Algorithms for Extremal Queues in $\mathrm{Gl} / \mathrm{Gl} / 1$

Yan Chen

Columbia University, IEOR Department
Joint work with Ward Whitt
Columbia University, IEOR Department

Motivation

- Extremal queues in $G I / G I / 1: F_{0} / G_{u} / 1$ (Chen and Whitt (2018)) (a special two-point inter-arrival and service times queue)

Motivation

- Extremal queues in $G I / G I / 1: F_{0} / G_{u} / 1$ (Chen and Whitt (2018)) (a special two-point inter-arrival and service times queue)
- Research Question: How to obtain the steady-state mean waiting time $E\left[W\left(F_{0} / G_{u} / 1\right)\right]$ (tight upper bound) ?

Motivation

- Extremal queues in $G I / G I / 1: F_{0} / G_{u} / 1$ (Chen and Whitt (2018)) (a special two-point inter-arrival and service times queue)
- Research Question: How to obtain the steady-state mean waiting time $E\left[W\left(F_{0} / G_{u} / 1\right)\right]$ (tight upper bound) ?
- GOAL: closed form solution of $E\left[W\left(F_{0} / G_{u} / 1\right)\right]$?

Motivation

- Extremal queues in $G I / G I / 1: F_{0} / G_{u} / 1$ (Chen and Whitt (2018)) (a special two-point inter-arrival and service times queue)
- Research Question: How to obtain the steady-state mean waiting time $E\left[W\left(F_{0} / G_{u} / 1\right)\right]$ (tight upper bound) ?
- GOAL: closed form solution of $E\left[W\left(F_{0} / G_{u} / 1\right)\right]$?
- GOAL: effective algoritms to estimate $E\left[W\left(F_{0} / G_{u} / 1\right)\right]$?

Basic Settings

- Steady-state Waiting Time $\left(W_{0}=0\right)$:

$$
\begin{gathered}
W \stackrel{\mathrm{~d}}{=}[W+V-U]^{+} \\
w: \mathcal{P}_{a, 2}\left(M_{a}\right) \times \mathcal{P}_{s, 2}\left(M_{s}\right) \rightarrow \mathbb{R}, w(F, G) \equiv E[W(F, G)]
\end{gathered}
$$

where $0<\rho<1$ and

- Mean Waiting Time:

$$
\begin{array}{r}
E[W]=\sum_{k=1}^{\infty} \frac{E\left[S_{k}^{+}\right]}{k}<\infty . \\
S_{k} \equiv X_{1}+\cdots+X_{k} \text { and } X_{k} \equiv V_{k}-U_{k}, k \geq 1 .
\end{array}
$$

Background

$\left(1, c_{a}^{2}+1\right)$ for interarrival F and $\left(\rho, \rho^{2}\left(c_{s}^{2}+1\right)\right)$ for service G.

- Kingman (1962) bound:

$$
E[W(F, G)] \leq \frac{\rho^{2}\left(\left[c_{a}^{2} / \rho^{2}\right]+c_{s}^{2}\right)}{2(1-\rho)} .
$$

Background

$\left(1, c_{a}^{2}+1\right)$ for interarrival F and $\left(\rho, \rho^{2}\left(c_{s}^{2}+1\right)\right)$ for service G.

- Kingman (1962) bound:

$$
E[W(F, G)] \leq \frac{\rho^{2}\left(\left[c_{a}^{2} / \rho^{2}\right]+c_{s}^{2}\right)}{2(1-\rho)} .
$$

- Daley (1977) bound:

$$
E[W(F, G)] \leq \frac{\rho^{2}\left(\left[(2-\rho) c_{a}^{2} / \rho\right]+c_{s}^{2}\right)}{2(1-\rho)}
$$

Background

$\left(1, c_{a}^{2}+1\right)$ for interarrival F and $\left(\rho, \rho^{2}\left(c_{s}^{2}+1\right)\right)$ for service G.

- Kingman (1962) bound:

$$
E[W(F, G)] \leq \frac{\rho^{2}\left(\left[c_{a}^{2} / \rho^{2}\right]+c_{s}^{2}\right)}{2(1-\rho)} .
$$

- Daley (1977) bound:

$$
E[W(F, G)] \leq \frac{\rho^{2}\left(\left[(2-\rho) c_{a}^{2} / \rho\right]+c_{s}^{2}\right)}{2(1-\rho)}
$$

- Heavy Traffic Approximation:

$$
E[W(M, G)]=\frac{\rho^{2}\left(1+c_{s}^{2}\right)}{2(1-\rho)} .
$$

Background

$\left(1, c_{a}^{2}+1\right)$ for interarrival F and $\left(\rho, \rho^{2}\left(c_{s}^{2}+1\right)\right)$ for service G.

- Kingman (1962) bound:

$$
E[W(F, G)] \leq \frac{\rho^{2}\left(\left[c_{a}^{2} / \rho^{2}\right]+c_{s}^{2}\right)}{2(1-\rho)} .
$$

- Daley (1977) bound:

$$
E[W(F, G)] \leq \frac{\rho^{2}\left(\left[(2-\rho) c_{a}^{2} / \rho\right]+c_{s}^{2}\right)}{2(1-\rho)}
$$

- Heavy Traffic Approximation:

$$
E[W(M, G)]=\frac{\rho^{2}\left(1+c_{s}^{2}\right)}{2(1-\rho)} .
$$

- Ott (1987) bound:

$$
E\left[W\left(D, A_{3}\right)\right]=\frac{\rho\left(\left(1+c_{s}^{2}\right) \rho-1\right)^{+}}{2(1-\rho)}
$$

Extremal Distributions

Two-point cdfs under $\left(1,1+c_{a}^{2}\right)$ and $\left(\rho, \rho^{2}\left(1+c_{s}^{2}\right)\right)$:

Extremal Distributions

Two-point cdfs under $\left(1,1+c_{a}^{2}\right)$ and $\left(\rho, \rho^{2}\left(1+c_{s}^{2}\right)\right)$:

- $F: c_{a}^{2} /\left(c_{a}^{2}+\left(b_{a}-1\right)^{2}\right)$ at $b_{a},\left(b_{a}-1\right)^{2} /\left(c_{a}^{2}+\left(b_{a}-1\right)^{2}\right)$ at $1-c_{a}^{2} /\left(b_{a}-1\right)$ where $1+c_{a}^{2} \leq b_{a} \leq M_{a}$.

Extremal Distributions

Two-point cdfs under $\left(1,1+c_{a}^{2}\right)$ and $\left(\rho, \rho^{2}\left(1+c_{s}^{2}\right)\right)$:

- $F: c_{a}^{2} /\left(c_{a}^{2}+\left(b_{a}-1\right)^{2}\right)$ at $b_{a},\left(b_{a}-1\right)^{2} /\left(c_{a}^{2}+\left(b_{a}-1\right)^{2}\right)$ at $1-c_{a}^{2} /\left(b_{a}-1\right)$ where $1+c_{a}^{2} \leq b_{a} \leq M_{a}$.
- $G: c_{s}^{2} /\left(c_{s}^{2}+\left(b_{s}-1\right)^{2}\right)$ at $\rho b_{s},\left(b_{s}-1\right)^{2} /\left(c_{s}^{2}+\left(b_{s}-1\right)^{2}\right)$ at $\rho\left(1-c_{s}^{2} /\left(b_{s}-1\right)\right)$ where $1+c_{s}^{2} \leq b_{s} \leq M_{s}$.

Extremal Distributions

Two-point cdfs under $\left(1,1+c_{a}^{2}\right)$ and $\left(\rho, \rho^{2}\left(1+c_{s}^{2}\right)\right)$:

- $F: c_{a}^{2} /\left(c_{a}^{2}+\left(b_{a}-1\right)^{2}\right)$ at $b_{a},\left(b_{a}-1\right)^{2} /\left(c_{a}^{2}+\left(b_{a}-1\right)^{2}\right)$ at $1-c_{a}^{2} /\left(b_{a}-1\right)$ where $1+c_{a}^{2} \leq b_{a} \leq M_{a}$.
- G: $c_{s}^{2} /\left(c_{s}^{2}+\left(b_{s}-1\right)^{2}\right)$ at $\rho b_{s},\left(b_{s}-1\right)^{2} /\left(c_{s}^{2}+\left(b_{s}-1\right)^{2}\right)$ at $\rho\left(1-c_{s}^{2} /\left(b_{s}-1\right)\right)$ where $1+c_{s}^{2} \leq b_{s} \leq M_{s}$.
- $F=F_{0}$ for $b_{a}=1+c_{a}^{2}$ and $F=F_{u}$ when $b_{a}=M_{a}$.

Extremal Distributions

Two-point cdfs under $\left(1,1+c_{a}^{2}\right)$ and $\left(\rho, \rho^{2}\left(1+c_{s}^{2}\right)\right)$:

- $F: c_{a}^{2} /\left(c_{a}^{2}+\left(b_{a}-1\right)^{2}\right)$ at $b_{a},\left(b_{a}-1\right)^{2} /\left(c_{a}^{2}+\left(b_{a}-1\right)^{2}\right)$ at $1-c_{a}^{2} /\left(b_{a}-1\right)$ where $1+c_{a}^{2} \leq b_{a} \leq M_{a}$.
- $G: c_{s}^{2} /\left(c_{s}^{2}+\left(b_{s}-1\right)^{2}\right)$ at $\rho b_{s},\left(b_{s}-1\right)^{2} /\left(c_{s}^{2}+\left(b_{s}-1\right)^{2}\right)$ at $\rho\left(1-c_{s}^{2} /\left(b_{s}-1\right)\right)$ where $1+c_{s}^{2} \leq b_{s} \leq M_{s}$.
- $F=F_{0}$ for $b_{a}=1+c_{a}^{2}$ and $F=F_{u}$ when $b_{a}=M_{a}$.
- $G=G_{0}$ for $b_{s}=1+c_{s}^{2}$ and $G=G_{u}$ when $b_{s}=M_{s}$.

Reduction

- Three-point reduction:

$$
\sup _{\left.M_{a}\right), G \in \mathcal{P}_{s, 2}\left(M_{s}\right)} E[W(F, G)]=E\left[W\left(F^{*}, G^{*}\right)\right]
$$

where $F^{*} \in \mathcal{P}_{a, 2,3}\left(M_{a}\right), G^{*} \in \mathcal{P}_{s, 2,3}\left(M_{s}\right)$.

Reduction

- Three-point reduction:

$$
\sup E[W(F, G)]=E\left[W\left(F^{*}, G^{*}\right)\right]
$$

where $F^{*} \in \mathcal{P}_{a, 2,3}\left(M_{a}\right), G^{*} \in \mathcal{P}_{s, 2,3}\left(M_{s}\right)$.

- Two-point reduction:

$$
\sup _{F \in \mathcal{P}_{a, 2,3}\left(M_{a}\right), G \in \mathcal{P}_{s, 2,3}\left(M_{s}\right)} E[W(F, G)]=E\left[W\left(F_{0}, G_{u}\right)\right] .
$$

Reduction

- Three-point reduction:

$$
\sup _{F \in \mathcal{P}_{a, 2}\left(M_{a}\right), G \in \mathcal{P}_{s, 2}\left(M_{s}\right)} E[W(F, G)]=E\left[W\left(F^{*}, G^{*}\right)\right]
$$

where $F^{*} \in \mathcal{P}_{a, 2,3}\left(M_{a}\right), G^{*} \in \mathcal{P}_{s, 2,3}\left(M_{s}\right)$.

- Two-point reduction:

$$
\sup _{F \in \mathcal{P}_{a, 2,3}\left(M_{a}\right), G \in \mathcal{P}_{s, 2,3}\left(M_{s}\right)} E[W(F, G)]=E\left[W\left(F_{0}, G_{u}\right)\right]
$$

Research Question: define $E\left[W\left(F_{0}, G_{u^{*}}\right)\right] \equiv \lim _{M_{s} \rightarrow \infty} E\left[W\left(F_{0}, G_{u}\right)\right]$, how to evaluate $E\left[W\left(F_{0}, G_{u^{*}}\right)\right]$?

Reduction for Interarrival Time

Theorem

For any service-time V with $c d f G$ having mean ρ and $s C v c_{s}^{2}$, the steady-state waiting time is distributed as (denoted by $\stackrel{\text { d }}{=}$)

$$
W\left(F_{0} / G / 1\right) \stackrel{\mathrm{d}}{=} W(D(1 / p) / R S(V, p) / 1)+\sum_{k=1}^{N(p)-1} V_{k}
$$

for $N(p)$ and $R S(V, p)$. Hence, the mean is

$$
\begin{aligned}
E\left[W\left(F_{0} / G / 1\right)\right] & =E[W(D(1 / p) / R S(V, p) / 1)]+(E[N(p)]-1) E[V] \\
& =E[W(D(1 / p) / R S(V, p) / 1)]+\rho(1-p) / p \\
& =E[W(D(1 / p) / R S(V, p) / 1)]+\rho c_{a}^{2} .
\end{aligned}
$$

Reduction for Service Time

Theorem
(the Daley decomposition) Consider the $F / G_{u} / 1$ model with arbitrary interarrival-time cdf F and two-point service-time $c d f G_{u}$. Then

$$
\begin{aligned}
\lim _{M_{s} \rightarrow \infty} E\left[W\left(F / G_{u} / 1\right)\right] & =E[W(F / D(\rho) / 1)]+\lim _{M_{s} \rightarrow \infty} E\left[W\left(D(1) / G_{u} / 1\right)\right] . \\
& =E[W(F / D(\rho) / 1)]+\frac{\rho^{2} c_{s}^{2}}{2(1-\rho)} .
\end{aligned}
$$

Overall Reduction

Theorem

(overall decomposition of the upper bound) For the GI/GI/1 model with extremal interarrival-time cdf F_{0} and extremal service-time $c d f G_{u^{*}}$,

$$
E\left[W\left(F_{0}, G_{u^{*}}\right)\right] \equiv \lim _{M_{s} \rightarrow \infty} E\left[W\left(F_{0} / G_{u} / 1\right)\right]
$$

$$
=E[W(D(1 / p) / R S(D(\rho), p) / 1)]+\rho c_{a}^{2}+\frac{\rho^{2} c_{s}^{2}}{2(1-\rho)}
$$

for $p \equiv 1 /\left(c_{a}^{2}+1\right)$.

Numerical Algorithm

A new service time:

$$
\begin{equation*}
R S(V, p) \stackrel{\mathrm{d}}{=} \sum_{k=1}^{N(p)} V_{k} \tag{1}
\end{equation*}
$$

where $N(p)$ is a geometric random variable on the positive integers, having mean $E[N(p)]=1 / p$ with $p=1 /\left(1+c_{a}^{2}\right)$ and $\left\{V_{k}: k \geq 1\right\}$ is i.i.d. random variables distributed as a service time V.

Numerical Algorithm

A new service time:

$$
\begin{equation*}
R S(V, p) \stackrel{\mathrm{d}}{=} \sum_{k=1}^{N(p)} V_{k} \tag{1}
\end{equation*}
$$

where $N(p)$ is a geometric random variable on the positive integers, having mean $E[N(p)]=1 / p$ with $p=1 /\left(1+c_{a}^{2}\right)$ and $\left\{V_{k}: k \geq 1\right\}$ is i.i.d. random variables distributed as a service time V.

- Apply Inter-arrival Time Reduction:

$$
E\left[W\left(F_{0}, G\right)\right]=E[W(D(1 / p), R S(V, p))]+\rho c_{a}^{2} .
$$

Numerical Algorithm

A new service time:

$$
\begin{equation*}
R S(V, p) \stackrel{\mathrm{d}}{=} \sum_{k=1}^{N(p)} V_{k} \tag{1}
\end{equation*}
$$

where $N(p)$ is a geometric random variable on the positive integers, having mean $E[N(p)]=1 / p$ with $p=1 /\left(1+c_{a}^{2}\right)$ and $\left\{V_{k}: k \geq 1\right\}$ is i.i.d. random variables distributed as a service time V.

- Apply Inter-arrival Time Reduction:

$$
E\left[W\left(F_{0}, G\right)\right]=E[W(D(1 / p), R S(V, p))]+\rho c_{a}^{2} .
$$

- Apply Daley Decomposition:

$$
E\left[W\left(F_{0}, G_{u^{*}}\right)\right]=E[W(D(1 / p), R S(D(\rho), p))]+\text { const. }
$$

Numerical Algorithm (Negative Binomial)

Lemma

(NB representation) For the $D(1 / p) / R S(D(\rho), p) / 1$ model,

$$
S_{k} \stackrel{\mathrm{~d}}{=} \rho(N B(n, 1-p)+n)-(n / p),
$$

so that

$$
E[W]=\sum_{n=1}^{\infty} \frac{E\left[(\rho(N B(n, 1-p)+n)-(n / p))^{+}\right]}{n} .
$$

Numerical Algorithm (Negative Binomial)

Lemma

(NB representation) For the $D(1 / p) / R S(D(\rho), p) / 1$ model,

$$
S_{k} \stackrel{\mathrm{~d}}{=} \rho(N B(n, 1-p)+n)-(n / p),
$$

so that

$$
E[W]=\sum_{n=1}^{\infty} \frac{E\left[(\rho(N B(n, 1-p)+n)-(n / p))^{+}\right]}{n} .
$$

pmf: $P(N B(n, 1-p)=k) \equiv\left(\frac{(n+k-1)!}{k!(n-1)!}\right) p^{n}(1-p)^{k}$.

Numerical Algorithm (Negative Binomial)

Lemma

(NB representation) For the $D(1 / p) / R S(D(\rho), p) / 1$ model,

$$
S_{k} \stackrel{\mathrm{~d}}{=} \rho(N B(n, 1-p)+n)-(n / p),
$$

so that

$$
E[W]=\sum_{n=1}^{\infty} \frac{E\left[(\rho(N B(n, 1-p)+n)-(n / p))^{+}\right]}{n} .
$$

pmf: $P(N B(n, 1-p)=k) \equiv\left(\frac{(n+k-1)!}{k!(n-1)!}\right) p^{n}(1-p)^{k}$.
recursion: $\mathbb{P}(N B=k)=\mathbb{P}(N B=k-1)(n+k-1) / k)(1-p)$.

Numerical Algorithm (Negative Binomial)

```
Algorithm 1 Basic Negative Binomial Recursion ( \(k\) in outer loop)
    1: for \(k \in[K]\) do
    2: \(\quad S(k) \leftarrow 0, n b p d f \leftarrow p(1-p)^{k}\)
    3: \(\quad\) for \(n \in[n]\) do
    4: \(\quad S(k) \leftarrow S(k)+n b p d f \max ((n+k) \rho-n / p, 0) / n\)
    5: \(\quad n b p d f \leftarrow n b p d f\left(\frac{n+k}{n}\right) p\)
    6: \(\quad E[W] \leftarrow E[W]+S(k)\)
    7: Output \(E[W]\)
```


Numerical Algorithm (Negative Binomial)

Refinement: Staring at mean and going up and down.
Algorithm 2 NB Recursion (Up and Down from the Mean)
1: for $n \in[1, N]$ do
2: $\quad \operatorname{nbpdf}(1, n(1-p) / p) \leftarrow 1$
3: \quad for $k \in[m(n)-\alpha \sqrt{N}, m(n)]$ do
4: $\quad \operatorname{nbpdf}(1, k-1) \leftarrow \operatorname{nbpdf}(1, k) /(n+k-1)(k) /(1-p)$
5: \quad for $k \in[m(n), m(n)+\alpha \sqrt{N}-1]$ do
6: $\quad n b p d f(1, k+1) \leftarrow n b p d f(1, k)(n+k) /(k+1)(1-p)$
7: \quad Normalize $n b p d f$ to obtain $\mathbb{P}(N B(n, 1-p)=k)$
8: $\quad S(n) \leftarrow \sum_{k} \mathbb{P}(N B(n, 1-p)=k) \max ((n+k) \rho-n / p, 0)$
9: $\quad E[W] \leftarrow E[W]+S(n) / n$
10: Output $E[W]$

Numerical Algorithm (Negative Binomial)

Table 1: Comparison of Two Approaches Generating Negative Binomial
Probabilities

k	$n_{1}=10$	$n_{2}=10$	k	$n_{1}=100$	$n_{2}=100$	k	$n_{1}=1000$	$n_{2}=1000$
40	0.0279638	0.0279638	400	0.0089128	0.0089128	4000	0	0.0028207
41	0.0272818	0.0272818	401	0.0088906	0.0088906	4001	0	0.0028200
42	0.0265023	0.0265023	402	0.0088641	0.0088641	4002	0	0.0028192
43	0.0256394	0.0256394	403	0.0088333	0.0088333	4003	0	0.0028182
44	0.0247071	0.0247071	404	0.0087983	0.0087983	4004	0	0.0028170
45	0.0237188	0.0237188	405	0.0087592	0.0087592	4005	0	0.0028158
46	0.0226875	0.0226875	406	0.0087160	0.0087160	4006	0	0.0028144
47	0.0216256	0.0216256	407	0.0086689	0.0086689	4007	0	0.0028128
48	0.0205443	0.0205443	408	0.0086179	0.0086179	4008	0	0.0028111
49	0.0194542	0.0194542	409	0.0085631	0.0085631	4009	0	0.0028093
50	0.0183647	0.0183647	410	0.0085047	0.0085047	4010	0	0.0028074

Limit When $M_{s} \rightarrow \infty$

Theorem

(the idle-time representation) In the $G I / G I / 1$ queue with cdf's F and G having parameter 4-tuple ($1, c_{a}^{2}, \rho, c_{s}^{2}$),

$$
E[W] \equiv E[W(F, G)]=\psi\left(1, c_{a}^{2}, \rho, c_{s}^{2}\right)-\phi(I),
$$

where

$$
\psi\left(1, c_{a}^{2}, \rho, c_{s}^{2}\right) \equiv \frac{E\left[(U-V)^{2}\right]}{2 E[U-V]}=\frac{\rho^{2}\left(\left[c_{a}^{2} / \rho^{2}\right]+c_{s}^{2}\right)}{2(1-\rho)}+\frac{1-\rho}{2}
$$

and

$$
\phi(I) \equiv \phi(F, G)=\frac{E\left[I^{2}\right]}{2 E[I]}=E\left[I_{e}\right] .
$$

Limit When $M_{s} \rightarrow \infty$

Corollary

 (reduction to idle time) For the $\mathrm{GI} / \mathrm{GI} / 1$ model with extremal interarrival-time $c d f F_{0}$ and extremal service-time $c d f G_{u}$,$$
\begin{aligned}
E\left[W\left(F_{0}, G_{u^{*}}\right)\right] & \equiv \lim _{M_{s} \rightarrow \infty} E\left[W\left(F_{0} / G_{u} / 1\right)\right] \\
& =\frac{c_{a}^{2}+\rho^{2} c_{s}^{2}}{2(1-\rho)}+\frac{1-\rho}{2}-\phi\left(I ; 1, c_{a}^{2}, \rho, c_{s}^{2}\right),
\end{aligned}
$$

where I is the idle time in an $F_{0} / G_{u^{*}} / 1$ queue or, equivalently, in a $F_{0} / D / 1$ queue for an appropriate D.

Numerical Algorithm (Negative Binomial)

Table 2: Performance of Algorithm with Different Truncation Levels

	Algorithm 2					Minh and Sorli Algorithm		
$\rho \backslash N$	$2 \mathrm{E}+03$	$4 \mathrm{E}+03$	$8 \mathrm{E}+03$	$1.6 \mathrm{E}+04$	$2 \mathrm{E}+04$	$T=1 E+07$	$95 \% \mathrm{Cl}$	
0.1	0.422229	0.422229	0.422229	0.422229	0.422229	0.422	$7.79 \mathrm{E}-05$	
0.2	0.903885	0.903885	0.903885	0.903885	0.903885	0.904	$1.30 \mathrm{E}-04$	
0.3	1.499234	1.499234	1.499234	1.499234	1.499234	1.499	$1.71 \mathrm{E}-04$	
0.4	2.304105	2.304105	2.304105	2.304105	2.304105	2.304	$1.90 \mathrm{E}-04$	
0.5	3.470132	3.470132	3.470132	3.470132	3.470132	3.470	$2.25 \mathrm{E}-04$	
0.6	5.294825	5.294825	5.294825	5.294825	5.294825	5.294	$2.43 \mathrm{E}-04$	
0.7	8.441305	8.441305	8.441305	8.441305	8.441305	8.442	$3.05 \mathrm{E}-04$	
0.8	14.916937	14.916937	14.916937	14.916937	14.916937	14.917	$3.22 \mathrm{E}-04$	
0.9	34.721476	34.721484	34.721484	34.721484	34.721484	34.722	$5.17 \mathrm{E}-04$	
0.95	74.552341	74.619631	74.620917	74.620937	74.620937	74.621	$7.11 \mathrm{E}-04$	

Performance in the Heavy-traffic

Table 3: Performance of Algorithm 2 in Heavy Traffic

Case			Algorithm 2		Minh and Sorli	
$\rho \backslash N$	1×10^{4}	2×10^{4}	3×10^{4}	4×10^{4}	$T=1 \times 10^{7}$	
0.98	194.0544167173	194.5385548017	194.5559125683	194.5567071265	194.556	$9.29 \mathrm{E}-04$
	5×10^{4}	1×10^{5}	2×10^{5}	3×10^{5}		
0.98	194.5567179973	194.5567742874	194.5567742874	194.5567742874	194.556	$9.29 \mathrm{E}-04$
$\rho \backslash N$	1×10^{4}	3×10^{4}	5×10^{4}	1×10^{5}	$T=1 \times 10^{7}$	
0.99	372.0880005430	372.0880005430	391.8858614678	394.5238008176	394.532	$1.45 \mathrm{E}-03$
	2×10^{5}	3×10^{5}	4×10^{5}	5×10^{5}		
0.99	394.5331823499	394.5331886695	394.533188669	394.5331886695	394.532	$1.45 \mathrm{E}-03$

Upper Bound Approximation

Theorem

In the setting of previous theorems,

$$
\begin{equation*}
W(D(1 / p), R S(D(\rho), p)) \leq_{i c x} W(D(1 / p), M(\rho / p)) \tag{2}
\end{equation*}
$$

so that well known results for the $D / M / 1$ queue yield

$$
\begin{equation*}
E\left[W\left(F_{0}, G_{u^{*}}\right)\right] \leq \frac{[2(1-\rho) \rho /(1-\delta)] c_{a}^{2}+\rho^{2} c_{s}^{2}}{2(1-\rho)} \tag{3}
\end{equation*}
$$

where $\delta \in(0,1)$ solves the equation

$$
\begin{equation*}
\delta=\exp (-(1-\delta)) / \rho) \tag{4}
\end{equation*}
$$

Upper Bound Inequalities

Overall Upper Bound Inequalities:

Upper Bound Inequalities

Overall Upper Bound Inequalities:

$$
E[W(F, G)] \leq E\left[W\left(F_{0}, G_{u^{*}}\right)\right](\text { Tight UB })
$$

Upper Bound Inequalities

Overall Upper Bound Inequalities:

$$
\begin{aligned}
E[W(F, G)] & \leq E\left[W\left(F_{0}, G_{u^{*}}\right)\right](\text { Tight UB }) \\
& \leq \frac{2(1-\rho) \rho /(1-\delta) c_{a}^{2}+\rho^{2} c_{s}^{2}}{2(1-\rho)}(\text { UB Approx })
\end{aligned}
$$

Upper Bound Inequalities

Overall Upper Bound Inequalities:

$$
\begin{aligned}
E[W(F, G)] & \leq E\left[W\left(F_{0}, G_{u^{*}}\right)\right](\text { Tight UB }) \\
& \leq \frac{2(1-\rho) \rho /(1-\delta) c_{a}^{2}+\rho^{2} c_{s}^{2}}{2(1-\rho)}(\text { UB Approx }) \\
& <\frac{\rho^{2}\left(\left[(2-\rho) c_{a}^{2} / \rho\right]+c_{s}^{2}\right)}{2(1-\rho)}(\text { Daley }(1977))
\end{aligned}
$$

Upper Bound Inequalities

Overall Upper Bound Inequalities:

$$
\begin{aligned}
E[W(F, G)] & \leq E\left[W\left(F_{0}, G_{u^{*}}\right)\right](\text { Tight UB }) \\
& \leq \frac{2(1-\rho) \rho /(1-\delta) c_{a}^{2}+\rho^{2} c_{s}^{2}}{2(1-\rho)}(\text { UB Approx }) \\
& <\frac{\rho^{2}\left(\left[(2-\rho) c_{a}^{2} / \rho\right]+c_{s}^{2}\right)}{2(1-\rho)}(\text { Daley }(1977)) \\
& <\frac{\rho^{2}\left(\left[c_{a}^{2} / \rho^{2}\right]+c_{s}^{2}\right)}{2(1-\rho)}(\operatorname{Kingman}(1962))
\end{aligned}
$$

Upper Bound Inequalities

Overall Upper Bound Inequalities:

$$
\begin{aligned}
E[W(F, G)] & \leq E\left[W\left(F_{0}, G_{u^{*}}\right)\right](\text { Tight UB }) \\
& \leq \frac{2(1-\rho) \rho /(1-\delta) c_{a}^{2}+\rho^{2} c_{s}^{2}}{2(1-\rho)}(\text { UB Approx }) \\
& <\frac{\rho^{2}\left(\left[(2-\rho) c_{a}^{2} / \rho\right]+c_{s}^{2}\right)}{2(1-\rho)}(\text { Daley }(1977)) \\
& <\frac{\rho^{2}\left(\left[c_{a}^{2} / \rho^{2}\right]+c_{s}^{2}\right)}{2(1-\rho)}(\operatorname{Kingman}(1962))
\end{aligned}
$$

where $\delta \in(0,1)$ and $\delta=\exp (-(1-\delta) / \rho)$.

Summary for Upper Bound

Table 4: A comparison of the bounds and approximations for the steady-state mean $E[W]$ as a function of ρ for the case $c_{a}^{2}=c_{s}^{2}=4.0$ and $c_{s}^{2}=4.0$.

ρ	Tight LB	HTA	Tight UB	UB Approx	δ	MRE	Daley	Kingman
0.10	0.00	0.044	0.422	0.422	0.000	0.003%	0.44	2.24
0.20	0.00	0.200	0.904	0.906	0.007	0.19%	1.00	2.60
0.30	0.00	0.514	1.499	1.51	0.041	0.60%	1.71	3.11
0.40	0.00	1.07	2.304	2.33	0.107	0.94%	2.67	3.87
0.50	0.25	2.00	3.470	3.51	0.203	1.15%	4.00	5.00
0.60	1.00	3.60	5.295	5.35	0.324	1.07%	6.00	6.80
0.70	2.42	6.53	8.441	8.52	0.467	0.93%	9.33	9.93
0.80	5.50	12.80	14.92	15.02	0.629	0.67%	16.00	16.40
0.90	15.25	32.40	34.72	34.84	0.807	0.35%	36.00	36.20
0.95	35.13	72.20	74.62	74.76	0.902	0.18%	76.00	76.10
0.98	95.05	192.1	194.6	194.7	0.960	0.07%	196.0	196.0
0.99	195.0	392.0	394.5	394.7	0.980	0.04%	396.0	396.0

Thank You!

