S)− 1/µ.

Proof is more delicate than before: the random variables in
the geometric sum now themselves depend upon λ, as
opposed to the PRD case when they are simply i.i.d. copies
of S .
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