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Queueing performance under partial information:

= Queueing Network Analyzer (Whitt (1983))
= Approximations for GI/Gl/K Queues (Whitt (1993))

Given partial information (first two moments),

PG+ 3a)
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Research Question:

= Approximations ~ True Solutions ? (simulation is limited to check)

= Design high quality approximations under partial information



Gl/GI/1 Queues: mean 1 inter-arrival, mean p service with scv cg and cg
Range of GI/Gl/1 queues: Tight LB<HTA<Daley UB
@+ —p)" _plg+a) P22 =pa/i+c)
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Question: How accurate the HTA is for fixed p?

Table 1: A comparison of bounds and approximations for the steady-state
mean E[W] as a function of p for the case ¢ = & = 4.0

Tight LB HTA Tight UB  conj UB 6 MRE Daley  Kingman
0.107 0.514 1.499 1.508  0.041 0.60% 1.714 3.114
0.750 2.000 3.470 3,510 0.203 1.15%  4.000 5.000
2.917 6.533 8.441 8.520  0.467 0.93%  9.333 9.933
15.750 32.400 34.721 34.843 0.807 0.35%  36.000 36.200
35.625 72.200 74.621 74755 0.902 0.18%  76.000 76.100
95.550  192.080 194557  194.702 0.960 0.07% 196.000 196.040
195.525  392.040 394.533  394.684 0.980 0.04% 396.000 396.020
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(Chen and Whitt (2018) reviewed in Operations Research)



We expect to have high-quality set-valued approx
[lowervalue, uppervaluel:

lowervalue < truesolutions < uppervalue.
Lower value and upper value are not far way from true solution:

lowervalue =~ 0.85 x truesolutions

uppervalue =~ 1.15 x truesolutions

Research Goal: How to generate good ranges without knowing
true solutions under partial information ?



Methodology

1. Input Data from Service Models

2. Extract Key Information
= 3. Apply "New Approach” beyond Two Moment Approximations

= 4. Create Set-valued Approximation

Several Questions:

= What are key information from queueing models?
= What is the "New Approach” 7

= How to create the approximations 7



Relate to Decay Rates

F ~ inter-arrival time cdf, G ~ service time cdf.
= Decay rate Oy = — lim,_, o log(P(W(F, G) > x))/x:
P(W(F,G) > t) ~ ae ™" as t — oo

= Given s), &(s) are LT transforms of F and G, fyy is also the root of
the equation

~

He)a(—s) = 1

= M/M/1: 0w = (1 - p)/p. GI/GI/1: Ow =~ 2(1 = p)/(p(S + ).

(i) There is a precise theory that applies to a very large class of GI/GI/K
queues.

(ii) Under regularity conditions the decay rate arises as the minimum
positive root of the equation.



Methodology

Motivated by the asymptotic tail behavior,
P(W > t) ~ ae % as t — oo.
We optimize 6y under partial information:
max \ min{6w : F, G have partial information}.
The extremal models are used to construct set-valued approximations:

E[W(F*(UB), G*(UB))] < truesolution < E[W(F*(LB), G*(LB))].



Tcheycheff Systems

Definition

(T System) The set of functions {u;(t) : 0 < i< n} constitutes a T
system if the (n+ 1)%'-order determinant of the (n+ 1) x (n+ 1) matrix
formed by wi(t;)), 0 < i< nand 0 <j<n,is strictly positive for all
altg<ti <---<t,<b

Example: {1,t, 2, —exp(—st)}, check the determinant of

1 1 1 1
t to t3 ta
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3
—exp(—st;) —exp(—sty) —exp(—st3) —exp(—sts)

under any a < t) < th < t3 < t; < b is strictly positive.



Use Wronskian to Check T-systems

Theorem
If the Wronskian Matrix is positive definite, the system is T-system.

Example: {1,t, 2, — exp(—st)}: write down Wronskian
2 —exp(—st)
2t sexp(—st)

2 —s?exp(—st)
0 S exp(—st)

Wronskian is positive definite = T-system.



Tcheycheff Systems (Informal Theorem)

Solve Partial Information Optimization (POPT):

max \ min{fw : F, G have partial information}.
First Step: choosing proper large M,, M; for original F and G (¢ ~ 0.001).
P(U> ME[U]) = P(U> M,) = P(V> ME[V]) = P(V > pM;) = ¢
Examples: 6y = lim,_, o log(P(V > x))/x.

= M:P(V> ME[V]) =~ exp(—0vMs), 0y = 1/p.
s Hy: P(V > ME[V]) = exp(—0yMs), 0y = 1 — /(2 —1)/(Z + 1)

Pick e = 0.001, Ms = 7,9 for M and Ms = 31.1,39.9 for H,.



Applying Tcheycheff Systems

Partial information is the two moments of F, solve POPT
M,
max \ min / exp(—st)dF(t)
0

M, M, M,
subject to / dF(t) = 1,/ tdF(t) = 1,/ £dF(t) = (1 + )
0 0 0

Theorem

If{1,t, 2} is a T-system and if {1, t, 12, — exp(—st)} for some s> 0 is a
T-system, the optimum (maximization, minimization) are unique and
they are specific 2-point distributions (Fo, F,) for any M, > 1+ .
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Extremal Theorem for Decay Rates

Fo: one at 0, one at (0, M,), F,: one at (0, M,) and one at M,, meet the
first two moments 1 and 1 + 2. (similar for Gy, G,)

Theorem

Let Fo, Fy, Gy and G, be the two-point extremal cdf’s for the GI/Gl/1
queue defined above.
For all F € P,2(1,c2 4+ 1,M,) and G € Psa(p, p?(S + 1.Ms)),

Ow(Fo, Gu) < Ow(F, G) < Ow(Fu, Go).

11



The First Set-valued Approximations

Table 2: Evaluation of E[W] for F,/Go/1 and Fo/G,/1 with (M,, Ms)

p  Tight LB M,=9 M,=7 HTA M.=7 M;=9  Tight UB

2_a_ 050 0000 0.122 0.162 0.500 0.810 0.821 0.846
5= 070  0.467 0.970 1.130 1.633 2.025 2.036 2.071
0.90  3.600 7.265 7.596 8.100 8.564 8.579 8.620

p  Tight LB M,=399 M,=31.1 HTA M,=311 M,=39.9 TightUB
2_2_, 050 0750 1.013 1.097 2.000 3.419 3.430 3.470
5= 070 2917 4.303 4.748 6.533 8.384 8.394 8.441
0.90  15.750 28.924 30.239  32.400  34.658 34.671 34.721
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More Partial Information

= Third moments for inter-arrival and service distribution
= Typical values of Laplace transforms

H(s),s = pa >0, 1/8(—5),s = ps, 0 < pis < s*
s* is the first singularity of mgf of G.
Theorem
Let F;, Fy, G, and Gy be the three-point extremal cdf’s for the GI/Gl/1.

For F e 7);‘1,2(17 C§ + 17 my 3, Ha, Ma):G S 73372(/07 pz(ci + 1)7 Mms 3, Us, Ms)r
the following four pairs of lower and upper bounds for O\(F, G) are valid

(,Ufa»,us > O)
() Owl(FL, Gu) < Ow(F, G) < Ow(Fu, Gr) if ps, ps < Ow
(i) Ow(Fu, Gu) < Ow(F, G) < Ow(Fr, Gr) if s < Oy < 1,
(i)  Ow(Fu,GL) < Ow(F, G) < Ow(Fi, Gu) if Ow < ps, fta, p1s < s°
(iv) Ow(Fr, G) < Ow(F, G) < Ow(Fu, Gy) if pa < 0w < ps < s".
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M/M/1 Example

" (') Mas frs < Ow, (ii) ps < Ow < Ma
= (iii) hay fhs = Ow, ps < S, (iV) fa < Ow < fs < S

We use o = 0yw/R or = 0wR for R= 5,10, 20.
Table 3: Bounds for Oy (exact) and E[W] (approximate) for p = 0.7 and

2 = =1 based on M/M/1 (For reference, exact values for M/M/1 are
Ow = (1 — p)/p = 0.4286 and E[W] = p?/(1 — p) = 1.63)

case Ow EW case Ow EW]
R=5 10 20 R= 10 20 R=5 10 20 R= 10 20
(i) | 0.426 0.425 0425 | 167 1.67 1.68 | (i) | 0.421 0.418 0.415| 1.59 1.62 1.68
0.432 0.432 0.439 | 1.65 1.65 1.56 0.434 0.437 0.446 | 153 156 1.61
(iii) | 0.422 0.417 0.409 | 1.71 172 1.71 | (iv) | 0.426 0.424 0.418 | 1.61 1.60 1.57
0.434 0.436 0.436 | 1.65 1.63 162 0.431 0.432 0429 | 1.60 1.61 1.63
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Set-valued Approximations for G//GI/K

We extend the approach to G//GI/K models via using decay rate 0y is
same as that in G//GI/1 models.

Table 4: The set-valued approximations for E[W)] in GI/Gl/2 for
p € {0.5,0.7,0.9} and R € {5, 10, 20}

R 5 10 20 R 5 10 20 R 5 10 20
UB 0353 0405 0427 UB 134 139 141 UB 769 7.69 7.71
LB 0290 0262 0251 LB 130 131 133 LB 767 7.62 761

p=05 B=E=4 p=07 B=a =4 p=09 B=ad =4
R 5 10 20 R 5 10 20 R 5 10 20
uB 1.34 144 168 UB 529 537 576 UB 306 304 316
LB 130 127 121 LB 558 554 549 LB 309 307 308

Exact Solutions: E[W(M, M)] = 0.333,1.345,7.67 under p = 0.5,0.7,0.9.
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A new performance analysis method for GI/GI/K models:

= Truncate unknown models by setting proper M,, M;
= Solve optimizations for decay rates to determine extremal
distributions

= Simulate extremal models to obtain the set-valued approximations

Under partial information: set-valued approximations such that

lowervalue < truesolutions < uppervalue.
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Thank You!

Paper is available in http : //www.columbia.edu/ ww2040/allpapers.html
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