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The Purpose of Delay Announcements

Why might a service system manager want to tell each customer an

estimate of the delay that customer will experience?

Improve customer satisfaction.

Propositions about the Psychology of Waiting, Maister (1985), Lec. 1

Uncertain Waits feel longer than known finite waits.

Anxiety makes waits seem longer.

Unexplained Waits feel longer than explained waits.

Improve performance for the customers who are served.

By inducing some customers to balk or abandon earlier and then

retry later when the system is more lightly loaded.



Making Delay Announcements: Some Questions

What delay to predict?

delay before entering service (assuming will not abandon)

response time, i.e., delay until completing service

When to predict and announce?

immediately upon arrival

throughout time in queue (continuously or periodically)

What to announce/report? Customer ability to process information?

single number w, may be different for each customer

full distribution or partial summary, e.g., mean and variance.

past prediction accuracy average error or variance.

explanation of cause of delay.



Examples of Possible Delay Announcements

When the delay will be short:

“We should be able to serve you soon. The last customer to enter service

waited only one minute.” (Aims to encourage customer to wait.)

When the delay will be long:

“We are currently experiencing unexpected high demand; the last

customer to enter service had to wait w minutes before beginning

service. We will do our best to serve you without excessive delay, but

you might want to try again later.” (Aims to encourage customer to balk

or abandon sooner and then retry later. By doing so, aims to provide

better service to the customers who are served.)



Problem for Today: Delay Prediction

Assume the standard multi-server queueing system with random

arrivals, service times and patience times, given system history up to

arrival time.

Given that we will announce, immediately upon arrival, our best

estimate of a single number w to each customer who has to wait

before starting service, how should we predict w and how accurate is

our prediction?

Two Approaches: simplicity versus complexity.



Information to Exploit

full model: distributions and parameters

no information: steady-state E[Wait|Wait > 0]

delay history (major focus)

queue length

with and without customer abandonment

queue length and elapsed service times

queue length, customer classes and elapsed service times



Alternative Real-Time Delay Predictors

Assume the standard multi-server queueing system with random arrivals,

service times and patience times, given system history up to arrival time.

Mean Steady-State Delay for the model (but model error?)

Standard Simple Queue-Length-Based Delay Predictor QLs

Delay Experienced by the Last to Enter Service (LES)

Elapsed Delay of the Customer at the Head of Line (HOL)

Refined Predictors

calculate E[Wait|Q(t) = n] or E[Wait|entire history at t]

fluid model refinements



The Standard Simple Queue-Length-Based Delay Predictor

Servers

New arrival 

Queue

n customers in line upon arrival

s = number of agents, and µ−1 = mean service time

θQLs(n) ≡ (n + 1)× µ−1

s



The Head-of-Line (HOL) Delay Predictor
Servers

HOL
Elapsed delay at t is

equal to w 

New arrival at t

Queue

w = elapsed delay of HOL customer (similar to LES delay)

θHOL(w) ≡ w



Actual Random Delays After Prediction

WHOL(w): distributed as the delay of a new arriving customer given that:

(i) there is a customer at the HOL upon arrival (non-restrictive)

(ii) elapsed delay of HOL customer is equal to w

WQ(n): distributed as the delay of a new arriving customer given that:

(i) the customer has to wait

(ii) the customer finds n customers in line upon arrival

For example, with HOL, we announce θHOL(w) ≡ w.

w is a single-number prediction of the random variable WHOL(w).



Quantifying The Accuracy of the Predictors

Mean Squared Error (MSE)

MSE(θQLs(n)) = E[(WQ(n)− θQLs(n))2]

E[MSE(θQLs(Qw
∞))] =

∞∑
n=0

MSE(θQLs(n))P[Qw
∞ = n]

Qw
∞ has the conditional distribution of the steady-state QL upon arrival

given that the customer must wait.



How to Evaluate Predictors with Simulation

Simulation Estimate of MSE: Average Squared Error (ASE)

ASE ≡ 1
k

k∑
i=1

(pi − di)
2 (k = sample size)

pi = predicted delay for customer i (pi > 0)

di = actual delay (or potential delay with abandonments)

Root Relative Average Squared Error (RASE)

RASE ≡
√

ASE
1
k

∑k
i=1 di

(We will express the RASE in percent terms.)



Different Cases (Models) to Consider

Assume the standard multi-server queueing system with random arrivals,

service times and patience times, given system history up to arrival time.

A/M/s (stationary model without abandonment)

abandonment: A/M/s + M

non-exponential abandonment: A/M/s + GI

time-varying arrivals: Mt/M/s and Mt/M/s + M



QLs in the GI/M/s Model (or A/M/s)

WQ(n) =

n+1∑
i=1

Vi

where Vi i.i.d. exponential with mean (sµ)−1

E[WQ(n)] =

n+1∑
i=1

E[Vi] =

n+1∑
i=1

1
sµ

=
n + 1

sµ
≡ θQLs(n)

MSE(θQLs(n)) = Var[WQ(n)] =
n+1∑
i=1

Var[Vi] =
n+1∑
i=1

1
s2µ2 =

n + 1
s2µ2

θQLs(n) is an unbiased estimator. It minimizes the MSE!



Compare QLs to Steady-State Mean in the GI/M/s Model

In steady state, 1 + Q|W > 0 is geometric on {1, 2, . . .} with mean 1/(1− ρ)

as in M/M/1 with service rate sµ and W|W > 0 is exponential with

E[W|W > 0] =
1

sµ(1− ρ)
and Var[W|W > 0] =

1
s2µ2(1− ρ)2

RSE(W|W > 0) ≡
√

Var[W|W > 0]

E[W|W > 0]
= 1

In contrast,

E[WQ(n)] =
n + 1

sµ
, Var[WQ(n)] =

n + 1
s2µ2

RMSE(θQLs(n)) =

√
Var[WQ(n)]

E[WQ(n)]
=

1√
n + 1

≈ 1√
n



Compare QLs to Steady-State Mean in the GI/M/s Model

E[MSE(θQLs(Qw
∞))] =

∞∑
n=0

MSE(θQLs(n))P[Qw
∞ = n]

=

∞∑
n=0

Var(θQLs(n))P(Qw
∞ = n) =

∞∑
n=0

n + 1
s2µ2 P(Qw

∞ = n)

=
1

s2µ2(1− ρ)

Hence, it is much better to use the information:

Var(W|W > 0)

E[Var(WQ(Q∞))]
=

1/s2µ2(1− ρ)2

1/s2µ2(1− ρ)
=

1
1− ρ

.



HOL in the M/M/s Model

WHOL(w) =

A(w)+2∑
i=1

Vi

where Vi i.i.d. exponential with mean (sµ)−1

⇓

E[WHOL(w)] = E

A(w)+2∑
i=1

Vi

 = E[A(w) + 2]E[V] 6= w ≡ θHOL(w)

MSE(θHOL(w)) depends on Var[A(w)].



Simulations for the GI/M/s Model: Poisson Arrivals

In Tables: ASE’s in units of 10−3 (RASE in %); ρ = λ/sµ; c2
a = Var/mean2.

M/M/100

ρ QLs HOL HOL/QLs (c2
a + 1)/ρ

0.98 5.03 (14%) 10.2 (20%) 2.03 2.04

0.95 2.04 (22%) 4.27 (32%) 2.09 2.11

0.93 1.44 (26%) 3.08 (39%) 2.14 2.15

0.90 0.994 (32%) 2.19 (47%) 2.20 2.22

Similar for other renewal arrival processes: ratio ≈ (c2
a + 1)/ρ.



Simulations for the GI/M/s Model: Deterministic Arrivals

In Tables: ASE’s in units of 10−3 (RASE in %); ρ = λ/sµ; c2
a = Var/mean2.

D/M/100

ρ QLs HOL HOL /QLs (c2
a + 1)/ρ

0.98 2.48 (20%) 2.62 (21%) 1.06 1.02

0.95 1.01 (32%) 1.15 (34%) 1.14 1.05

0.93 0.725 (37%) 0.871 (41%) 1.20 1.08

0.90 0.519 (44%) 0.664 (50%) 1.28 1.11



Abandonments: Simulations for the M/M/s + M Model
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WQ(n) in the GI/M/s + M Model

WQ(n): distributed as the potential delay of a new arriving customer given

that:

(i) the customer has to wait

(ii) the customer finds n customers in line upon arrival

WQ(n) =

n∑
i=0

Xi

where Xi independent exponential with mean (sµ+ iν)−1

⇓

E[WQ(n)] =
n∑

i=0

E[Xi] =
n∑

i=0

1/(sµ+ iν)



Markovian QL Predictor (QLm)

The Markovian Queue-Length Predictor (QLm)

θQLm(n) =

n∑
i=0

1
sµ+ iν

QLm in the GI/M/s + M Model

θQLm(n) =

n∑
i=0

1/(sµ+ iν) = E[WQ(n)]

⇓

θQLm(n) minimizes the MSE!



Refined QL Predictor for Same M/M/s + M Model
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But when the Abandonment Distribution is Not Exponential
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Time-Varying Arrival Rates

arrivals per hour to a medium-sized financial-services call center



HOL Delay Prediction in the Mt/M/100 Model
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HOL Delay Prediction With Constant Arrival Rate
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Problem: Time Lag in HOL Delay

HOL delay was potential delay of arrival in the past.

Use fluid model to create refined predictor.

v(t) potential delay of new arrival in fluid model at time t

w(t) HOL delay in the fluid model at time t

θHOLr (w, t) =
v(t)
w(t)

× w,

where w is observed HOL delay at time t in actual system.



HOLr Delay Prediction in the Mt/M/100 Model
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SUMMARY

We have shown how to predict delays to make delay announcements.

1 The simple queue-length estimator θQLs(n) is optimal for G/M/s, but

HOL (and LES) is not too bad.

2 θQLs(n) can perform poorly with abandonments, while HOL is robust.

3 For the G/M/s + M model, a new Markovian estimator is optimal.

4 But when the patience times are not exponential, it too can perform poorly.

New refined estimators can do better. HOL remains robust.

5 With time-varying arrivals, even HOL can perform poorly, but fluid

models can be used to refine the HOL estimator.



The End
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