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Abstract

We briefly review Donsker’s functional central limit theorem (FCLT), which is a generalization of
the classic central limit theorem (CLT). We then review FCLT’s for renewal processes and renewal-
reward processes and their generalization to other counting processes and random sums. We show
how to apply the continuous mapping and generalizations that preserve convergence in the function
space D. These methods have played an important role in establishing heavy-traffic limits for
queueing models.
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1 Fundamental Concepts

1.1 Donsker’s Functional Central Limit Theorem (FCLT)

Donsker’s FCLT is a generalization of the classical central limit theorem (CLT). To state the CLT, let

Xk, k ≥ 1, be independent and identically distributed (i.i.d.) random variables with finite mean m and

variance σ2 > 0. Let Sk ≡ X1 + · · · +Xk, k ≥ 1, be the partial sums of the first k random variables

Xk with S0 ≡ 0, where ≡ denotes equality by definition. Let N(m,σ2) be a random variable with a

normal (Gaussian) distribution having mean m and variance σ2. The CLT states that

n−1/2(Sn − nm) ⇒ N(0, σ2)
d
= σN(0, 1) in R as n → ∞, (1.1)

where ⇒ denotes convergence in distribution of random variables taking values in the real line R and

d
= means “equal in distribution.”

Donsker’s FCLT is a limit for the entire sequence {Sk} instead of one term. It is expressed in

terms of special functions of a continuous argument t in the function space D ≡ D([0,∞)) of all right-

continuous real-valued functions on [0,∞) with left limits everywhere in (0,∞) or in the subset C of all

continuous functions in D. Let ⌊x⌋ be the greatest integer less than or equal to x (the floor function).

Let the meaning of ⇒ be appropriately generalized, as in §3.2 and §11.3 of Whitt [2002a]. Let

Sn ≡ Sn(t) ≡ n−1/2(S⌊nt⌋ −mnt), t ≥ 0, (1.2)

be the nth scaled function in D induced by the sequence {Sk}, n ≥ 1. Notice that function Sn in (1.2)

has time scaling by n and space scaling by
√
n, just as in the CLT in (1.1).

Theorem 1.1 (Donsker’s FCLT, Theorem 4.3.2 of Whitt [2002a]) Under the independence and mo-

ment conditions above,

Sn ⇒ σB in D as n → ∞, (1.3)

where B is standard (zero drift, unit variance) Brownian motion (BM).

We make a few remarks:

(i) Several important concepts deserve further discussion: (i) convergence of distribution of real-

valued random variables in R in (1.1), (ii) convergence in distribution of random elements of

a more general topological space, (iii) the function space D as a topological space, and (iv)

convergence in distribution of random elements of D in (1.3). Chapters 1-4 of Whitt [2002a] is

devoted to these topics, with additional details in later chapters. That in turn draws heavily on

the basic book, Billingsley [1968, 1999].
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(ii) Convergence in distribution in R can be defined as follows: Zn → Z in R if either (i) P (Zn ≤
x) → P (Z ≤ x) for all x or (ii) E[f(Zn)] → E[f(Z)] for all continuous and bounded real-valued

functions f . Clearly the first version does not extend to general spaces, but fortunately the second

does, and is used.

(iii) In the setting of Theorem 1.1, where the limit process has continuous sample paths w.p.1 (as with

BM), the mode of convergence in D is equivalent to uniform convergence on bounded intervals.

It is important to remember that the mode is stronger than only pointwise convergence for each

t but also weaker than uniform convergence over the entire real line. That last difference means

that we cannot extract limits for a sequence of steady-state distributions from associated limits

for a sequence of stochastic processes without doing a lot more work; e.g. see Gamarnik and

Zeevi [2006].

1.2 Why Should We care?

Donsker’s FCLT in Theorem 1.1 is an important extension to the CLT in (1.1), because it can be used

as a tool to obtain additional limits of interest, such as heavy-traffic limits for queueing models. These

extensions primarily follow from the continuous mapping theorem (CMT) and generalizations of the

CMT, as in §3.4 of Whitt [2002a].

Theorem 1.2 (the continuous mapping theorem, Theorem 3.4.1 of Whitt [2002a]) If

Zn ⇒ Z in S1, (1.4)

where S1 is an appropriate topological space, such as D, and if f : S1 → S2 is a continuous function

from S1 to another such space S2, then

f(Zn) ⇒ f(Z) in S2. (1.5)

For example, given (1.1), we might ask if there is an associated limit forMn ≡ max {Sk : 0 ≤ k ≤ n}.
There is, and it follows easily from Theorem 1.1.

Corollary 1.1 (the CLT for the maximum partial sum) If, in addition to the independence and moment

conditions of Theorem 1.1, the mean is m = 0, then

n−1/2Mn = sup
{0≤t≤1}

{Sn(t)} ⇒ σ sup
{0≤t≤1}

{B(t)} ∈ R as n → ∞, (1.6)
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so that

P (Mn ≥ x
√
n/σ) → 2P (N(0, 1) > x) as n → ∞ (1.7)

for any x ≥ 0.

Proof We apply CMT with Donsker’s theorem, using the function f : D → R, where f(x) ≡
sup{0≤t≤1} {x(t)}. We can calculate the distribution of the limit, because it is well known that

P ( sup
{0≤t≤1}

{B(t)} > c) = 2P (N(0, 1) > c); (1.8)

by the reflection principle; see §10.2 of Ross [2014].

We make a few remarks:

(i) Corollary 1.1 was first obtained by Erdös and Kac (1946) for that one function, but Donsker’s

theorem, established in 1951, applies to any continuous function by combining Theorems 1.1 and

1.2 above.

(ii) By applying the CMT with the projection map at time t = 1, we immediately obtain the ordinary

CLT from the FCLT. Hence, the FCLT is truly a generalization of the CLT.

(iii) The CMT has important applications to heavy-traffic limits for queues and networks of queues,

as we indicate briefly in §4.

In the next section we discuss generalizations of the CMT in order to treat inverse processes. In

particular, what we do can be regarded as an application of

Theorem 1.3 (generalized continuous mapping theorem, Theorem 3.4.4 of Whitt [2002a]) Suppose

that

Zn ⇒ Z in S1, (1.9)

where S1 is an appropriate topological space, such as D, and f and fn : S1 → S2, n ≥ 1, are functions

from S1 to S2. Let E be the set of x in S1 such that fn(xn) fails to converge to f(x) for some sequence

{xn} with xn → x in in S1. If P (Z ∈ E) = 0, then

fn(Zn) ⇒ f(Z) in S2. (1.10)
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2 FCLT’s for Renewal, Counting and Inverse Processes

In this section we review the FCLT for renewal processes and its generalization to more general counting

and inverse processes. We start with §6.3.1 of Whitt [2002a] and then mention §§13.6-13.8.
We express the main result without any stochastic assumptions. Let Sk ≡ X1 + · · ·+Xk, k ≥ 1, be

the partial sums of k nonnegative real-valued random variables Xk and let S0 ≡ 0, where ≡ denotes

equality by definition. Let N(t) count the number of points less than or equal to t, i.e.,

N(t) ≡ max {k ≥ 0 : Sk ≤ t}, t ≥ 0. (2.1)

The results in this section follow from the observation that these processes are essentially inverses of

each other. In particular, without any stochastic assumptions,

Sk ≤ t if and only if N(t) ≥ k. (2.2)

Let Sn and Nn be the associated random functions in D ≡ D([0,∞)) defined for n ≥ 1, by

Sn ≡ c−1
n (S⌊nt⌋ −mnt), t ≥ 0

Nn ≡ c−1
n (N(nt)− nt/m), t ≥ 0. (2.3)

We now establish an equivalence of convergence for the normalized processes Sn and Nn in (2.3).

We actually obtain joint convergence from either one. For that purpose, let x ◦ y be the composition,

i.e., (x ◦ y)(t) ≡ x(y(t)), t ≥ 0.

Theorem 2.1 (Thm 6.3.1 on p. 202 of Whitt [2002a]) Suppose that m > 0, cn → ∞, n/cn → ∞ and

S(0) = 0 for S defined below. If

either Sn ⇒ S or Nn ⇒ N in (D,M1), (2.4)

then both hold, separately as well as jointly, i.e.,

(Sn,Nn) ⇒ (S,N) in (D2,M1) (2.5)

where

N = −m−1S ◦m−1e, i.e., N(t) = −m−1S(t/m), t ≥ 0. (2.6)

or, equivalently,

S = −mN ◦me, i.e., S(t) = −m−1N(mt), t ≥ 0. (2.7)
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We make the following remarks:

(i) There is a typo in equations (3.7) and (3.8) in Theorem 6.3.1 of Whitt [2002a]; the minus signs

in (2.6) and (2.7) above are missing in Whitt [2002a]. It is clear that something there from the

first paragraph of §6.3.2 of Whitt [2002a].

(ii) An early paper establishing much of Theorem 2.1 is Iglehart and Whitt [1971]. It plays a key

role in the heavy-traffic limit theorems in Iglehart and Whitt [1970a,b]. An updated version very

close to Whitt [2002a] appears in §7 of Whitt [1980].

(iii) The proof of Theorem 2.1 is a consequence of Corollary 13.8.1 to Theorem 13.8.2 in Whitt [2002a],

which in turn is a consequence of Theorem 13.7.1 of Whitt [2002a], which we discuss below. The

topic is “preservation of convergence for the inverse function with centering.”

(iv) The main case for the spatial normalization constants in (2.3) is cn =
√
n , which arises in

Donsker’s theorem for Sn, Theorem 4.3.2 of Whitt [2002a], yielding a Brownian motion (BM)

limit. Other spatial scaling arises with heavy tails and strong dependence, as discussed in Chap-

ters 4 and 6 of Whitt [2002a].

(v) The M1 appears in the convergence in (2.5) because, in general, the convergence in (2.5) is

understood to be in the nonstandard M1 topology, but that distinction does not arise if the limit

process has continuous sample paths, as is the case for BM. The Skorohod topologies all agree

for continuous limits. The M1 topology is important for non-BM limits such as stable processes.

For quick background on the Skorohod topologies, see §3.3 of Whitt [2002a]. For more on the

applied significance, see Ch. 6 of Whitt [2002a]; for more on the theory, see Ch. 12 of Whitt

[2002a] and of course the source, Skorohod [1956]. For a recent paper involving the M1 topology,

see Pang and Whitt [2010].

(vi) It is naturally to ask if it is not possible to exploit the inverse relation in (2.2) to obtain results

in R instead of in D. Indeed, it is, but the proofs are actually much harder; see Glynn and Whitt

[1988] and §3.5 of Whitt [2002b].

(vii) The condition S(0) = 0 exposes a subtle point. First, in applications, the condition is usually

satisfied. It appears in the theoretical basis in Theorem 13.7.1 of Whitt [2002a]; see p. 82 of

Whitt [1980] for more on the history.
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We now state the corollary for renewal processes. We use the squared coefficient of variation (scv,

variance divided by the square of the mean).

Corollary 2.1 (the FCLT for a renewal process) If in the setting above Xk are i.i.d. nonnegative

random variables with finite mean E[X] = m > 0 and variance V ar(X) = σ2 > 0, then, in addition to

Donsker’s theorem concluding that Sn ⇒ S in (D,M1), where cn =
√
n and S = σB with B being a

standard BM, we have

Nn ⇒ N in (D,M1), (2.8)

where

N = −m−1S ◦m−1e
d
=

√

σ2/m3B =
√

λc2aB, (2.9)

where λ ≡ 1/m and c2a ≡ σ2/m2 is the scv of the time between renewals.

Proof The limit (2.8) with the first expression in (2.9) follows directly from Theorem 2.1. The second

expression follows from the basic scaling property of BM, i.e., for c > 0,

B ◦ ce d
=

√
cB. (2.10)

By applying the continuous mapping theorem with the projection map at time t = 1, we immediately

obtain the ordinary CLT for a renewal process, which can be found in many textbooks. The importance

of the line of reasoning above is that the results extend beyong the familiar i.i.d. setting of a renewal

process: We get a FCLT and a CLT for the counting process whenever we have a FCLT for the partial

sums. One specific example is the superposition of independent renewal processes, which is not itself

a renewal proocess unless all processes are Poisson.

Corollary 2.2 (the ordinary CLT for a renewal process) Under the conditions of Theorem 2.1,

t−1/2(N(t)− t/m) ⇒ N(0, λc2a) in R as t → ∞, (2.11)

where λ ≡ 1/m and c2a ≡ σ2/m2 is the scv of the time between renewals.

We now elaborate on the technical foundations, which is expressed by Theorem 13.7.1 of Whitt

[2002a]. This theorem expresses an equivalence of convergence for sequences of deterministic elements

of D. It applies immediately to yield the corresponding statement for the stochastic processes. The

main idea in this representation to formulate the relation in a way that exposes the inverse relation in
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its essential form. For that purpose, let the inverse of a nonnegative real-valued function x in D that

is unbounded above be defined by

x−1 ≡ inf {s ≥ 0 : x(s) > t}, t ≥ 0; (2.12)

see §13.6 of Whitt [2002a].

We make a few remarks:

(i) A proper treatment requires that we look at various subsets of D; see pp. 428 and 441 of Whitt

[2002a].

(ii) Note that the definition (2.12) yields a right-continuous function, and so is in D. The correspond-

ing left-continuous in verse has ≥ instead of > in (2.12). For further discussion seee p. 442 of

Whitt [2002a].

(iii) The inverse relations in (2.2) and (2.12) are not exactly consistent. The gap is bridged in §13.8
of Whitt [2002a].

We now state a result that is appealing for its simplicity. Before worrying about the details of the

proof, it is good to see that this result makes sense by looking at a picture.

Theorem 2.2 (Thm 13.7.1 on p. 448 of Whitt [2002a]) let xn be elements of D that are nonnegative,

nondecreasing and unbounded above; let e be the identity function, i.e., e(t) ≡ t, t ≥ 0, and let cn be

constants satisfying cn → ∞. If

cn(xn − e) → y ∈ (D,M1) with y(0) = 0, (2.13)

then

cn(x
−1
n − e) → −y ∈ (D,M1). (2.14)

If the limit function y has no positive jumps, as when it is continuous, then the limit holds in the

standard J1 topology. That reduces to the topology of uniform convergence on bounded intervals if y is

continuous.

For interesting and useful generalizations of Theorem 2.2 above, see Theorems 13.7.2-13.7.4 of Whitt

[2002a].
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3 Renewal-Reward Processes and Other Random Sums

We now apply the results of §2 on the preservation of convergence for the inverse function with centering

together with the preservation of convergence for the composition function with centering in order to

obtain a FCLT for renewal-reward processes and generalizations. In this section we present the results

with the usual independence assumptions. These results may be hard to extract from the more abstract

presentation in Whitt [2002a], but they are in fact a direct consequence.

For the renewal reward processes, suppose we again have the renewal process N in §2 with the i.i.d.

times between renewals Xk having finite means and variances, using the notation E[X] = ma = λ−1

and V ar(X) = σ2
a, so that λ is the arrival rate and a denotes arrival process. In addition, suppose that

we have the i.i.d. rewards Yk, also having a finite mean and variance, with EY = mr and V ar(Y ) = σ2
r ,

using the subscript r to denote the rewards. We will be establish a FCLT for the renewal-reward process

Z(t) ≡
N(t)
∑

k=1

Yk, t ≥ 0. (3.1)

Note that Z(t) represents the total reward at time t under the assumption that a reward Yk is earned

at the time of the kth point in the renewal process N .

Let Sa,n, Nn, N̄n, Sr,n and Zn be associated random functions in D ≡ D([0,∞)) defined for n ≥ 1,

by

Sa,n ≡ n−1/2(Sa,⌊nt⌋ −mant), t ≥ 0,

Nn ≡ n−1/2(N(nt)− λnt), t ≥ 0,

N̄n ≡ n−1N(nt), t ≥ 0,

Sr,n ≡ n−1/2(Sr,⌊nt⌋ −mrnt), t ≥ 0,

Zn ≡ n−1/2(Z(nt)− λmrnt), t ≥ 0. (3.2)

The following is an analog of Theorem 2.1, which corresponds to Theorem 7.4.1 of Whitt [2002a].

Theorem 3.1 (Thm 7.4.1 on p. 239 of Whitt [2002a]) Suppose that {Xk} and {Yk} are independent

sequences of i.i.d. random variables with finite means ma > 0 and mr > 0 and variances σ2
a and σ2

r .

Then

(Sa,n,Sr,n,Nn, N̄n,Zn) ⇒ (σaBa, σrBr,N, λe,Z) (3.3)

for the processes defined in (3.2), where

N = −λσaBa ◦ λe d
=

√

λ3σ2
aBa and Z

d
= σzB, (3.4)
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with B being a standard BM and

σ2
z = λσ2

r +m2
rλ

3σ2
a = λm2

r(c
2
r + c2a), (3.5)

with c2r ≡ σ2
r/m

2
r and c2a ≡ σ2

a/m
2
a being the scv’s.

Proof The proof can be simple and direct, given §2. In particular, we first obtain the joint limit

for the first four components of (3.3). The first two limits in (3.3) separately follow from Donsker’s

theorem. The third limit, joint with the second, is Theorem 2.1 above. The fourth limit follows

immediately from the third by the continuous mapping theorem, because we have introduced greater

spatial scaling. These four limits hold jointly by Theorems 11.4.4 and 11.4.5 of Whitt [2002a]. Finally

we apply the continuous mapping theorem with composition plus simple addition to get all five limits

by writing

Zn = Sr,n ◦ N̄n +mrNn (3.6)

i.e.,

Zn(t) ≡ n−1/2





N(nt)
∑

k=1

−λmrnt



 , t ≥ 0, (3.7)

while

(Sr,n ◦ N̄n)(t) = n−1/2





N(nt)
∑

k=1

−mrNn(nt)



 , t ≥ 0, (3.8)

and

mrNn(t) = mrn
−1/2 (N(nt)− λmrnt) , t ≥ 0. (3.9)

We then add (3.8) and (3.9) to get (3.7), observing the the second term in (3.8) cancels the first term

in (3.9).

We now derive alternative expressions for the limit process Z. First, directly from (3.6) we obtain

Z = Sr ◦ λe+mrN

= σrBr ◦ λe−mrλσxBx ◦ λe

= (σrBr −mrλσxBx) ◦ λe
d
=

√

σ2
r +m2

rλ
2σ2

xB ◦ λe
d
=

√

λσ2
r +m2

rλ
3σ2

xB =
√

λm2
r(c

2
r + c2x)B, (3.10)

which justifies the expression for σ2
z in (3.5).

We make the following remarks:
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(i) We have not stated Theorem 3.1 above in the same level of generality as Theorem 2.1. To do

that, we could have started by assuming the joint limit (Sr,n,Nn) ⇒ (Sr,N) and omitted all the

independence assumptions. By the reasoning above, we would get Zn ⇒ Z, where Z is given in

the first line of (3.10) above.

(ii) The last step in the proof of Theorem 3.1 above to get the last component can be regarded as

a consequence of Corollary 13.3.1 of Whitt [2002a], which we express below in the same form as

Theorem 2.2 above.

Here is a variant of Corollary 13.3.1 of Whitt [2002a].

Theorem 3.2 (Cor 13.3.1 on p. 432 of Whitt [2002a]) let xn, x and z be elements of D; let yn be

elements of D that are nonnegative and nondecreasing; let e be the identity function, i.e., e(t) ≡ t,

t ≥ 0; let cn be constants satisfying cn → ∞; and let bn be constant satisfying bn → b. If

(xn − cne, cn(yn − bne)) → (x, y) ∈ (D2,M1), (3.11)

where the functions x ◦ be and y have no common discontinuities, then yn → be and

(xn ◦ yn − cnbe) → x ◦ be+ y ∈ (D,M1). (3.12)

If the limit functions x and y are continuous, convergence holds in the topology of uniform convergence

on bounded intervals.

4 Applications to Heavy-Traffic Limits for Time-Varying Queues

The results above have been applied extensively to establish heavy-traffic limits for queues and networks

of queues as can be seen from Iglehart and Whitt [1970a,b], Reiman [1984] and Whitt [2002a]. The

limits in §2 yield FCLT’s for arrival processes in queueing models, given corresponding limits for partial

sums. The limits in §3 yield FCLT’s for the process representing the total input of work in [0, t], which

in turn plays a key role in FCLT’s for the workload process. These arguments are applied in recent

heavy-traffic limits for time-varying queues, in particular, in the proofs of Theorem 3.2 in Whitt [2014],

Theorem 1 in Ma and Whitt [2016], Theorem 3 of Whitt and You [2016] and Theorems 3.1 and 6.1 in

Whitt [2016]. These in turn are applied for the workload process in the time-varying robust queueing

in Whitt and You [2016], for the cumulative idleness in an interval in §3.3 of Sun and Whitt [2016] and

in FCLT versions of time-varying Little’s law, extending Whitt and Zhang [2016], which is motivated

by the data analysis in Whitt and Zhang [2015].
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