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Abstract

This is an overview of my papers on bounds for queues, emphasizing recent work with Yan Chen.

1 Overview

In these notes we give a brief overview of bounds for the mean waiting time in the single-server

queue. Recent papers Chen and Whitt [2018a,b, 2019] have revisited earlier papers Whitt [1984a,b]

and Klincewicz and Whitt [1984].

1.1 The GI/GI/1 Model

The GI/GI/1 single-server queue has unlimited waiting space and the first-come first-served ser-

vice discipline. There is a sequence of independent and identically distributed (i.i.d.) service times

{Vn : n ≥ 0}, each distributed as V with cumulative distribution function (cdf) G, which is independent

of a sequence of i.i.d. interarrival times {Un : n ≥ 0} each distributed as U with cdf F . With the

understanding that a 0th customer arrives at time 0, Vn is the service time of customer n, while Un is

the interarrival time between customers n and n+ 1.

Let U have mean E[U ] ≡ 1 and squared coefficient of variation (scv, variance divided by the square

of the mean) c2a; let a service time V have mean E[V ] ≡ τ ≡ ρ and scv c2s, where ρ < 1, so that the

model is stable. (Let ≡ denote equality by definition.)

Let Wn be the waiting time of customer n, i.e., the time from arrival until starting service, assuming

that the system starts with an initial workload W0 having cdf H0 with a finite mean. The sequence

{Wn : n ≥ 0} is well known to satisfy the Lindley recursion

Wn = [Wn−1 + Vn−1 − Un−1]
+, n ≥ 1, (1.1)
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where x+ ≡ max {x, 0}. Let Hn be the cdf of Wn, which is determined by (1.1). Let W ≡ W∞ (both

used) be the steady-state waiting time, satisfying Wn ⇒ W∞ as n → ∞, where ⇒ denotes convergence

in distribution; see §§X.1-X.2 of Asmussen [2003]. The cdf H∞ of W∞ is the unique cdf satisfying the

stochastic fixed point equation

W∞

d
= (W∞ + V − U)+, (1.2)

where
d
= denotes equality in distribution. If P (W0 = 0) = 1, then Wn

d
= max {Sk : 0 ≤ k ≤ n} for

n ≤ ∞, S0 ≡ 0, Sk ≡ X0 + · · · +Xk−1 and Xk ≡ Vk − Uk, k ≥ 1. Under the specified finite moment

conditions, for 1 ≤ n ≤ ∞, Wn is a proper random variable with finite mean, given by

E[Wn|W0 = 0] =

n∑

k=1

E[S+
k
]

k
< ∞, 1 ≤ n < ∞, and E[W∞] =

∞∑

k=1

E[S+
k
]

k
< ∞. (1.3)

1.2 Classical Steady-State Results: Exact, Approximate and Bounds

For the M/GI/1 special case, when the interarrival time has an exponential distribution, we have the

classical Pollaczek-Khintchine formula

E[W ] =
τρ(1 + c2s)

2(1 − ρ)
=

ρ2(1 + c2s)

2(1 − ρ)
. (1.4)

A natural commonly used approximation for the GI/GI/1 model, inspired by (1.4), which we call

the heavy-traffic approximation, because it is motivated by the early heavy-traffic limit in Kingman

[1961], is

E[W ] ≡ E[W (ρ, c2a, c
2
s)] ≈

ρ2(c2a + c2s)

2(1 − ρ)
. (1.5)

The heavy traffic limit for the mean states that (1− ρ)E[W (ρ, c2a, c
2
s)] → (c2a + c2s)/2 as ρ ↑ 1.

The most familiar upper bound (UB) on E[W ] is the Kingman [1962] bound,

E[W ] ≤
ρ2([c2a/ρ

2] + c2s)

2(1− ρ)
, (1.6)

which also satisfies the same heavy traffic limit.

A better UB depending on these same parameters was obtained by Daley [1977]. in particular, the

Daley [1977] UB replaces the term c2a/ρ
2 by (2− ρ)c2a/ρ, i.e.,

E[W ] ≤
ρ2([(2 − ρ)c2a/ρ] + c2s)

2(1− ρ)
. (1.7)

Note that (2− ρ)/ρ < 1/ρ2 because ρ(2− ρ) < 1 for all ρ, 0 < ρ < 1.
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In contrast to the tight UB that we study, the tight lower bound (LB) for the steady-state mean has

been known for a long time; see Stoyan and Stoyan [1974], §5.4 of Stoyan [1983], §V of Whitt [1984a],

Theorem 3.1 of Daley et al. [1992] and references there. The LB is

E[W ] ≥
ρ((1 + c2s)ρ− 1)+

2(1− ρ)
. (1.8)

The LB is attained asymptotically at a deterministic interarrival time with the specified mean and

at any three-point service-time distribution that has all mass on nonnegative-integer multiples of the

deterministic interarrival time. The service part follows from Ott [1987]. (All service-time distributions

satisfying these requirements yield the same mean.)

1.3 Motivation: Approximations for Non-Markovian Open Queueing Networks

One source of motivation for the bounds is provided by parametric-decomposition approximations for

non-Markovian open networks of single-server queues, as in Whitt [1983], where each queue is approx-

imated by a GI/GI/1 queue partially characterized by the parameter vector (λ, c2a, τ, c
2
s), obtained by

solving traffic rate equations for the arrival rate λ at each queue and after solving associated traffic

variability equations to generate an approximating scv c2a of the arrival process. Because the internal

arrival processes are usually not renewal and the interarrival distribution is not known, there is no con-

crete GI/GI/1 model to analyze. To gain some insight into these approximations (not yet addressing

the dependence among interarrival times), It is natural to regard such approximations for the GI/GI/1

model as set-valued functions, applying to all models with the same parameter vector (λ, c2a, τ, c
2
s).

For the special case of the GI/M/1 model with bounded support for the interarrival-time cdf F ,

the extremal GI/M/1 models were studied in Whitt [1984a], where intervals of bounded support were

also used together with the theory of Tchebychev systems, as in Karlin and Studden [1966], drawing

on Rolski [1972], Holtzman [1973] and Eckberg [1977].(The focus in Whitt [1984a] was on the mean

steady state number of customers in the system, but it is easily seen that the extremal interarrival-time

distributions are the same for the mean number of customers in the system and the mean steady-state

waiting time, because they both depend on the root of the same equation.) For the GI/M/1 model,

the extremal distributions are two-point distributions.

Let P2,2(M) ≡ P2,2(m1, c
2,M) be the set of all two-point distributions with mean m1 and second

moment m2 = m2
1(c

2 + 1) with support in [0,m1M ]. The set P2,2(M) is a one-dimensional parametric

family. Any element is determined by specifying one mass point. Let F
(2)
b have probability mass

c2/(c2 + (b− 1)2) on m1b, and mass (b− 1)2/(c2 + (b− 1)2) on m1(1− c2/(b− 1)) for 1 + c2 ≤ b ≤ M .

The cases b = 1 + c2 and b = M constitute the two extremal distributions.
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For GI/M/1, the interarrival-time cdf achieving the UB with mean m1 and second moment m2 =

m2
1(c

2
a + 1) with support in [0,m1Ma], referred to here as F

(2)
1+c2

a

, arises for b = 1 + c2a. In particular,

F
(2)
1+c2

a

has probability mass c2a/(1+ c2a) on 0 and probability mass 1/(c2a +1) on (m2/m1) = m1(c
2
a+1).

The corresponding LB interarrival-time cdf, referred to here as F
(2)
Ma

, arises for b = Ma. In particular,

F
(2)
Ma

has probability mass c2a/(c
2
a + (Ma − 1)2) on the upper bound of the support, m1Ma, and mass

(Ma − 1)2/(c2a + (Ma − 1)2) on m1(1 − c2a/(Ma − 1)). (For the interarrival time, we scale, i.e., choose

measuring units for time, so that m1 = 1.) We use the notation G
(2)
1+c2

s

and G
(2)
Ms

for the corresponding

service-time cdf’s G with mean ρ and support [0, ρMs].

Since the range of possible values is quite large, while the distributions that attain the bounds are

unusual (two-point distributions), the papers Klincewicz and Whitt [1984], Whitt [1984b] and Johnson

and Taaffe [1990a] focused on reducing the range by imposing shape constraints. In this paper we do

not consider shape constraints.

1.4 Related Literature

The literature on bounds for the GI/GI/1 queue is well reviewed in Daley et al. [1992] and Wolff and

Wang [2003], so we will be brief. The use of optimization to study the bounding problem for queues

seems to have begun with Klincewicz and Whitt [1984] and Johnson and Taaffe [1990b]. Bertsimas

and Natarajan [2007] provides a tractable semi-definite program as a relaxation model for solving

steady-state waiting time of GI/GI/c to derive bounds, while Osogami and Raymond [2013] bounds

the transient tail probability of GI/GI/1 by a semi-definite program.

Several researchers have studied bounds for the more complex many-server queue. In addition to

Bertsimas and Natarajan [2007], Gupta et al. [2010] and Gupta and Osogami [2011] investigate the

bounds and approximations of the M/GI/c queue. Gupta et al. [2010] explains why two moment

information is insufficient for good accuracy of steady-state approximations of M/GI/c. Gupta and

Osogami [2011] establishes a tight bound for the M/GI/K in light traffic. Finally, Li and Goldberg

[2017] establishes bounds for GI/GI/c intended for the many-server heavy-traffic regime.

2 Three Papers from the 1990’s

Here are three papers from the 1990’s: Browne and Whitt [1996], Glynn and Whitt [1991] Massey and

Whitt [1997].
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