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Motivation

Queueing performance under partial information:

• Queueing Network Analyzer (Whitt (1983))
• Approximations for GI/GI/K Queues (Whitt (1993))

Given partial information (first two moments),

E[W] ≈ ρ2(c2
a + c2

s )

2(1 − ρ)
.

Research Question:

• Approximations ≈ True Solutions ? (simulation is limited to check)
• Design high quality approximations under partial information
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Motivation

GI/GI/1 Queues: mean 1 inter-arrival, mean ρ service with scv c2
a and c2

s .
Range of GI/GI/1 queues: Tight LB<HTA<Daley UB

((1 + c2
s )ρ

2 − ρ)+

2(1 − ρ)
<

ρ2(c2
a + c2

s )

2(1 − ρ)
<

ρ2([(2 − ρ)c2
a/ρ] + c2

s )

2(1 − ρ)
.

Question: How accurate the HTA is for fixed ρ?

Table 1: A comparison of bounds and approximations for the steady-state
mean E[W] as a function of ρ for the case c2

a = c2
s = 4.0

ρ Tight LB HTA Tight UB conj UB δ MRE Daley Kingman
0.30 0.107 0.514 1.499 1.508 0.041 0.60% 1.714 3.114
0.50 0.750 2.000 3.470 3.510 0.203 1.15% 4.000 5.000
0.70 2.917 6.533 8.441 8.520 0.467 0.93% 9.333 9.933
0.90 15.750 32.400 34.721 34.843 0.807 0.35% 36.000 36.200
0.95 35.625 72.200 74.621 74.755 0.902 0.18% 76.000 76.100
0.98 95.550 192.080 194.557 194.702 0.960 0.07% 196.000 196.040
0.99 195.525 392.040 394.533 394.684 0.980 0.04% 396.000 396.020

(Chen and Whitt (2018) reviewed in Operations Research)
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Motivation

We expect to have high-quality set-valued approx
[lowervalue, uppervalue]:

lowervalue < truesolutions < uppervalue.

Lower value and upper value are not far way from true solution:

lowervalue ≈ 0.85 × truesolutions
uppervalue ≈ 1.15 × truesolutions

Research Goal: How to generate good ranges without knowing
true solutions under partial information ?
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Methodology

• 1. Input Data from Service Models
• 2. Extract Key Information
• 3. Apply ”New Approach” beyond Two Moment Approximations
• 4. Create Set-valued Approximation

Several Questions:

• What are key information from queueing models?
• What is the ”New Approach” ?
• How to create the approximations ?
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Relate to Decay Rates

F ∼ inter-arrival time cdf, G ∼ service time cdf.

• Decay rate θW ≡ − limx→∞ log(P(W(F,G) > x))/x:

P(W(F,G) > t) ∼ αe−θWt as t → ∞

• Given f̂(s), ĝ(s) are LT transforms of F and G, θW is also the root of
the equation

f̂(s)ĝ(−s) = 1

.
• M/M/1: θW = (1 − ρ)/ρ, GI/GI/1: θW ≈ 2(1 − ρ)/(ρ(c2

a + c2
s )).

(i) There is a precise theory that applies to a very large class of GI/GI/K
queues.
(ii) Under regularity conditions the decay rate arises as the minimum
positive root of the equation.
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Methodology

Motivated by the asymptotic tail behavior,

P(W > t) ∼ αe−θWt as t → ∞.

We optimize θW under partial information:

max \min{θW : F,G have partial information}.

The extremal models are used to construct set-valued approximations:

E[W(F∗(UB),G∗(UB))] ≤ truesolution ≤ E[W(F∗(LB),G∗(LB))].
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Tcheycheff Systems

Definition
(T System) The set of functions {ui(t) : 0 ≤ i ≤ n} constitutes a T
system if the (n + 1)st-order determinant of the (n + 1)× (n + 1) matrix
formed by ui(tj), 0 ≤ i ≤ n and 0 ≤ j ≤ n, is strictly positive for all
a ≤ t0 < t1 < · · · < tn ≤ b.

Example: {1, t, t2,− exp(−st)}, check the determinant of
1 1 1 1
t1 t2 t3 t4
t2
1 t2

2 t2
3 t2

4
− exp(−st1) − exp(−st2) − exp(−st3) − exp(−st4)


under any a ≤ t1 < t2 < t3 < t4 ≤ b is strictly positive.
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Use Wronskian to Check T-systems

Theorem
If the Wronskian Matrix is positive definite, the system is T-system.

Example: {1, t, t2,− exp(−st)}: write down Wronskian
1 t t2 − exp(−st)
0 1 2t s exp(−st)
0 0 2 −s2 exp(−st)
0 0 0 s3 exp(−st)


Wronskian is positive definite ⇒ T-system.
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Tcheycheff Systems (Informal Theorem)

Solve Partial Information Optimization (POPT):

max \min{θW : F,G have partial information}.

First Step: choosing proper large Ma,Ms for original F and G (ε ≈ 0.001).

P(U > MaE[U]) = P(U > Ma) = P(V > MsE[V]) = P(V > ρMs) = ϵ

Examples: θV = limx→∞ log(P(V > x))/x.

• M : P(V > MsE[V]) ≈ exp(−θVMs), θV = 1/ρ.
• H2 : P(V > MsE[V]) ≈ exp(−θVMs), θV = 1 −

√
(c2

s − 1)/(c2
s + 1)

Pick ε = 0.001, Ms = 7, 9 for M and Ms = 31.1, 39.9 for H2.
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Applying Tcheycheff Systems

Partial information is the two moments of F, solve POPT

max \min

∫ Ma

0
exp(−st)dF(t)

subject to
∫ Ma

0
dF(t) = 1,

∫ Ma

0
tdF(t) = 1,

∫ Ma

0
t2dF(t) = (1 + c2

a)

Theorem
If {1, t, t2} is a T-system and if {1, t, t2,− exp(−st)} for some s > 0 is a
T-system, the optimum (maximization, minimization) are unique and
they are specific 2-point distributions (F0,Fu) for any Ma > 1 + c2

a.
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Extremal Theorem for Decay Rates

F0: one at 0, one at (0,Ma), Fu: one at (0,Ma) and one at Ma, meet the
first two moments 1 and 1 + c2

a. (similar for G0,Gu)

Theorem

Let F0,Fu,G0 and Gu be the two-point extremal cdf’s for the GI/GI/1
queue defined above.
For all F ∈ Pa,2(1, c2

a + 1,Ma) and G ∈ Ps,2(ρ, ρ2(c2
s + 1,Ms)),

θW(F0,Gu) ≤ θW(F,G) ≤ θW(Fu,G0).
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The First Set-valued Approximations

Table 2: Evaluation of E[W] for Fu/G0/1 and F0/Gu/1 with (Ma,Ms)

c2
a = c2

s = 1

ρ Tight LB Ma = 9 Ma = 7 HTA Ms = 7 Ms = 9 Tight UB
0.50 0.000 0.122 0.162 0.500 0.810 0.821 0.846
0.70 0.467 0.970 1.130 1.633 2.025 2.036 2.071
0.90 3.600 7.265 7.596 8.100 8.564 8.579 8.620

c2
a = c2

s = 4

ρ Tight LB Ma = 39.9 Ma = 31.1 HTA Ms = 31.1 Ms = 39.9 Tight UB
0.50 0.750 1.013 1.097 2.000 3.419 3.430 3.470
0.70 2.917 4.303 4.748 6.533 8.384 8.394 8.441
0.90 15.750 28.924 30.239 32.400 34.658 34.671 34.721
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More Partial Information

• Third moments for inter-arrival and service distribution
• Typical values of Laplace transforms

f̂(s), s = µa > 0, 1/ĝ(−s), s = µs, 0 < µs < s∗

s∗ is the first singularity of mgf of G.
Theorem

Let FL,FU,GL and GU be the three-point extremal cdf’s for the GI/GI/1.

For F ∈ Pa,2(1, c2
a + 1,ma,3, µa,Ma),G ∈ Ps,2(ρ, ρ2(c2

s + 1),ms,3, µs,Ms),
the following four pairs of lower and upper bounds for θW(F,G) are valid
(µa, µs > 0):

(i) θW(FL,GU) ≤ θW(F,G) ≤ θW(FU,GL) if µs, µs ≤ θW

(ii) θW(FU,GU) ≤ θW(F,G) ≤ θW(FL,GL) if µs ≤ θW ≤ µa

(iii) θW(FU,GL) ≤ θW(F,G) ≤ θW(FL,GU) if θW ≤ µs, µa, µs < s∗

(iv) θW(FL,GL) ≤ θW(F,G) ≤ θW(FU,GU) if µa ≤ θW ≤ µs < s∗.
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M/M/1 Example

• (i) µa, µs ≤ θW, (ii) µs ≤ θW ≤ µa

• (iii) µa, µs ≥ θW, µs < s∗, (iv) µa ≤ θW ≤ µs < s∗

We use µ = θW/R or µ = θWR for R = 5, 10, 20.

Table 3: Bounds for θW (exact) and E[W] (approximate) for ρ = 0.7 and
c2

a = c2
s = 1 based on M/M/1 (For reference, exact values for M/M/1 are

θW = (1 − ρ)/ρ = 0.4286 and E[W] = ρ2/(1 − ρ) = 1.63)

case θW E[W] case θW E[W]

R = 5 10 20 R = 5 10 20 R = 5 10 20 R = 5 10 20
(i) 0.426 0.425 0.425 1.67 1.67 1.68 (ii) 0.421 0.418 0.415 1.59 1.62 1.68

0.432 0.432 0.439 1.65 1.65 1.56 0.434 0.437 0.446 1.53 1.56 1.61
(iii) 0.422 0.417 0.409 1.71 1.72 1.71 (iv) 0.426 0.424 0.418 1.61 1.60 1.57

0.434 0.436 0.436 1.65 1.63 1.62 0.431 0.432 0.429 1.60 1.61 1.63
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Set-valued Approximations for GI/GI/K

We extend the approach to GI/GI/K models via using decay rate θW is
same as that in GI/GI/1 models.

Table 4: The set-valued approximations for E[W] in GI/GI/2 for
ρ ∈ {0.5, 0.7, 0.9} and R ∈ {5, 10, 20}

ρ = 0.5 c2
a = c2

s = 1 ρ = 0.7 c2
a = c2

s = 1 ρ = 0.9 c2
a = c2

s = 1
R 5 10 20 R 5 10 20 R 5 10 20

UB 0.353 0.405 0.427 UB 1.34 1.39 1.41 UB 7.69 7.69 7.71
LB 0.290 0.262 0.251 LB 1.30 1.31 1.33 LB 7.67 7.62 7.61

ρ = 0.5 c2
a = c2

s = 4 ρ = 0.7 c2
a = c2

s = 4 ρ = 0.9 c2
a = c2

s = 4
R 5 10 20 R 5 10 20 R 5 10 20

UB 1.34 1.44 1.68 UB 5.29 5.37 5.76 UB 30.6 30.4 31.6
LB 1.30 1.27 1.21 LB 5.58 5.54 5.49 LB 30.9 30.7 30.8

Exact Solutions: E[W(M,M)] = 0.333, 1.345, 7.67 under ρ = 0.5, 0.7, 0.9.
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Summary

A new performance analysis method for GI/GI/K models:

• Truncate unknown models by setting proper Ma,Ms

• Solve optimizations for decay rates to determine extremal
distributions

• Simulate extremal models to obtain the set-valued approximations

Under partial information: set-valued approximations such that

lowervalue ≤ truesolutions ≤ uppervalue.
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Thank You!
Paper is available in http : //www.columbia.edu/ ww2040/allpapers.html
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