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 Econometrica, Vol. 43, No. 1 (January, 1975)

 CONGESTION TOLLS FOR POISSON QUEUING PROCESSES

 BY NOEL M. EDELSON AND DAVID K. HILDEBRAND

 The relationship between Pareto optimal (0s) and revenue maximizing (Or) tolls is exam-
 ined for queuing models that permit balking. When customers have the same value for

 waiting time, Q, =Or provided the entrepreneur can impose a simple two-part tariff. With
 heterogeneous values for waiting time, Or can be greater than, equal to, or less than H,.
 Expanding the number of servers and charging multi-part tariffs are shown to be alternative
 methods for segmenting the market, and the welfare implications of these two strategies
 are explored.

 1. REVIEW OF NAOR'S MODEL

 P. NAOR [3] has examined the relationship between Pareto optimal and revenue

 maximizing tolls for a queuing model that permits balking. Consider an M/M/1

 queue with gross accession rate i and service rate p. Because an arriving customer
 need not join the queue, existence of a steady state does not require that p = A/u
 be less than unity. Each customer has a cost per unit of service and waiting time, c,
 and receives a benefit R if he is served by the facility. If an arriving customer finds q

 people ahead of him, he faces an expected waiting plus service time of (q + 1)/4.
 The toll charged by the facility, 0, determines a critical queue size, n, such that the

 customer balks if q ) n. Assuming that there is no specific balking cost, the

 customer's decision rule is: join queue if 0 + c(q + 1)/, < R (if q < n); balk if
 0 + c(q + 1)/AU > R (if q > n).

 Expressions (i), (ii), and (iii) report Naor's results for expected queue size,
 E[q], the expected number of customers diverted per unit time, X, and the expected

 number of customers joining the queue per unit time, -

 (i) E[q] P (n + I)pn 1

 (iii) Ap - = n(+P 1 - Pp)
 0 0 lP n+1,

 (1 - pfl (iii) A - =n)

 Naor's social welfare function, P, is expected benefits per unit time, P =

 ( -)R - cE[q]. Expected revenue per unit time, M, is given by M = (A-4)0 =
 (A - ()(R - cn/l).

 The point of Naor's article is to show that the value of n which maximizes P is
 greater than that which maximizes M, i.e., the revenue maximizing toll exceeds the
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 82 N. M. EDELSON AND D. K. HILDEBRAND

 socially optimal toll.' Yechiali [5] reaches a similar conclusion if a penalty charge
 is imposed for balking. These results differ from that obtained for a non-stochastic

 model by Edelson [1]; there it is proved that when customers have the same value

 for time, the Pareto optimal and revenue maximizing tolls are identical.

 In the next section we demonstrate that the same toll maximizes P and M in an

 M/M/1 queue where no balking is allowed, and explain why balking upsets that

 equivalence. It is also shown that, even if balking is allowed, the revenue maximizing

 and Pareto optimal tolls are identical if the server sells in advance rights to service,

 with a predetermined toll if service is rendered.

 2. EQUIVALENCE OF 0O AND or WHEN ALL CUSTOMERS

 HAVE THE SAME VALUE FOR TIME

 We can interpret Naor's R, the benefit from service, as the total cost of being

 served at an alternate facility. Let the money toll at that facility be -r, which we
 suppose equals the real resource cost per customer; expected waiting plus service

 time there, y, is assumed to be independent of customer flow to avoid reciprocal

 externalities. Following Naor we assume Poisson arrival and service distributions

 with parameters A and p respectively, but customers are not allowed to balk.
 An irrevocable decision to join one of the queues must be made before observing
 the state of the system.

 Although a customer does not know in advance his actual waiting plus service

 time, he is assumed to have an expectation, based on past experience, of what the
 expected time cost will be at each facility. Suppose that a customer patronizes

 one facility exclusively, and the set of potential customers is partitioned such

 that a fraction A(O)/X patronize the 0-facility and a fraction 1 - A(0)/X the z-facility,
 where A is the exogenous total arrival rate. This partition ensures that the arrival

 rate at the 0-facility is A(0) and A - A(0) at the z-facility. The system is said to be in
 statistical equilibrium if the partition is one where no customer has an incentive

 to change servers because his subjective estimates of expected waiting plus service

 time differ from those determined by arrival rates A(0) and A - A(0).
 Therefore, if 0 is to be an equilibrium toll, A(0) must be such that customers are

 indifferent (ex-ante) between patronizing the two facilities. Equating total expected

 costs, we have

 (1) 0 + cE[t;0] = ?c + c,

 where E[t; 0] is expected waiting plus service time given a toll 0. As Little [2] has
 shown for general queuing processes, in a steady state E[t; 0] equals expected

 1 A peculiar feature of this model, apparently overlooked by Naor, is that a revenue maximizer
 may find it profitable to expand resources for reducing I/,u, when this is inappropriate from a social
 point of view. In a deterministic model, a downward shift of the marginal cost curve must increase the
 sum of consumer plus producer surplus for a competitive industry by more than it increases the profits
 of the same industry operated by a monopolist. But with Naor's model, if ji rises from 1 to 5/2 while
 R = 9, c = 2, A = 0.5, AM - 1.39 (optimal n rises from 1 to 2) and AP - 1.27 (optimal n is unchanged
 at 3). Therefore, if the cost per time of a,u = 5/2-1 were between 1.39 and 1.27, a monopolist would
 invest in increasing the service rate although expected social benefits are lowered by this action.
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 CONGESTION TOLLS 83

 queue size, E[q; 4], divided by the arrival (departure) rate A(0):

 (2) E[t; 0] = E[q;O0] _ p(O) , ( 1
 L' ,(O) - 240)[I1 - M()] ()

 If 0 zT and E[t; 0] T , facilities charging a higher toll must offer shorter
 expected waiting plus service times. A higher toll reduces expected waiting time by
 decreasing the arrival rate, i.e., i'(O) < 0. Of course, a customer who arrives when

 the actual queue size exceeds (is less than) 4 will be disappointed (pleased) that he
 chose the facility charging 0, where

 p(O)
 q =1 - p(O)

 Now consider the values for 0 that maximize expected social welfare and expected
 revenue. Expected social welfare per unit time equals expected gross benefits
 per unit time (gross benefits per customer times expected customers per unit time)
 less expected service costs per unit time (c times expected queue size). Toll revenue
 is not included in the objective function, since it is simply a transfer of income from
 one social group (customers) to another (owners of the facility). The socially

 optimal toll, Os, must be such that A(0) maximizes

 (3) 2(O)(z + cT) - cE[q; 0],

 where 2(0) and E[q; 0] are determined implicitly by equation (1).
 A revenue maximizer, on the other hand, will seek to maximize 2(0) . 0. Let the

 revenue maximizing toll be Or. By (1), Or equals expected net benefits per customer.

 (4) or = T + cy-cE[t; Or] = T + CT 0[q) ']

 Therefore, the entrepreneur's objective function is identical to (3), and 0 =Or
 The objective functions are different in Naor's model because balking makes

 expected net benefits per customer greater than 0; if arrivals do not join when
 q ) n, expected queue size must be less than n. Those customers arriving when
 q < n obtain inframarginal benefits which are included in P but not in M. A private

 entrepreneur counts only the toll he receives, and by making Or > 0, he is able to
 expropriate some of his customers' inframarginal benefits. Because social welfare
 is below its maximal value, the extra revenue attained at Or is less than the additional
 cost imposed on balking customers.

 The no-balking model M/M/1 is easily extended to incorporate heterogeneous

 values for c. The structure of the model and its qualitative results are identical
 to those obtained by Edelson [1] for a non-stochastic problem: (1) a Pareto optimal

 toll must be strictly positive and not equal to T, i.e., 0, > 0 and 0, < T or O, > T;
 (2) if O > T, the revenue maximizing toll may be below Os, i.e., a private entre-
 preneur may attract a customer flow larger than the Pareto optimal rate. A sketch
 of the M/M/1 model, which assumes a distribution of values for c over the popula-
 tion of customers, is included in Appendix A.
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 84 N. M. EDELSON AND D. K. HILDEBRAND

 It can also be shown that s = Or if the entrepreneur can impose a two-part
 tariff, selling rights to service valid for a predetermined period with a specific
 toll if service is rendered.2 The length of the validation period is independent
 of the actual queue size when the right is issued, and customers who are waiting
 or in service when their rights expire are served. It is also assumed that the valida-
 tion period is sufficiently long so that we can ignore transient effects before the
 queuing process reaches a new statistical equilibrium following, e.g., a change in 0.
 To preserve the constancy of c we assume either that a customer demands at most
 one service during the validation period or that the value of each service is inde-
 pendent of the number of requests. The equilibrium price for such a right is the
 customer's expected gain,

 (5) i L Zi [- + C7- 0- C ]+1

 where i is the probability that an individual arrives for service during the period
 for which his right is valid; 7i is the probability that the queue is of size i when he
 arrives; 0 is the toll payable if service is rendered; and n is the queue size at which a
 customer balks, given the toll 0. Expected revenue per customer is

 (6) iE L 7 0 c( + 1)1 ?JO E
 i=o i=o

 - n-1 L ? - C(i + 1)
 i L i T + CT - -

 Due to the constancy of c, revenue per customer is independent of 0 except
 through n. The server's total revenue per time period is revenue per customer
 times the number of potential customers, N. Note that )N = i, since the proba-
 bility of an individual arriving times the number of individuals equals the gross
 accession rate. The server's objective is to select a critical queue size, by selecting a
 toll 0, which maximizes

 n - IlL(i?l)1
 (7) A L 7ri [z + cy_C7 i+1)

 i=o

 But (7) is identical to Naor's social welfare function, since A Xi -- 7i is the expected
 flow of accommodated arrivals;

 n n-1 n-1 n-i

 -E Ri(i + 1) = c E p7i(i + 1) = C E ri+1(i + 1)
 i=O i=O i=O

 n

 - c E i7i = cE[qln].
 i= 1

 That a revenue maximizing entrepreneur will select the socially optimal value
 for n is another example of the proposition on two-part tariffs stated by Oi [4].

 2 This two-part tariff is analogous to the scheme proposed in Edelson's deterministic model [1,
 p. 874, footnote 3].
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 CONGESTION TOLLS 85

 A single price is charged for the right to service because all customers are identical,
 and 0 in (5) is the toll which sustains a socially optimal balk decision as a private
 equilibrium.

 3. M/M/I MODEL WITH BALKING AND DIFFERENT VALUES FOR C

 Different values for c can arise because customers ascribe different costs to
 waiting or because an individual customer makes repeated arrivals with a diminish-
 ing marginal value for service. Heterogeneity in c adds a significant dimension to
 the balking problem, since to determine Os and Or one must calculate the expected
 numbers of waiting customers of each type, not just the expected queue size. To our
 knowledge, this problem has not previously been considered.

 Let c1 > c2 be the cost of time for two customer types, A, and X2 their respective
 arrival rates, and ,uI = P2 = j1 their common service rate. The queue size at
 which a customer of type i balks, ni, is defined by the inequalities

 -c - 0 Ir _ 0
 (8) 8 + ni > 1 c 7 -1.

 Since the critical queue size for the customer with the higher (lower) time cost is
 less (more) sensitive to changes in the money toll, n1 ' n2 as 0 -1. The higher the
 toll, the greater the expected proportion of type 1 customers in the queue. If
 1- c2 and A -A2 are large enough, an optimal solution may require n2 = 0,

 .e., 0 > -r + c2y, so low-time-value individuals never patronize the facility.
 Note, however, that if the same toll must be charged to all customers, certain
 (n1, n2) pairs are inconsistent with individual maximization.

 (9) P = (A1 - Cl)(r + C17) + (A2 - C2)(r + C27) - clE[ql;0] - c2E[q2;O]

 where Si = Ai prob {q > nil, ni are determined by (8), and E[qi; 0] is the expected
 number of type i customers in the queue given a toll 0. If no discrimination between
 customer types is possible, expected revenue per unit time is

 (10) M = [(1 - C) + (A2 - CA0

 where

 0 = T + cl Iy- T + C2 87- -

 To determine the E[qi; 0] we introduce an "indicator function," a concept
 familiar to mathematical probabilists but one not widely exploited in applied work.
 For simplicity, we consider only two customer types and relegate the general case
 to Appendix C. The indicator function for position k at time t is defined as

 1 if position k is occupied by a customer of type 1 at time t,

 (I1) ik(t) = 0 if position k is unoccupied or occupied by a customer of
 type 2 at time t.
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 86 N. M. EDELSON AND D. K. HILDEBRAND

 Positions in the system are numbered as follows: 0 is the server, while places in the

 queue go from 1 (next in line for service) to n2 -1 (the queue size at which all
 arrivals balk, given 0 > z.

 Since type 1 customers balk if q ?, n1, In1(t), I,,?(t) are automatically
 zero. Consequently, the total number of type 1 customers in the system at time t,

 qj(t), is simply
 n1-I

 q 1 (t) = E Ik(t).
 k = O

 To find E[q,(t); 0] we need only evaluate E[IJ(t)1 for k = 0, 1,..., n1- 1. The
 expression E[q2(t); 01 is determined as the difference between expected queue size,
 E[q; 0], and E[q1; 0].

 The proof is based on the fact that q(t) and (q(t), Io(t), ... InI - 1(t)) are continuous-
 time Markov processes. We first write equations for E[Ik(t + h)] conditional
 upon Ik(t) and q(t), which lead to differential equations in standard fashion.
 Solving for the steady state solution and taking expectations over q(t) we obtain

 E[lk(t)] = E[Ik]. For the two category case, the proof in Appendix B demonstrates
 that

 n- 1

 (12a) E[q1;0] = P1 E (k + 1)pk7ro
 k = O

 = oPi(1 - p) [(1- p) -(1 - p)nI - npln]

 (12b) E[q;0] = ir{(1 p)-2pF(p,n) + pnfl( -P2)-2P2G(P2,nl,n2),

 (I 2c) E[q2; 0] = E[q; 0] -E[q 0],

 where

 pi=ii/l, i=1, 2,

 '1 + '2
 P P1 + P2 = I

 ~nl n2 --

 Zo , p~k + pni Y k- 0=L Pk?=O k=n1 + 1

 (probability that there are no customers in the system),

 F(p, n 1 ) I pn (I1 - p)n pn 1,

 G(p2, nl,n2) = (1 pn2-nl)(l + n - np2) - (n2 - nl)( -P2)Pn2-n

 With only two customer types P, the social welfare function, is unimodal in 0
 but M, the revenue function, is bimodal. As in a deterministic model Or can be
 greater than, equal to, or less than O, if cl =A c2. The paradoxical case, Or < O,
 occurs if c1/c2 is large relative to )22/1 , but not so large that the optimal toll

 When 0 < T, the maximal queue length is n, - 1, so the analysis is identical with just a change in
 notation.
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 CONGESTION TOLLS 87

 completely excludes low-time-value customers. For example, let ,u = 1, z = 100,
 and y = 3. When A1 = 0.35,X2 = 1.00, C1 = 100, andc2 = 10, it can be shown that
 Or = 100 < OS = 120. With these parameter values price is too low even if direct
 price discrimination is feasible. The Pareto optimal pair of tolls is (O' = 200,
 0= 120), where (O' = 200, O2 = I 10). If A1 decreases to 0.25 and c2 increases to 15,
 or = Os = 115. The usual monopoly result, or> O, occurs with the above para-
 meter values if c1 falls from 100 to 50. Curiously, Or = Os for a wide range of values
 for cl if c2 = 10. In all cases where we found Or 0 Os, the percentage loss in expected
 welfare was small.

 Although a two-part tariff is Pareto optimal when customers have the same value
 for time, this is not necessarily the case when cl #A c2 . In fact, a revenue maximizing
 two-part tariff will produce a lower level of expected social welfare than a single

 toll if Or < OS and 0 < Or. The latter inequality is satisfied if the minimum offer
 for a service option comes from low-time-value customers,4 a condition which is
 met if the arrival rates are high enough to ensure that Or is not much smaller than r.

 Consider the parameter set Al = 0.25, X2 = 1.00, c1 = 100, and c2 = 8, for which
 Or = 100 and Os = 108. With a two-part tariff the price for a service option is 7.32
 (a high-time-value customer offers 46.04), and the charge for service is 92. Expected
 social welfare at this equilibrium is only 98.91, as compared with 101.26 at Or = 100.
 It is also possible to construct examples where Os = Or, but the charge for service
 under a two-part tariff is less than Os.

 Another interesting question is whether a monopolist will install the socially
 optimal number of servers. Since a different price can be charged at each service
 facility, expanding the number of facilities is a way to segment the market. It is
 often claimed that goods provided through a political process are overly standard-
 ized, since in the absence of logrolling a majority coalition will impose its preference
 on the rest of society. The opportunity for practicing price discrimination suggests
 that an opposite bias may exist in private markets.

 There is a situation where a monopolist will necessarily install the socially
 optimal number of servers and charge the socially optimal toll at each facility.
 Suppose that Pareto optimality requires at least one server for each customer type,
 and that under a two-part tariff no customer finds it worthwhile to affiliate with
 more than one server. It is clear that a profit maximizer will segment the market and,

 Expected revenue under a two-part tariff is, if both customer types purchase the service option,

 2 2 + + A2{min Z 7t[T + Ci - ( ) + oAl E 1j + A2 1 ]

 where the ni are determined by 0 in the usual fashion. At small values for 0 high-time-value customers
 determine the price of a service option, since it is they who have the smaller consumer surpluses, but
 before 0 = z low-time-value customers become decisive. Consumer surplus for a low-time-value
 customer is a decreasing function of 0, whereas the opposite is true for a high-time-value customer if
 2 < 2. Therefore, a sufficient condition for 0 ? 0o is that at 0o the service option price be determined
 by the low-time-value customers. If this is so, increasing 0 above or decreases both the toll component
 of expected revenue and the proceeds from sale of service options. This leaves open the possibility that
 0 > 0o if or is small enough so that the service option price is set by high-time-value customers. We
 were not able to construct such a case, however. The outcome 0 > 0r seems unlikely because in a deter-
 ministic model, the price per unit of output under a two-part tariff must be less than the single monopoly
 price [4, Equation 10].
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 88 N. M. EDELSON AND D. K. HILDEBRAND

 invoking the result from Section 2, the two-part tariff at each facility will be Pareto
 optimal.

 If the entrepreneur is restricted to charging simple tolls, however, it is possible
 that he will invest in an excessive number of servers. Suppose that with two custo-
 mer types and two servers, high-time-value customers patronize only the high toll
 facility and vice versa.5 Consider the parameter set A1 = 0.35, X2 = 1.00, C1 = 100,
 and c2 = 10. With a single server or = 100 < O, = 120, and at the revenue
 maximizing toll expected revenue is 84.92 and expected social welfare 107.65.
 If there are two specialized servers, expected revenue is maximized at 152.78 if
 01 = 200 and 02 = 100. At these tolls expected social welfare is 160.28. The increase
 in expected revenue, 152.78 - 84.92 = 67.86, exceeds the increase in expected
 social welfare at the revenue maximizing tolls, 160.28 - 107.65 = 52.63.

 Although it would be profitable for a monopolist to install a second server if its
 cost per unit time were, say, 60, from the point of view of Pareto optimality that
 investment should not be undertaken. Investment in a second server may be

 privately profitable but socially undesirable even if, with a single server, or = O,
 The paradox arises, of course, because assigning property rights to a monopolist
 places the problem in a second-best context. If Pareto optimal tolls were charged
 on the two specialized facilities, as would be the case with a two-part tariff, a
 privately profitable investment would also increase expected social welfare.

 We reach somewhat different judgements about the provision of capacity if,
 for legal or administrative reasons, the same toll must be charged at each facility.
 Suppose that when there are z servers the arrival rate of customer type i at each
 server is Xi/Z.6 Numerical examples show that a profit maximizing monopolist is
 likely to install fewer than the optimal number of servers, since, except at isolated
 points, the change in expected revenue is less than the change in expected welfare.

 On the other hand, too many servers will exist if there is free entry subject to the
 requirement that every producer charge the prevailing toll. Excess capacity arises
 because each potential entrepreneur compares his share of industry expected
 revenue when there are (n + 1) servers with long run marginal cost, but the change
 in expected welfare is less than expected revenue per facility at the optimum
 number of servers. Note that a similar divergence between average private cost and
 marginal social cost is what justifies imposing a congestion toll on "peak-load"
 arrivals.

 5We were unable to solve for the steady state solution of a model where an arriving customer can
 scan two queues and join either one of them or balk to a third server represented by (z, y). An example
 of this situation is a restaurant offering sit-down or take-out service. Although a simple phase diagram
 can be drawn, expressions for the transition probabilities are quite complex around the balk point.

 6 In this model expected welfare (revenue) is obtained by multiplying expected welfare (revenue)
 per server, where the arrival rates are Ailz, by the number of servers. One complication is that if c1 is
 much larger than c2, neither expected welfare nor expected revenue is a unimodal function of n; in
 some instances the change in expected revenue exceeds the change in expected welfare as the number of
 servers is augmented by one. Moreover, in such cases the revenue maximizing toll sustains the balking
 rule (n, = 1, n2 = 0) when there are few servers, but Or decreases sharply at some critical value for z.
 The Pareto optimal toll is a more smoothly decreasing function of z.
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 CONGESTION TOLLS 89

 4. CONCLUSION S

 Incorporating heterogeneous values for waiting time into Naor's model is,
 in one sense, a disappointing exercise: one loses the implications that O is no

 larger than O, and that a two-part tariff is Pareto optimal without getting other
 concrete results in return. It is interesting to note that Or = fs for a wide range of

 parameter values, and that when Or # O, the percentage loss in expected welfare is
 quite small. In addition, the model provides insights into the relationship between

 price discrimination and excess capacity, and the benefit of charging two-part
 tariffs when facilities service a relatively homogeneous clientele.

 A useful technical contribution of the paper is its application of the indicator
 function technique to queuing theory. There appear to be many practical problems
 where a dichotomous classification of customers is an acceptable approximation,
 e.g., emergency vs. non-emergency medical cases, and in this situation the indicator
 function can easily determine an optimal configuration of tolls and servers.

 University of Pennsylvania

 Manuscript received February, 1973; revision received November, 1973.

 APPENDIX A

 A QUEUING MODEL WITHOUT BALKING WHERE THE ARRIVAL RATE DEPENDS ON TOLLS

 Order the population of potential customers in decreasing order with respect to their values for time.
 For any toll 0 > T, that segment of the population having value of time CL(6) will be indifferent between
 the two service facilities, where cL(0) is defined by

 (A 1) T + IcL(6) = 0 + CL(6)E[t; ].

 All customers with c > cL(6) prefer the 0-facility and vice-versa. For 0 < z there exists a cu(O) such that

 (A2) T + ycu(6) = 0 + cu(6)E[t; 0],

 and all customers with c < cu(6) prefer the 0-facility. If 0 > T (6 < T) raising 0 causes customers with the
 lowest (highest) values for time from among those patronizing the 0-facility to be diverted to the T-
 facility.

 Let CiL(O) > CL(0) be the average value for customers patronizing the 0-facility when 0 > r, and
 cu(6) < cu(6) when 0 < T. The expression for expected social welfare is the same as (3) except that
 CL(0) replaces c when 0 > z and cu(0) replaces c when 0 < T. Average revenue per customer, 0, is defined
 by (Al) and (A2), respectively.

 It can be seen why 6r may be less than O. if 6, > T. Increasing expected customer flow by lowering 0
 increases expected waiting time, and the social welfare function evaluates this added delay in terms of
 cL(6). The private entrepreneur considers only the amount by which he must lower 0, and in (Al)
 E[t; 0] is multiplied by CL(0) < CL(6). The value of 6r can be less than ?s if the tendency to undervalue
 additional delays is large enough relative to the revenue maximizer's incentive to raise 0 in order to

 expropriate inframarginal benefits. The inequality ?r < 6, < r cannot occur because cu(0) > cu(0),
 i.e., the private entrepreneur overvalues the social cost of additional delays.
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 90 N. M. EDELSON AND D. K. HILDEBRAND

 APPENDIX B

 EXPECTED QUEUE COMPOSITION FOR THE TWO-CATEGORY CASE

 Since the system reduces to Naor's queueing process if n1 = 0, let n2 > n1 > 0. For h small and
 neglecting terms of order h2 and higher, the probability of a type 1 arrival is i 1h, while the probability of
 service completion, given q(t) > 1, is ph. Therefore,

 (B I) given q(t) = 0,

 E[IO(t + h)] = prob {IO(t + h) = I J - Ih;

 (B2) given q(t) = I and Io(t), all other Ik(t) being of necessity zero,

 E[IO(t + h)] (I - ph)Io(t)

 = (I - ph)IO(t) + phI1(t), since I1(t) = 0, and

 E[Il(t + h)] _Ih.

 Thus, if IO(t) = 1, E[IO(t + h)] is the probability of no service completion; if IO(t) = 0, which means a
 type 2 customer is in service, the probability that IO(t + h) = I is of order h2.

 (B3) Given q(t) = K, 2 S K < nI - 2, and NO1 I(t)1(t) ,K- I (t),

 E[Im(t + h)] (1 -ph)Im(t) + phIm+ l(t) (m = 0,1, . , K - 1),

 E[IK(t)1 _ Alh;

 (B4) given q(t) = K and n, -I < K n2- 1, since balking occurs,

 E[Im(t + h)] (I - ph)Im(t) + phIm+, (t) (m = 01, , .1 - 1),

 E[Im(t + h)] 0 (m = 1 , n2-).

 Next, take expectations over the Im(t), still conditional on q(t). The left-hand sides above become
 E[Im(t + h)] given q(t) alone, while the right-hand sides have Im(t) and Im,+ 1(t) replaced by their ex-
 pectations given q(t). Suppose that the process is in statistical equilibrium, so that the 7rK prob {q(t) =
 K) are constant over time. Multiplying by these UrK and adding, i.e., taking expectations over q(t), we
 obtain

 n, - 1 n -1

 E[IO(t + h)] Alh7ro + E (I - ph)E[I0(t)jq(t) = K]7K + E phE[I(t)jq(t) = K]7K
 K= 1 K=I

 = ~Ihito + (I - ph)E[Io(t)] + phE[I(t)]

 similarly, for 1 < m S n- 2. Note that for m = n- 1 we have

 E[Im(t + h)] = ) 1h7tn, -1 + (1 - ph)E[Inl - 1 (

 Now form the usual differential equations by taking the limit of

 - (E[Im(t + h)] - E[Im(t)]l
 h

 as h -O 0. These derivatives are all zero if the system is in statistical equilibrium, and we solve to get

 E[In, _1(t)1 =-rnl -I = P 17n -I1 and

 E[Im(t)] =-ltm + E[Im+ (t)] (O < m - 2)

 = P1(7m+ + . + -)r by induction.

 Therefore,

 n, - lnl I

 E[q1 0] = Z E[Im(t)] = Pi I (K + 1)l7K.
 m=0 K 0
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 CONGESTION TOLLS 91

 Evaluation of the ntK is straightforward, since q(t) is a simple Markov process. By the usual process of
 solving differential equations in the probabilities we find

 nK = pKn (K = 1,2,...,n,)

 nK=P P2 (K = n, + 1,..., n2).

 Therefore,

 (ni-I n2 )-

 = g = pK + pni s K-n s

 K=O K = n + I

 Of course, the formula for the probability of an empty queue, 7r0, assumes that P2 and p are not unity.

 The obvious limits exist when P2 1_ I or p -- 1.
 Substituting the values for ntK yield the expressions (12a), (12b), and (12c) in the text.

 APPENDIX C

 EXPECTED QUEUE COMPOSITION FOR THE MULTI-CATEGORY CASE

 Order the C customer types such that n1 > n1- . The indicator function for position K at time t is

 Ij,K(t = I1 if a customer of type j is in position K at time t,
 I,()=0 otherwise.

 Given q(t) < K - 1(1 ( K < mi - 1),

 E[IjK(t + h)] = o(h).

 Given q(t) = K and { Ij,K (t)0

 E[Ij,K(t + h)] = Aih + o(h).

 Given q(t) > K + I and {IjK t)},

 E[IjK(t + h)] = (I - ph)IjK(t) + phIj,K+ l(t) + o(h).
 Given q(t) = 0, and K = 0,

 E[Ijo(t + h)] = Ajh + o(h).

 Given q(t) > I and K = 0,

 E[IjIo(t + h)] = (I - ph)Ij o(t) + yhI j1(t) + o(h).

 First take conditional expectations, then expectations over q(t):

 E[Ij,K(t + h)] = nKAjh + (I - ih)E[IjK(t)] + phE[Ij+K 1(t)] + o(h), K m - 1.

 The differential equations in statistical equilibrium yield

 A.
 E[Ij,K(t] = nK + E[Ij,K+ 1(t)]

 as in the two category case. Since E[Ij,mj(t)] = 0,

 AMj- I

 E[Ij,K(01 = I 7r ZK 0 < K < mj - I
 K'= K

 The ntK are easily obtained because q(t) is a Markov process,

 prob q(t + h) = = ( 1 1h) prob {q(t) = 0} + ph prob {q(t) = 1 } + o(h).

 Therefore,

 R= -Ito, where ? = Z <
 I j= I
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 92 N. M. EDELSON AND D. K. HILDEBRAND

 and for K < m -I

 prob {q(t + h) = K - ' = tI1h prob {q(t) = K - 2) + ph prob {q(t) = K'

 + (I1- 1 h -ph) prob {q(t) = K-1,.

 By the usual manipulations,

 1 1
 rK = 7rK-1 + -?I 1 rKK-1 - -1I I rK-2

 p ii

 Assume inductively that 7rK - 1 = (/I Pl7)1 rK - 2. Then 7rK = (/) I r17K - 1 confirming the induction.
 For larger K, the only difference is the arrival rate. The same analysis yields

 Ii 7rK = -?lj7rK - 1, mj- I < K <- mi - 1

 where j=-' = j j- A more explicit solution is as follows:

 j K-m()x i-,l m1j 1 j K 2 -7 1.
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