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This paper relaxes assumptions defining multivariate Brownian motion (BM) to construct
processes with dependent increments as tractable models for problems in engineering and
management science. We show that any Gaussian Markov process starting at zero and
possessing stationary increments and a symmetric smooth kernel has a parametric kernel
of a particular form, and we derive the unique unbiased, jointly sufficient, maximum-
likelihood estimators of those parameters. As an application, we model a single-server
queue driven by such a process and derive its transient distribution conditional on its
history.

Keywords: Gaussian fluid queue, Gaussian Markov process, multivariate Brownian bridge,
multivariate Brownian motion, regulated Brownian motion, stationary increments

1. INTRODUCTION

Multivariate Brownian motion (BM) is a Gaussian Markov process (GMP) with a mean
and initial state of zero, increments that are stationary and independent, and a covariance
kernel (a.k.a. covariance function) that is smooth and symmetric. Multivariate BM has
been widely applied because of its analytical tractability and its ability to model variances
of its components’ individual states and correlations between their concurrent states. Its
applications are limited, however, by its independent increments, which preclude its use for
modeling nonzero correlations between its increments over nonoverlapping time intervals
(i.e., nonzero autocorrelations).

In this paper, we generalize multivariate BM by dropping the property of independent
increments while retaining the other properties of BM listed above. We obtain the new
result that any GMP with a mean and initial state of zero, stationary increments, and a
symmetric smooth kernel has continuous sample paths with probability one (w.p.1) and a
kernel of a particular parametric form. We refer to such a process as a ψ-GMP (pronounced
SI-GMP) as a mnemonic for a Stationary-Increment GMP. Multivariate BM is a special
case. The kernel of an m-variate ψ-GMP depends on a total of m(m+ 1) potentially unique
scaler parameters—twice the number of parameters as the kernel of m-variate BM. Hence,
the kernel of a univariate ψ-GMP depends on two parameters—one more than univariate
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2 Kerry Fendick

BM. The extra parameters enable a ψ-GMP to model autocorrelations that may be positive,
negative, or zero. We show how a ψ-GMP may be represented as the solution to a linear
Stochastic Differential Equation (SDE) driven by standard BM.

To provide a method for fitting a ψ-GMP to measurements, we derive the maximum-
likelihood, sufficient, unbiased estimators of the kernel parameters of a ψ-GMP in closed
form. That result is also new and a rare example for which closed-form maximum-likelihood
estimators have been derived for a discretely sampled solution to a multivariate SDE. The
estimators have the desirable property of applying for samples that are arbitrarily spaced
in time.

A prominent application of BM is the analysis of queues or inventories. The random
function of time describing the cumulative difference between the supply and demand for
a queue’s content is called the queue’s net input process, and the length of a single-server
queue at each time epoch is determined by the history of the net input process up to that
time. Under the assumptions that the queue has an infinite buffer and a net input process
that is a univariate BM with drift, the queue length process is (univariate) Reflected BM
(RBM) with a well-known transient distribution. For the generalization in which the net
input process is a univariate ψ-GMP with drift, we derive the transient distribution of
the queue length process conditional on both its own state and the history of its net input
process. The result shows how the conditional queue length distribution reflects the positive
or negative autocorrelation structure of a ψ-GMP. Our derivation of the conditional queue
length distribution is useful for forecasting.

We extend that last result to the case where the queue length distribution is conditioned
on the history of a multivariate process, of which the queue’s net input process is one
component. The generalization enables the modeling of a queue that depends directly on
its net input process, but indirectly on other components of a multivariate process on which
the net input process depends. Consider, for example, a queue representing the volume of
water at a reservoir. Its net input process represents the difference between the cumulative
supply and demand for water. That net input process is itself likely to depend on the
recent history of the local rainfall process (through the supply) and the local temperature
process (through the demand). If so, then conditioning on histories of the net input process,
the rainfall process, and the temperature process jointly is likely to provide more relevant
information for forecasting the reservoir’s volume than conditioning on the history of the
net input process alone. We derive the conditional queue length distribution in the closed
form under the assumption that the net input process and other processes on which the net
input process may depend are components of a multivariate ψ-GMP with drift.

The generalization of BM to allow dependence between increments is most useful
for modeling queuing systems when their unconditional and conditional behavior can be
expected to markedly differ. When a queue’s net input process is a ψ-GMPs with a con-
stant drift, we show that conditioning on its state and that of the queue length process at a
given time induces a change in the subsequent drift of the net input process. The change in
drift persists over the remainder of the queue’s time domain. Such a process for which early
history persistently influences subsequent evolution may be described as self-organizing or
self-exciting. Because the conditional (induced) drift can be positive when the unconditional
(original) drift was negative, the conditional queue length distribution can differ persistently
and markedly from the unconditional queue length distribution. As a result, ψ-GMPs are
natural models for queues with self-organizing or self-exciting arrival or service processes,
and the understanding of their conditional behavior developed here is crucial for their accu-
rate prediction. For a survey of self-organizing and self-exciting processes in applications,
see Arthur et al. [4].
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1.1. Related Work

Our new results characterizing ψ-GMPs are related to the literature on Gaussian processes
from the mid-20th century. Properties of univariate GMPs were derived on pages 94–97
of Feller [17], pages 90 and 237–238 of Doob [15], and Hida [26] and were extended to
multivariate processes by Doob [14], Beautler [6], Mandrekar [36], and Adler [1]. A spec-
tral representation of a unidimensional Gaussian process with stationary increments (a.k.a.
homogeneous increments) was obtained on pages 551–559 of Doob [15] and sample path
properties of multidimensional Gaussian processes with stationary increments were derived
on pages 198–215 of Adler [1]. The modeling assumption of stationary increments is com-
mon in the study of self-similar Gaussian processes; see, for example, Mandelbrot and van
Ness [35]. Nevertheless, the combination of characteristics defining a ψ-GMP appears not
to have been studied previously.

Any stationary Gaussian process has stationary increments; see, for example, Section 18
on pages 86–88 of Yaglom [49]. The prior literature, therefore, comes closest to considering
the assumptions for a ψ-GMP in its study of stationary GMPs on the half-line. Stationary
GMPs and ψ-GMPs differ, however, in their assumptions about the state of the process at
time zero: the initial state must be normally distributed with a nonzero covariance matrix
for a stationary GMP but constant and equal to zero for a ψ-GMP. For a Gaussian process
to be stationary, the parameters of its initial covariance matrix must agree with other
properties of the process, for example, with its infinitesimal parameters when the GMP
is defined by an SDE. It is, therefore, not possible to obtain a ψ-GMP as the limit of a
stationary Gaussian Markov property as its initial covariance matrix approaches zero. Like
a ψ-GMP, a stationary GMP has a parametric covariance kernel as described by Theorem
6.7 on page 357 of Kratzas and Shreve [31], but its functional form differs from that of
ψ-GMP because of its different initial conditions.

Aside from BM itself, the best-known example of a ψ-GMP is the Brownian Bridge
(BB). The multivariate BB can be obtained by conditioning multivariate BM on its state
at a future time. The BB has been applied in the univariate case as a model for excursions
with known endpoints; see, for example, Ball and Torous [5] for its use in modeling returns
on bonds and Horne [29] and Fischer et al. [21] in modeling migrations. The covariance
kernel for a multivariate BB describes the propensity of the different component processes
to move in tandem.

Challenges in obtaining closed-form likelihood estimators for discretely sampled solu-
tions to SDEs are described in Aı̈t-Sahalia [2,3], but the Gaussian distribution of a
multivariate ψ-GMP makes it more amenable to analysis than the solution to a general
SDE. In deriving maximum-likelihood estimators for ψ-GMPs, we first obtain the maximum-
likelihood estimator for a multivariate BB. The unique solution to the likelihood equation
for a broader category of multivariate Gaussian distributions covering that case was previ-
ously obtained by Dutilleul [16]. We provide a different proof covering the new results that
the solution for a BB is indeed the global maximum of the likelihood equation and possesses
a closed-form spectral decomposition. Immediately following that proof, we further discuss
how it relates to the treatment in Dutilleul [16].

Multivariate RBM is the heavy traffic limit for a network of queues as the traffic inten-
sities for the queues approaches unity; see Whitt [45], Reiman [41], Harrison and Reiman
[25], and Dai [8] for background. The special case of univariate RBM with a single reflecting
barrier at zero is the heavy traffic limit of a single-server queue with an infinite buffer. The
transient and steady-state distributions of univariate RBM, in that case, are available in
closed form; see pages 14–15 of Harrison [24]. The steady-state distribution depends on two
parameters, one of which is determined by the queue’s traffic intensity. Iglehart and Whitt
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4 Kerry Fendick

[30] and Fendick et al. [19,20] showed how the single remaining parameter of univariate
RBM can model complex net input processes (including those with autocorrelations) for a
queue in the heavy traffic limit. Queues for which increments in the net input process are
positively or negatively autocorrelated appear frequently in applications. An example where
the net input process has positively correlated increments is the model with bursty arrivals
studied in Fendick et al. [20] and interpreted in (48)–(51) on page 181 of Fendick and Whitt
[18]. An example where the net input process has negatively correlated increments is the
queue with periodic arrivals studied by Hajek [22].

As a queue’s traffic intensity decreases from unity, its queue length distribution generally
depends less on the autocorrelation structure of the net input process over long time scales
and more on its variability over short time scales. Because the RBM model for a single-
server queue has only a single parameter that can be used to model traffic characteristics
other than the traffic intensity, it cannot capture such effects. That is one reason why
heavy traffic limit theorems typically overstate or understate the impact of autocorrelations
when applied alone as approximations for queues at moderate traffic levels. To address
that limitation, Whitt [44] applied heavy traffic approximations in combination with limit
theorems for other traffic regimes through heuristics that interpolate between the regimes;
see also Sriram and Whitt [43], Fendick and Whitt [18], and Fendick et al. [20] for related
heuristics. The last of those references demonstrates that, even then, obtaining accurate
approximations for moderate traffic levels is challenging for some applications because the
transition between regimes can be abrupt.

A queue driven by a ψ-GMP is a generalization of RBM. It therefore may be regarded as
a refinement to a heavy traffic approximation, but its additional degree of freedom enables
it to model the variability and autocorrelation structure of the net input process separately.
We derive its transient queue length distribution conditional on the history of the net input
process, a result without a meaningful analogy for models based on RBM alone (because
of BM’s independent increments). The unconditional transient queue length distribution is
the special case of our result in which the history length is set equal to zero. We show that
the sensitivity of the conditional and unconditional queue length distributions to autocorre-
lations decreases as the traffic intensity increases or decreases from unity (or, equivalently,
as the drift of the net input process increases or decreases from zero). That property makes
the model a better candidate than RBM for stand-alone application at moderate traffic
intensities.

Recent refinements to heavy traffic asymptotics by Whitt and You [46,47] also have the
potential to improve estimates of queue workloads at moderate traffic intensities. The first of
those references describes steady-state mean workloads, and the second describes transient
workloads for time-dependent arrival rates. Our work is similar in its philosophy of using
a characterization of the covariance structure over a range of time scales. It differs in its
objective of describing the effects of autocorrelations on queueing performance conditional
on past history.

The queuing model studied here is an example of a Gaussian fluid queue, as defined and
studied by other authors under variations on the assumptions made here. Debicki and Rolski
[11] and Debicki et al. [12,13] derive asymptotic results for queues, assuming that the net
input process is Gaussian with stationary increments, but not assuming that it is Markov.
Debicki and Rolski [10] derive asymptotic results for queues, assuming that the net input
process is a stationary GMP. Debicki and Mandjes [9] provide background and motivation
for Gaussian fluid queueing models and describe open problems in their theory, including (i)
speed of convergence to stationarity and (ii) correlation structure for the queueing process.
They note that “for a general Gaussian input process . . . . there are no explicit expressions
available for the (stationary) distribution of (the queue length) . . . let alone the transient”.
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BROWNIAN MOTION MINUS THE INDEPENDENT INCREMENTS 5

For the ψ-GMP queuing model, we obtain an explicit expression for the transient queue-
length distribution, which can be used to explore the approach to stationarity, and for the
conditional joint density for queue lengths at different times, which can be used to study
the correlation structure of the queueing process.

1.2. Organization of Paper

The remainder of the paper is organized as follows. Section 2 states all of our results and
explores their implications. Section 3 describes some examples of ψ-GMPs. Section 4 con-
tains all proofs of the Section 2 results. The proofs about queueing results illustrate how the
defining properties of a ψ-GMP are convenient for deriving tractable models. The proofs
are otherwise straightforward applications of matrix theory. Their simplicity illustrates how
we have preserved the tractability of BM in generalizing it.

2. STATEMENT OF THE RESULTS

In the statements that follow, we will present scalar-valued quantities in italicized type
(e.g., X) and vector- or matrix-valued quantities in italicized bold type (e.g., X). The
transpose of the matrix or vector a will be denoted as aT. We will say that an R

m-valued
stochastic process {X(t) ≡ (X1(t),X2(t), . . . , Xm(t))T : 0 ≤ t ≤ T <∞} is Gaussian if, for
any positive integer k and any real numbers 0 < t1 < t2 < · · · < tk, the random matrix
(X(t1),X(t2), . . . ,X(tk)) of dimension m× k has a joint normal distribution. We will
let Γ (t, s) ≡ E[X(t)XT(s)] for 0 ≤ s, t ≤ T denote the covariance kernel of X. By the
definition of a covariance kernel,

Γ (s, t) = (Γ (t, s))T for 0 ≤ s ≤ t ≤ T. (2.1)

We say that the covariance kernel in Eq. (2.1) is symmetric if Γ (t, s) = Γ (s, t)
for 0 ≤ s ≤ t ≤ T . If the distribution of {Xε(t) ≡X(t+ ε)−X(ε) : 0 ≤ t ≤ T − ε}
does not depend on ε for any 0 ≤ ε < T , then we will say that X has sta-
tionary increments. When X(0) = 0, X has stationary increments if and only if
{Xε(t) ≡X(t+ ε)−X(ε) : 0 ≤ t ≤ T − ε}has the same distribution as {X(t) : 0 ≤ t ≤
T − ε} for any 0 ≤ ε < T .

The first proposition compiles known results that we will apply.

Proposition 1: If {X(t) : 0 ≤ t ≤ T <∞ and X(0) = 0} is a zero-mean, R
m-valued

GMP for which Γ (t, s) is continuous at every diagonal point s = t and Γ (t, t) is nonsingular
for 0 ≤ t < T , then

Γ (t, s) = f(t)h(s)fT(s) for 0 ≤ s ≤ t ≤ T, (2.2)

where f(t) is nonsingular for each t with f(0) = I and where h(s) is symmetric positive
definite for 0 ≤ s < T with h(0) = 0.

The first theorem describes how additional assumptions imply a parametric covariance
kernel.

Theorem 1: Under the conditions of Proposition 1, if (i) X has stationary increments,
(ii) Γ (t, s) is twice continuously differentiable in both s and t, (iii) Γ (t, s) = Γ (s, t), and
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6 Kerry Fendick

(iv) α ≡ (d/dt)Γ (t, t)|t=0 is symmetric positive definite, then

Γ (t, s) =
{
s(α− βt), 0 ≤ s ≤ t ≤ T
t(α− βs), T ≥ s ≥ t ≥ 0 (2.3)

for some symmetric matrix β

We paraphrase the assumptions of Theorem 1 as saying that X is a GMP with sta-
tionary increments and a smooth symmetric kernel. Assumption (iii) holds trivially in the
unidimensional case.

To prove the converse of Theorem 1, we will need the following result, which we will
also apply to analyze the examples of Section 3.

Lemma 1: If {X(t) : 0 ≤ t ≤ T <∞ and X(0) = 0} is an R
m-valued Gaussian process

with the covariance kernel in Eq. (2.3) where α is positive definite, then Γ (t, t) is positive
definite for all 0 < t < T . If Γ (T, T ) is positive definite, then the time interval over which X
and the arguments of its covariance kernel in Eq. (2.3) are defined may be extended to [0, T̃ ]
for some T̃ > T. If Γ (T, T ) is positive semi-definite but not positive definite, then α− βt is
negative definite for any t > T ; and the time domain of X cannot then be extended beyond
[0, T ].

The next theorem describes the converse of Theorem 1.

Theorem 2: If {X(t) : 0 ≤ t ≤ T <∞ and X(0) = 0} is an R
m-valued Gaussian pro-

cess for which Eq. (2.3) holds where α is positive definite, then X has stationary increments
and the Markov property.

We define an (α,β) ψ-GMP on [0, T ] as any zero-mean Gaussian process
{X(t) : 0 ≤ t ≤ T <∞ and X(0) = 0} with the covariance kernel given by Eq. (2.3)
where α is positive definite. We say that a process is an (α,β) ψ-GMP on [0,∞) if it is an
(α,β) ψ-GMP on [0, T ] for all T ≥ 0. Section 3 explores conditions under which a ψ-GMP’s
time domain can be extended beyond a finite interval.

Let αij and βij denote the (i,j )th elements of α and β. The next result follows
immediately from the definition of a ψ-GMP.

Corollary 1: If X is an R
m- valued (α,β) ψ-GMP on [0, T ], then its ith component Xi

for i = 1, . . . ,m is an R
1-valued (αii, βii) ψ-GMP on [0, T ] .

The proof of the next corollary applies Corollary 1 to show that a well-known property
of BM holds more generally for ψ-GMPs.

Corollary 2: If X is an (α,β) ψ-GMP on [0, T ], then X has continuous sample paths
w.p.1.

A ψ-GMP can exhibit positive or negative correlations between the concurrent states of
its component processes as determined by the covariance matrix Γ (t, t) for each t ∈ [0, T ]. A
ψ-GMP also can exhibit positive or negative correlations between its increments over disjoint
time intervals. Our next result characterizes such autocorrelations. In the statement of that
result, let ρ(X,Y ) ≡ Cov(X,Y )/

(√
Var X

√
Var Y

)
denote the correlation coefficient for

the scalar-valued random variables X and Y. As is well-known, −1 ≤ ρ(X,Y ) ≤ 1 whenever
it exists.
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Proposition 2: If X is an (α,β) ψ-GMP on [0, T ], and Xi is its ith component process,
then

E[(X(t+ u+ s)−X(t+ u))(X(t+ s)−X(t))T] = −s2β
and

ρ(Xi(t+ u+ s)−Xi(t+ u),Xi(t+ s)−Xi(t)) =
−sβii

αii − sβii

for t ≥ 0, u ≥ s ≥ 0, and s+ t+ u ≤ T , as the result of which

lim
βii→−∞

ρ(Xi(t+ u+ s)−Xi(t+ u),Xi(t+ s)−Xi(t)) = 1

and

lim
βii→αii/T

s→T/2

ρ(Xi(t+ u+ s)−Xi(t+ u),Xi(t+ s)−Xi(t)) = −1.

The correlation coefficient applied in Proposition 2 has been previously used to quan-
tify autocorrelations in empirical data; see Cont [7], for example. It describes dependence
between increments of Xi over nonoverlapping intervals. The intervals are required not to
overlap, because overlap creates a positive contribution to the correlation coefficient that
would make the result hard to interpret. (If, in an extreme example, the intervals were
allowed to exactly coincide, the resulting correlation coefficient would be a positive value
equal to one regardless of other properties of the process.) Proposition 2 shows that ψ-GMPs
can exhibit the maximum possible range of positive or negative autocorrelation coefficients
for their component processes.

A Wiener process or standard BM {W (t) : t ≥ 0} is an (I, 0) ψ-GMP, as follows from
the definition on page 184 of Adler [1]. A solution to a linear SDE driven by a Wiener
process is a Markov process and is also Gaussian when the initial state is constant and
coefficients are deterministic functions of time. The next result provides an interpretation
of a multivariate ψ-GMP as a solution to such a linear SDE.

Theorem 3: The R
m-valued process {X(t) : 0 ≤ t ≤ T} is an (α,β) ψ-GMP on [0, T ] if it

solves

dX(t) = μ(t)X(t)dt+ σ(t)dW (t) for 0 ≤ t < T, (2.4)

X(t) = 0,

where

μ(t) = − β(α− βt)−1 for 0 ≤ t < T (2.5)

and

σ(t)σT(t) = α for 0 ≤ t < T, (2.6)

such that α and β are constant symmetric matrices of dimension m×m and α− βt is
positive definite for all t ∈ [0,T ).

According to Theorem 3, the matrix α describes the instantaneous covariances between
the ψ-GMP’s component processes at any common point in time, and the matrix β describes
their individual propensities to regress toward or away from zero.

For the special case in which β = 0, Eqs. (2.4)–(2.6) define a multivariate BM with
instantaneous covariance matrix α. In that case, the multivariate BM is an (α, 0) ψ-GMP.
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8 Kerry Fendick

On the other hands, Proposition 2 implies that β = 0 for a ψ-GMP with independent
increments. The next corollary immediately follows and justifies our description of a ψ-GMP
as multivariate BM without the independent increments.

Corollary 3: A ψ-GMP with independent increments is a multivariate BM with a positive
definite instantaneous covariance matrix.

In the setting of Corollary 1, if both βii > 0 and T = αii/βii, then E[Xi(T )2] = 0; so
that Xi(T ) = 0 w.p.1. We can, therefore, interpret {Xi(t) : 0 ≤ t ≤ αii/βii} as a univariate
Gaussian bridge on [0, αii/βii]. It is, in fact, a scaled BB as follows from Definition 6.12 at
the top of page 360 of Karatzas and Shreve [31] and the discussion that immediately follows
that definition.

If {Z(t) ≡ tω + X(t) : 0 ≤ t ≤ T} where ω is a constant vector and X is an (α,β) ψ-
GMP on [0, T ], then we will call Z an (α,β) ψ-GMP with drift ω on [0, T ]. A multivariate
Gaussian bridge is obtained by conditioning such a process on a future state as described
next.

Lemma 2: If {Z(t) : 0 ≤ t ≤ T} is an (α,β) ψ-GMP with drift ω and if {B(t) : 0 ≤ t ≤
u ≤ T} is the process obtained by conditioning {Z(t) : 0 ≤ t ≤ u} on Z(u), then B is an
(α, u−1α) ψ-GMP on [0, u] with drift u−1Z(u).

Lemma 2 implies that E[(B(u)−Z(u))(B(u)−Z(u))T] = 0, as it must since it was
assumed that B(u) = Z(u). A surprising consequence of Lemma 2 is that B depends on
neither the drift vector ω nor the parameter matrix β of Z. The process B is, in fact, a
multivariate Brownian bridge because the same process B is obtained for the general case
in which the original process Z is an (α,β) ψ-GMP with drift ω as for the particular case
in which the original process is an (α, 0) ψ-GMP with drift 0.

The next lemma describes the maximum-likelihood estimator for the parameter matrix
α of the process B from Lemma 2, as obtained from a single realization of B.

Lemma 3: If B is an R
m-valued (α, t−1

n α) ψ-GMP with drift t−1
n xn on [0, tn] and if sample

vectors B(ti) = xi are known for 0 < t1 < t2 < · · · < tn−1 < tn and some n ≥ m+ 1, then

α̂ =
1

n− 1

n−1∑
i=1

(ti+1xi − tixi+1)(ti+1xi − tixi+1)
T

titi+1(ti+1 − ti) (2.7)

is both a sufficient estimator and the unique maximum-likelihood estimator of α.

Theorem 4, stated next, describes estimators for both parameter matrices of a ψ-GMP
as also obtained from a single realization.

Theorem 4: If X is an (α,β) ψ-GMP on [0, tn] and if sample vectors X(ti) = xi are
known for 0 < t1 < t2 < · · · < tn, then α̂ in Eq. (2.7) and

β̂ =
α̂

tn
− xnxT

n

t2n
(2.8)

are the unique maximum-likelihood, jointly sufficient, unbiased estimators of α and β.

The next lemma is similar to Lemma 2, but its result is obtained by conditioning on a
past rather than the future state.
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Lemma 4: If {Z(t) : 0 ≤ t ≤ T} is an (α,β) ψ-GMP with drift ω, then the process obtained
by conditioning {Z(s)(t) ≡ Z(s+ t)−Z(s) : 0 ≤ t ≤ T − s} on {Z(v) : 0 ≤ v ≤ s} for fixed
0 < s < T is an (α,βs) ψ-GMP with drift ωs on [0, T − s], where

ωs ≡ ω − β(α− βs)−1(Z(s)− sω) and βs ≡ β(α− βs)−1α . (2.9)

According to (2.9), the change in drift from ω to ωs can be arbitrarily large and can
even result in a change in sign.

The last two theorems apply Lemmas 2 and 4 to characterize a queuing pro-
cess. Given any R

1-valued continuous process {Z(t) : 0 ≤ t ≤ T and Z(0) = 0}, let
{Q(t) : 0 ≤ t ≤ T} denote the solution to

Q(t) = Q(0) + Z(t) + L(t) ≥ 0 for 0 ≤ t ≤ T, (2.10)

where Q(0) is a constant and L(·) is a nondecreasing continuous function with the properties
that (i) L(0) = 0 and (ii) L(·) increases only when Q(·) = 0 such that Q(t) ≥ 0 for all
0 ≤ t ≤ T . At time t, Q(t) has the interpretation as the content of a queue, and Z(t) as
the queue’s cumulative net input up to that time (interpreted as the difference between the
cumulative supply and the cumulative demand for the queue’s content). The nondecreasing
process L(t) then has the interpretation as the cumulative demand for the queue’s content
that is unsatisfied over the interval [0, t]. The functional defined by Eq. (2.10) mapping
{Z(s) : 0 ≤ s ≤ t} to Q(t) for each t is variously known as the univariate reflection map,
the one-sided regulator, and the Skorokhod map; see Section 5.2.2 and Chapter 14 of Whitt
[45] or Section 2 of Harrison [24] for background.

Theorem 5: If Q is defined by Eq. (2.10) where Z is an R
1- valued (α, β) ψ-GMP with

drift ω on [0, T ], then

P (Q(s+ u) ≤ qs+u|Z(s) = zs, Q(s) = qs)

=
1
2

(
1− e

−2qs+u(βsqs+u−αωs)

α2 − erf
(
−qs+u + qs + ωsu√

2u(α− βsu)

)

+ e
−2qs+u(βsqs+u−αωs)

α2 erf

(
α(qs+u + qs)− (2βsqs+u − αωs)u

α
√

2u(α− βsu)

))
(2.11)

for qs+u ≥ 0 and 0 < s ≤ s+ u < T , where

ωs ≡ αω − βzs

α− βs , βs ≡ αβ

α− βs , (2.12)

and

erf(x) ≡ 2π−1/2

∫ x

0

exp(−t2)dt.

An example of a process obtained by applying the reflection map in Eq. (2.10) to a
ψ-GMP with drift is the heavy traffic limit for a sequences of queues in which a fixed
number of arrivals occur with mutually independent, uniformly distributed arrival times
over an interval and in which service times are deterministic. In that case, Theorem 1 of
Iglehart and Whitt [30] and the results on page 365 there show that the limit for the net
input process is a (1, 1) ψ-GMP with constant drift on the time domain [0, 1], that is, a
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10 Kerry Fendick

standard BB with drift. Hajek [22] provided an alternative derivation of that result to model
a queue with periodic arrivals and obtained the unconditional queue length distribution at
the upper limit of the time domain for the reflected diffusion. The proof of Theorem 5 uses
Hajek’s result. The result in Theorem 5 generalizes Hajek’s result to describe the conditional
distribution over the whole time domain and the unconditional transient distribution over
the whole time domain as a limiting case. Whereas the net input process in that example
has a negative autocorrelation structure (β > 0), Theorem 5 applies as well for net input
processes with positive autocorrelations (β < 0) or no autocorrelations (β = 0).

The distribution in Eq. (2.11) depends on the conditioned event that Z(s) = zs through
the parameter ωs as defined in Eq. (2.12). That dependence is strongest when ω ≈ 0. The
unconditional transient distribution P (Q(u) ≤ qu) generalizing the transient distribution for
RBM from page 49 of Harrison [24] is obtained as the limit of Eq. (2.12) as s→ 0 in which
case zs → 0, qs → Q(0), ωs → ω, and βs → β. In that case, the dependence on autocorre-
lations through the parameter β is also strongest when ω ≈ 0. In general, the parameter ωs

may be interpreted as the conditional (or induced) drift of the net input process Z on [s, T ]
given Z(s). The conditional drift ωs can be positive even when the unconditional drift ω is
negative.

In the statement of the following corollaries to Theorem 5, δ(·) denotes the Dirac delta
function, and 1A denotes the indicator function equal to 1 on A and 0 zero elsewhere.

Corollary 4: Under the conditions of Theorem 5,

P (Q(s) ∈ dqs, Q(s+ u) ∈ dqs+u|Z(s) = zs)

= P (Q(s+ u) ∈ dqs+u | Z(s) = zs, Q(s) = qs)P (Q(s) ∈ dqs|Z(s) = zs) (2.13)

and

P (Z(s) ∈ dzs, Q(s) ∈ dqs, Q(s+ u) ∈ dqs+u)

= P (Q(s+ u) ∈ dqs+u|Z(s) = zs, Q(s) =qs)P (Q(s) ∈ dqs|Z(s) = zs)P (Z(s) ∈ dzs),
(2.14)

where

P (Q(s+ u) ∈ dqs+u|Z(s) = zs, Q(s) = qs)

=
1
2

⎛⎜⎜⎝
√

2(α− 2uβs)e
− (α(qs+u+qs)−(2βsqs+u−αωs)u)2

2α2u(α−βsu)
−

2qs+u(βsqs+u − αωs)
α2

α
√
πu(α− βsu)

+
√

2e−
(−qs+u+qs+ωsu)2

2u(α−βsu)√
πu(α− βsu)

− 4βsqs+u − 2αωs

α2
e
−

2qs+u(βsqs+u − αωs)
α2

× erf
(
α(qs+u + qs)− (2βsqs+u − αωs)u

α
√

2u(α− βsu)

)
+

4βsqs+u − 2αωs

α2

× e−
2q(βsqs+u−αωs)

α2

⎞⎟⎟⎠ dqs+u, (2.15)
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P (Q(s) ∈ dqs|Z(s) = zs)

=
((

1− e−2qs(qs−zs)
αs

)
(δ(qs −Q(0)− zs)1{qs≥0} + 1{qs≥Q(0)+zs}δ(qs))

+
(4qs − 2zs)

αs
e

−2qs(qs−zs)
αs 1{qs≥Q(0)+zs}1{qs≥0}

)
dqs, (2.16)

and

P (Z(s) ∈ dzs) = exp(−(zs − ωs)2/(2s(α− βs)))dzs/
√

2πs(α− βs), (2.17)

where ωs and βs are defined in Eq. (2.12).

The last theorem generalizes Theorem 5 for the case in which the net input process
to the queue is one component of a multivariate ψ-GMP with drift. In its statement, [v]i
denotes the ith component of the vector v, and [a]ii denotes the (i,i)th element of the
matrix a.

Theorem 6: If Q is defined by Eq. (2.10) where Z ≡ Zi is the ith component of
an R

m- valued process Z that is an (α,β) ψ-GMP with drift ω on [0, T ], then
P (Q(s+ u) ≤ qs+u | Z(s) = zs, Q(s) = qs) is given by the right-hand side of Eq. (2.11) for
qs+u ≥ 0 and 0 < s ≤ s+ u < T, where

ωs ≡ [ω − β(α− βs)−1(zs − sω)]i, α ≡ [α]ii = αii, βs ≡ [β(α− βs)−1
α]ii. (2.18)

3. EXAMPLES

The following examples describe the time domain over which a ψ-GMP can be defined
and reveal practical considerations in applying its maximum-likelihood estimators from
Theorem 4.

Example 1: If X is a univariate (α, β) ψ-GMP and β ≤ 0, then X can be defined as a
ψ-GMP on [0, T ] for any T ≥ 0 since Var X(t) = t(α− βt) ≥ 0 for all t ≥ 0. In that case,
X can be defined as an (α, β) ψ-GMP on [0,∞).

Example 2: If X is a univariate (α, β) ψ-GMP and β > 0, then X can be defined as a ψ-
GMP on [0, T ] for T ≤ α/β, but not for larger values of T since Var X(t) = t(α− βt) ≥ 0
only for 0 ≤ t ≤ α/β.

Example 3: Suppose that X is an R
m- valued (α,β) ψ-GMP on [0, T ] where β =

α/T − γ/T 2 when γ is positive semi-definite but not positive definite. Then, Γ (T, T ) =
T (α− βT ) = γ. According to Lemma 1, Γ (t, t) is then positive definite for 0 < t < T , but
α− βt is negative definite for t > T . Therefore, X cannot be defined as a multivariate
(α,β) ψ-GMP on [0, T̃ ] for any T̃ > T .

Example 4: A special case of Example 3 is obtained when βii > 0 for some i. Then,
Corollary 1 implies that Var Xi(t) = t(αii − βiit) ≥ 0 only for t ≤ αii/βii. The quantity
αii − βiit will become progressively more negative with increasing t > αii/βii. Therefore,
the multivariate process X (of which Xi is one component) can be defined as a ψ-GMP on
[0, T ] only for T ≤ αii/βii.
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12 Kerry Fendick

Example 5: A special case of Example 3 where m ≥ 2 and Var Xi(T ) > 0 for all i =
1, . . . ,m is where γ = xxT for some vector x of dimension m× 1 with nonzero elements.
Then, Var Xi(T ) > 0 for all i = 1, . . . ,m because the diagonal elements of γ are all nonzero,
and γ is positive semi-definite but not positive definite because it has a rank of one.

Example 6: A special case of Example 5 of practical interest is where X is the R
m-

valued (α,β) ψ-GMP that results from assigning α = α̂ and β= β̂ using the maximum-
likelihood estimators from Eqs. (2.7) and (2.8). In that case, β̂ = (α̂/tn)− (γ̂/t2n) where
γ̂ ≡ Γ (tn, tn) = xnxT

n is a rank-one matrix. (The matrix Γ (tn, tn) has rank one because
the maximum-likelihood estimators were obtained using a single realization of the ψ-GMP.)
Since Γ (tn, tn) is then positive semi-definite but not positive definite, the process X is an
(α,β) ψ-GMP on [0, tn] but not on [0, T̃ ] for any T̃ > tn (by Lemma 1).

Example 7: In the setting of Example 6, it may be desirable to modify the fitted ψ-GMP
so that it can be applied over a longer interval than the interval [0, tn] spanned by his-
toric samples. One approach for doing so is to let α = α̂ as in Example 6 but to let

β = ̂̂
β ≡ (α̂/tn)− (̂̂γ/t2n), where ̂̂γ is a weighted sum of γ̂ from Example 6 and a posi-

tive definite matrix with the same diagonal elements as γ̂. The matrix ̂̂γ is then called a
shrinkage estimator. With that modification to β, the covariance matrix Γ (tn, tn) = ̂̂γ is
positive definite, and Lemma 1 implies that the process with the modified parameters is an
(α,β) ψ-GMP on [0, T̃ ] for some T̃ > tn. Because the modification of parameters leaves
the diagonal elements of both α and β unchanged, it leaves the autocorrelation structure
unchanged for each of the component processes Xi individually (by Corollary 1). Methods
for obtaining a shrinkage estimator of a covariance matrix are described in Ledoit and Wolf
[33], Schäfer and Strimmer [42], and reference cited therein.

Example 8: In the setting of Example 6, it may be desirable to modify the fitted ψ-GMP so
that it can be applied over a particular interval [0, T̃ ] where T̃ > tn is a given value. A method
for doing so is as follows: first, let γ̃ = T̃ (α̂− β̂T̃ ), which is negative definite by Lemma 1
because Γ (tn, tn) is not positive definite when the parameters α = α̂ and β = β̂ are used;
second, let α = α̂ as before but let β = β̃ ≡ α̂/T̃ − γ̃/T̃ 2 where γ̃ is the closest symmetric
positive semi-definite matrix to γ̃ (in some norm). In that case, Γ (T̃ , T̃ ) = T̃ (α− βT̃ ) = γ̃,
and Lemma 1 implies that the process with the modified parameters is a ψ-GMP on [0, T̃ ].
Methods for obtaining the closest symmetric positive definite matrix (using the Frobenius
norm) are described in Higham [27,28].

Example 9: If X is a univariate (α, β) ψ-GMP with α = α̂, and β= β̂ when α̂ and β̂ are
the maximum-likelihood estimates from Eqs. (2.7) and (2.8), then Γ (tn, tn) = x2

n, so that X
is not restricted to [0, tn] unless xn = 0.

4. PROOFS OF THE RESULTS

In the statements that follows, a−T ≡ (a−1)T = (aT)−1 will denote the transpose of the
inverse of the nonsingular square matrix a. In addition, b− will denote any generalized
inverse of the matrix b as defined in Section 3.5 of Petersen and Pederson [37], and b+

will denote the Moore–Penrose pseudoinverse of b as defined in Section 3.6 of Petersen and
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Pederson [37]. A process {X(t) : 0 ≤ t ≤ T} is continuous in quadratic mean (C.Q.M.) if

E[XT(t)X(t)] <∞ and lim
s↑t

E[(X(t)−X(s))T(X(t)−X(s))] = 0 for 0 ≤ s ≤ t ≤ T.

The C.Q.M. process X with covariance kernel Γ (t, s) ≡ E[X(t)XT(s)] has the wide-
sense Markov property if

A(u, s) = A(u, t)A(t, s) for 0 ≤ s ≤ t ≤ u ≤ T, (4.1)

where
A(t, s) = Γ (t, s)(Γ (s, s))+ for 0 ≤ s ≤ t ≤ T (4.2)

is the transition matrix function for the process; see Theorem 2 of Beutler [6] for equivalent
statements of the wide-sense Markov property. For a Gaussian process, it is well-known
that the wide-sense Markov property is equivalent to the (strict-sense) Markov property;
see page 90 of Doob [15] for a proof in the univariate case that extends essentially unchanged
for the multivariate case.

Proof: Since Γ (t, s) is continuous at every diagonal point s = t, X is everywhere C.Q.M.
as follows from Theorem 2.2.1 on page 26 of Adler [1]. Furthermore, X is a wide-sense
Markov process because it is a Markov process and also Gaussian. �

For any C.Q.M wide-sense Markov process {X(t) : 0 ≤ t ≤ T <∞ and X(0) = 0}
for which Γ (s, s) is nonsingular for each 0 < s < T , Theorem 3.1 of Mandrekar [36]
implies that X(t) = f(t)U(t) for 0 ≤ t ≤ T , where {U(t) : 0 ≤ t ≤ T and U(0) = 0}
is another R

m- valued wide-sense Markov process satisfying E[U(t)|U(s)] = U(s) for
0 ≤ s ≤ t ≤ T and where f(t) is a nonsingular m×m matrix for each t. Since
Γ (s, s) ≡ E[X(s)XT(s)] = f(s)E[U(s)UT(s)]fT(s) is nonsingular for 0 < s < T , so must
be E[U(s)UT(s)] for 0 < s < T. By Eqs. (2.10) and (2.12) of Beutler [6], we see
that I = E[U(t)UT(s)](E[U(s)UT(s)])−1 for 0 < s < t ≤ T and conclude that h(s) ≡
E[U(s)UT(s)] = E[U(t)UT(s)] for 0 ≤ s ≤ t ≤ T , where the equality holds trivially when
s = 0 and when s = t. Therefore,

Γ (t, s) ≡ E[X(t)XT(s)] = f(t)E[U(t)UT(s)]fT(s) = f(t)h(s)fT(s) for 0 ≤ s ≤ t ≤ T.
(4.3)

The matrix-valued function h(s) is symmetric positive semi-definite for each s because
it is a covariance matrix, and h(0) = 0 because Γ (0, 0) = 0. Without loss of generality, the
functions f(·) and h(·) can be normalized so that f(0) = I without affecting their other
properties described above: if f(·) and h(·) have the properties described above except that
f(0) 
= I, then

Γ (t, s) = (f(t)f−1(0))(f(0)h(s)fT(0))(f−T(0)fT(s)) for 0 ≤ s ≤ t ≤ T
by Eq. (4.3), and the required normalizations are obtained by assigning f(t)← f(t)f−1(0)
and h(s)← f(0)h(s)fT(0), where the original functions are used on the right-hand sides
of both assignments.

Proof: By Lemma 1 and assumption (iv),

f(0) = I, h(0) = 0, and ḣ(0) = α. (4.4)

�
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14 Kerry Fendick

Assumption (ii) implies that f(·) and h(·) are each twice continuously differentiable.
Let

w(s, t) ≡ E[(X(t+ s)−X(s))2]. (4.5)

By Eqs. (2.2) and (4.5),

w(s, t) = f(t+ s)h(t+ s)fT(t+ s)− f(t+ s)h(s)fT(s)

− f(s)h(s)fT(t+ s) + f(s)h(s)fT(s) (4.6)

for 0 ≤ s ≤ s+ t ≤ T . Assumptions (i) and (ii) then imply that (∂/∂s)w (s, t) = 0 on 0 ≤
s ≤ s+ t ≤ T, so that

0 =
∂

∂s
w(0, t) = (f(t)h(t)fT(t))′ − f(t)α−αfT (t) + α (4.7)

for 0 ≤ t ≤ T using Eqs. (4.4) and (4.6). Comparing (2.2) and (4.7), we see that

Γ (t, t) =
(∫ t

0

f(u)du
)

α + α

(∫ t

0

fT(u)du
)
−αt, (4.8)

so that

h(t) = f−1(t)
((∫ t

0

f(u)du
)

α + α

(∫ t

0

fT(u)du
)
−αt,

)
f−T(t) (4.9)

for 0 ≤ t < T by Eq. (2.2). By Eqs. (4.4) and (4.9)

ḧ (0) = −ḟ(0)α−αḟ
T
(0). (4.10)

Assumptions (i) and (ii) also imply that (∂2/∂s2)w (s, t) = 0 for 0 ≤ s ≤ s+ t < T .
Applying Eqs. (4.4), (4.6), (4.9), and (4.10), we then find that

0 =
∂2

∂s2
w(0, t) = (ḟ(0)− ḟ(t))α + α(ḟ

T
(0)− ḟ

T
(t))

+ f(t)ḟ(0)α− f(t)αḟ
T
(0)− ḟ(0)αfT(t) + αḟ

T
(0)fT(t). (4.11)

Using assumption (iii) for the first time together with Eqs. (2.1), (2.2), and (4.4), we
see that

f(t)α =
∂

∂s
Γ (t, 0) =

∂

∂s
(Γ (t, 0))T = αfT(t) for 0 ≤ t ≤ T. (4.12)

By Eqs. (4.11) and (4.12), we obtain

0 =
∂2

∂s2
w(0, t) = 2(ḟ(0)− ḟ(t))α for 0 ≤ t < T (4.13)

for 0 ≤ t < T . Since α is nonsingular, we conclude that ḟ(t) = ḟ(0) for all 0 ≤ t ≤ T, so
that

f(t) = f(0) + ḟ(0)t = I + ḟ(0)t = I − βα−1t for 0 ≤ t ≤ T, (4.14)

where the second equality is obtaining using Eq. (4.4), and β ≡ −ḟ(0)α. The symmetry of
β follows from Eq. (4.12).
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By Eqs. (4.8), (4.12), and (4.14), we get

Γ (s, s) = 2
(

s

∫
0

f(u)du
)

α−αs = 2
(

s

∫
0
(I + ḟ(0)u)du

)
α−αs = s(α− βs).

Then, for 0 ≤ s ≤ t ≤ T ,

Γ (t, s) = f(t)h(s)fT(s) = f(t)f−1(s)f(s)h(s)fT(s) = f(t)f−1(s)Γ (s, s)

= (I − βα−1t)(I − βα−1s)−1s(α− βs) = s(α− βt)(α− βs)−1(α− βs)

= s(α− βt),

where the first three equalities follow from Lemma 1, and the last three from the prior two
results above. That proves Eq. (2.3) for s ≤ t.The conclusion for s > t follows from Eq. (2.1).

Proof: If X is a Gaussian process on [0, T ] with the covariance kernel from Eq. (2.2)
where α is symmetric positive definite, then α− βt is positive definite at t = 0. Since X is
assumed to be a Gaussian process, Γ (t, t) must be positive semi-definite on (0,T ], so that
α− βt must be too. Suppose that Γ (t∗, t∗) is positive semi-definite but not positive definite
for some t∗ ∈ (0, T ]. By Eq. (2.3), β = α/t∗ − Γ (t∗, t∗)/(t∗)2. Consider the quantity

yT(α− βt)y = yT

((
1− t

t∗

)
α

)
y + yT

(
t

(t∗)2
Γ (t∗, t∗)

)
y, (4.15)

where y is any nonzero vector of appropriate dimension:

• When 0 ≤ t < t∗, Eq. (4.15) is positive since α is positive definite and Γ (t∗, t∗) is
positive semi-definite. In that case, α− βt is positive definite.

• When t = t∗, Γ (t∗, t∗) is positive semi-definite but not positive definite by assump-
tion, so that α− βt is too.

• When t > t∗, Eq. (4.15) is negative for some y since (1− (t/t∗))α is then negative
definite and Γ (t∗, t∗) is positive semi-definite but not positive definite. In that case,
α− βt is negative definite. �

Hence, t∗ = T . Only at t = t∗ = T may Γ (t, t) be positive semi-definite but not positive
definite.

Proof: To show that Eq. (4.1) holds when X is a Gaussian process with the covariance
kernel from Eq. (2.3) where α is symmetric positive definite, we consider two cases:

If 0 < s ≤ t = u ≤ T , then

A(u, t)A(t, s) = Γ (u, u)(Γ (u, u))+Γ (u, s)(Γ (s, s))+

=
s

u
Γ (u, u)(Γ (u, u))+Γ (u, u)(Γ (s, s))+

=
s

u
Γ (u, u)(Γ (s, s))+ = Γ (u, s)(Γ (s, s))+ = A(u, s),

where the first equality follows by Eq. (4.2) when t = u, the second by Eq. (2.3), the third
by Property I of a pseudoinverse from Section 3.5.1 of Petersen and Pedersen [37], the fourth
by Eq. (2.3) again, and the last by Eq. (4.2) again.
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16 Kerry Fendick

If 0 < s ≤ t < u ≤ T , then Lemma 1 implies that Γ (t, t) is positive definite, so that
(Γ (t, t))+ = (Γ (t, t))−1. Then,

A(u, t)A(t, s) = Γ (u, t)(Γ (t, t))−1Γ (t, s)(Γ (s, s))+

=
s

t
Γ (u, t)(Γ (t, t))−1Γ (t, t)(Γ (s, s)) = A(u, s),

where Eq. (2.3) is used to obtain the second and third equalities. Since Eq. (4.1) then holds
for all 0 < s ≤ t ≤ u ≤ T , X is a wide-sense Markov process (as well as a Gaussian process)
and hence a (strict-sense) Markov process.

If Xε is defined as at the start of Section 2, then

Γ ε(t, s) ≡ E[Xε(t)XT
ε (s)] = Γ (t+ ε, s+ ε)− Γ (t+ ε, ε)− Γ (ε, s+ ε) + Γ (ε, ε) (4.16)

for all 0 ≤ s ≤ t ≤ T − ε and any 0 ≤ ε < T by the definition of a covariance kernel. Sub-
stituting Eq. (2.3) into Eq. (4.16), we easily verify that Γ ε(t, s) = Γ (t, s). Since the
distribution of a Gaussian process is determined by its covariance kernel, this shows that
X has stationary increments. �

Proof: Applying Definition 8.3.3 on page 200 of Adler [1], a Gaussian process X with sta-
tionary increments and the covariance kernel for each component as described in Corollary 1
is an index 1/2 Gaussian field. By Theorem 8.3.2 on page 202 Adler [1], it therefore satisfies
a uniform stochastic Hölder condition w.p.1, which in turn implies that its sample paths
are continuous w.p.1. �

Proof: The first equality follows immediately from Eq. (2.3). Let Γi(t, s) ≡
E[Xi(t)XT

i (s)]. The second equality then follows immediately from Corollary 1 since

Cov(Xi(t+ s)−Xi(t),Xi(t+ u+ s)−Xi(t+ u))

= Γi(s+ t, s+ t+ u)− Γi(t, s+ t+ u)− Γi(s+ t, t+ u)− Γi(t, t+ u)

and √
Var(Xi(t+ s)−Xi(t))

√
Var(Xi(t+ u+ s)−Xi(t+ u))

= Γi(s+ t, s+ t)− 2Γi(t, s+ t) + Γi(t, t). �

Proof: The SDE in Eq. (2.4) is an example of a linear SDE, the properties of which
are well-known and summarized on pages 354–355 of Karatzas and Shreve [31]; see also
Theorem 4.10 on pages 144–147 of Lipster and Shiryayev [34] or Section 5 of Beutler [6].
By Eq. (6.6) on page 354 there, its solution X is a Gaussian process. By Eq. (6.11) on page
355 there,

Γ (t, s) = f(t)f−1(s)g(s) for 0 ≤ s ≤ T, (4.17)

where g(s) ≡ Γ (s, s). By Eq. (6.3) on page 354 there, f(·) uniquely solves

ḟ(t) = μ(t)f(t) for 0 ≤ t ≤ T, (4.18)

f(0) = I. �
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By Eq. (6.13) on page 355 there, g(·) uniquely solves

ġ(s) = μ(s)g(s) + g(s)μT(s) + σ(s)σT(s), (4.19)

g(0) = 0.

When Eqs. (2.5) and (2.6) hold, f(t) = I − βα−1t and g(s) = s(α− βs) satisfy Eqs.
(4.18) and (4.19), and Eq. (2.3) follows from Eq. (4.17).

Proof: By definition, a process is Gaussian if its finite-dimensional distributions are Gaus-
sian. For any set of random variables with a joint Gaussian distribution, it is well-known
that the conditional distribution of any subset—given the values of the others—is Gaus-
sian, see page 522 of Rao [39]. Therefore, the process {B(t) : 0 ≤ t ≤ u ≤ T} is Gaussian.
Its conditional mean is

E[Z(t)|Z(u)] = tω + Γ (t, u)Γ (u, u)−(Z(u)− uω) = tω + tu−1Γ (u, u)Γ (u, u)−(Z(u)− uω)

for 0 ≤ t ≤ u < T where the first equality follows from the result from Section 6.2.2 of
Puntaten and Styan [38], and the second from Eq. (2.3). Because E[Z(u)|Z(u)] = Z(u)
w.p.1, setting t = u in the first equality shows that Γ (u, u)Γ (u, u)−(Z(u)− uω) = Z(u)−
uω w.p.1. Substituting that result into the final expression on the right-hand side of the
second equation yields

E[Z(t)|Z(u)] = tω + tu−1(Z(u)− uω) = tu−1Z(u). �

The conditional covariance matrix is

E[(Z(t)− E[Z(t)|Z(u)])(Z(s)− E[Z(s)|Z(u)])T|Z(u)]

= Γ (t, s)− Γ (t, u)Γ (u, u)−Γ (u, s)

= Γ (t, s)− stu−2Γ (u, u)Γ (u, u)−Γ (u, u)

= Γ (t, s)− stu−2Γ (u, u) = (I − tu−1I)sα,

where the first equality also follows from the results in Section 6.2.2 of Puntaten and Styan
[38], the second equality from Eq. (2.3), the third from Definition 2.2 of a generalized inverse
in Rao and Mitra [40], and the last by Eq. (2.3) again.

Proof: The random vector of dimension m(n− 1)× 1 that is constructed by concatenating
B(t1),B(t2), . . . ,B(tn−1) has a Gaussian distribution. By Lemma 1, its mean is equal to
vec(M), where the vec operator is defined in Section 10.2 of Petersen and Pedersen [37],
and M is the matrix with j th column equal to tjt−1

n xn for j = 1, . . . , n− 1. Lemma 1 also
implies that the covariance matrix for the random vector is equal to the Kronecker product
T ⊗α, where the ⊗ operator is also defined in Section 10.2 of Petersen and Pedersen [37],
and T is the symmetric matrix of dimension (n− 1)× (n− 1) with (i,j )th element equal
to ti(1− tj /tn) for i ≤ j. Let Y ≡X −M, where X is the matrix with j th column equal
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18 Kerry Fendick

to xj for j = 1, . . . , n− 1, and y ≡ vec(Y ). If

p1(x1,x2, . . . ,xn−1|xn) ≡ P (B(t1) ∈ dx1, . . . ,B(tn−1) ∈ dxn−1)
dx1, . . . , dxn−1

, (4.20)

then its log-likelihood function is

L1 = const− 1
2

log(|T ⊗α|)− 1
2
yT(T−1 ⊗α−1)y, (4.21)

where | · | in this context denotes the matrix determinate operator. The notation on the
left-hand side of Eq. (4.20) is suggestive of our later application of this lemma, but for now
is simply shorthand for the right-hand side.

Let

α =
m∑

j=1

vjv
T
j (4.22)

denote a decomposition of the real symmetric positive definite matrix α in which each of
the vi

′s is a column vector. Such a decomposition always exists by the Spectral Theorem.
Also, let z ≡ (T−1 ⊗α−1)y = (T−1 ⊗α−1)vec(Y ). By Eq. (520) of Peterson and Pedersen
[37],

z = vec(α−1Y T−1). (4.23)

Then,

yT(T−1 ⊗α−1)y = zT(T ⊗α)z =
m∑

j=1

zT(T ⊗ (vjv
T
j ))z

=
m∑

j=1

vT
j α−1Y T−1TT−1Y Tα−1vj

= tr

⎛⎝ m∑
i=j

α−1Y T−1Y Tα−1vjv
T
j

⎞⎠
= tr(α−1Y T−1Y T), (4.24)

where the first equality follows from the definition of z, the second from Eq. (4.22) here and
Eq. (506) of Petersen and Pederson [37], the third from Eq. (4.23) here and Eq. (524) of
Petersen and Pedersen [37], the forth from well-known properties of the matrix trace, and
the fifth from Eq. (4.22) again.

By Eq. (4.21) and Eq. (4.24),

L1 = const− 1
2

log(|T ⊗α|)− 1
2
tr(α−1Y T−1Y T) (4.25)

from which we obtain, for each 1 ≤ i ≤ j ≤ m,

∂

∂αi,j
L1 = −1

2
tr

(
(T−1 ⊗α−1)

(
T ⊗ ∂α

∂αi,j

))
+

1
2
tr

(
α−1Y T−1Y Tα−1 ∂α

∂αi,j

)
= −1

2
tr

(
I(n−1)×(n−1) ⊗α−1 ∂α

∂αi,j

)
+

1
2
tr

(
α−1Y T−1Y Tα−1 ∂α

∂αi,j

)
=

1
2
tr

(
−(n− 1)α−1 ∂α

∂αi,j

)
+

1
2
tr

(
α−1Y T−1Y Tα−1 ∂α

∂αi,j

)
(4.26)
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for 1 ≤ i ≤ j ≤ m, where I(n−1)×(n−1) denotes the identity matrix of dimension (n− 1)×
(n− 1). The first equality of Eq. (4.26) follows by applying Eqs. (57), (512), and (137)
of Petersen and Pederson [37] to the first nonconstant summand on the right-hand side
of Eq. (4.25) and by applying Eqs. (124) and (137) of Petersen and Pederson [37] to the
second nonconstant summand of Eq. (4.25). Both of those steps use the fact that T and
α are symmetric. The second equality of Eq. (4.26) follows from Eq. (511) of Petersen and
Pederson [37], and the last from the definition of a Kronecker product. �

Any symmetric matrix χ of dimension m×m can be expressed as a linear combination
of the (∂α/∂αi,j)′s. Therefore, using Eq. (4.26), ( ∂/∂αi,j)L1 = 0 for all 1 ≤ i ≤ j ≤ m if
and only if

tr((−(n− 1)α−1 + α−1Y T−1Y Tα−1)χ) = 0 (4.27)

for any symmetric matrix χ of dimension m×m That is true, in particular, for χ =
(−(n− 1)α−1 + α−1Y T−1Y Tα−1)T, in which case Eq. (4.27) implies that

− (n− 1)α−1 + α−1Y T−1Y Tα−1 = 0. (4.28)

Conversely, Eq. (4.28) implies that Eq. (4.27) holds for any symmetric χ. We can,
therefore, conclude that the likelihood equations are uniquely satisfied by

α = α̂ ≡ (n− 1)−1Y T−1Y T. (4.29)

We easily verify that T−1 is the symmetric tridiagonal matrix

T−1 =

⎡⎢⎢⎢⎢⎢⎣
b1 a1

a1 b2 a2

. . . . . . . . .
an−3 bn−2 an−2

an−2 bn−1

⎤⎥⎥⎥⎥⎥⎦ , (4.30)

where aj = −1/(tj+1 − tj) and bj = (tj+1 − tj−1)/(tj+1 − tj)(tj − tj−1) when t0 ≡ 0. For
k = 1, 2, . . . ,m, let yk,i denote the (k,i)th element Y for i = 1, 2, . . . , n− 1, and let yk,n ≡ 0.
Then, by Eqs. (4.29) and (4.30), the (j,k)th element of α̂ is

α̂j,k =
1

n− 1

n−1∑
i=1

(
ti+1 − ti−1

(ti+1− ti)(ti− ti−1)
yj,iyk,i− 1

(ti+1− ti)yj,iyk,i+1− 1
(ti+1− ti)yj,i+1yk,i

)

=
1

n− 1

(
t0yj,1yk,1

(t21 − t0t1)
− tn−1yj,nyk,n

(t2n − tn−1tn)
+

n−1∑
i=1

(ti+1yj,i − tiyj,i+1)(ti+1yk,i − tiyk,i+1)
titi+1(ti+1 − ti)

)

=
1

n− 1

n−1∑
i=1

(ti+1yj,i − tiyj,i+1)(ti+1yk,i − tiyk,i+1)
titi+1(ti+1 − ti)

=
1

n− 1

n−1∑
i=1

(ti+1xj,i − tixj,i+1)(ti+1xk,i − tixk,i+1)
titi+1(ti+1 − ti) .

We recognize the expression on the right-hand side of the last equality as the (j,k)th
element of Eq. (2.7). Hence, Eqs. (4.29) and (2.7) are equivalent. By Eq. (2.7), n ≥ m+ 1
in order for α̂ to have rank m.
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20 Kerry Fendick

Applying Eqs. (124), (125), and (137) of Peterson and Pedersen [37] to the expression
on the right-hand side of Eq. (4.26) and substituting α̂ from Eq. (4.29) results in

∂2

∂αi,j∂αk,l
L1(α̂) = −1

2
(n− 1)tr

((
α̂−1 ∂α

∂αi,j

)(
α̂−1 ∂α

∂αk,l

))
(4.31)

for 1 ≤ i ≤ j ≤ m and 1 ≤ k ≤ l ≤ m. The matrices α̂−1(∂α/∂αi,j) for 1 ≤ i ≤ j ≤ m in
Eq. (4.31) are linearly independent, and the matrix trace in Eq. (4.31) is an inner product
of two such elements. Consequently, the likelihood function’s Hessian matrix evaluated at
α̂, as expressed by the left-hand side of Eq. (4.31), is the negative of a Gram matrix of
independent vectors and is therefore negative definite. That shows that L1(α̂) is indeed a
maximum Eq. (4.21), so that α̂ in Eq. (2.7) is the unique maximum-likelihood estimator
for p1(x1,x2, . . . ,xn−1|xn) in Eq. (4.20).

By Eq. (4.25), the log-likelihood function L1 depends on the sample vectors only through
α̂ in Eq. (4.29). The sufficiency of α̂ then follows from the Fisher–Neyman theorem; see
Halmos and Savage [23] for a formulation of that theorem covering the current case of
dependent random vectors.

The above proof of Lemma 3 uses Petersen and Pedersen [37] as a common reference
for all matrix identities. An alternative proof is outlined by Dutilleul [16] in the context of
a related problem. A log-likelihood equation corresponding to Eq. (4.25) here is given at
the start of Section 3 there and a solution corresponding to Eq. (4.29) here is given by Eq.
(3.4) there. The uniqueness of that solution then follows from Section 18.24 of Kendell and
Stuart [32], which also shows that the Hessian matrix corresponding to the left-hand side
of Eq. (4.31) here will always be negative semi-definite for a broader class of problems. To
show that the solution is indeed a maximum requires verifying that the Hessian matrix is
negative definite for the problem at hand. That last step was not covered by Dutilleul [16]
but is covered by the proof of Lemma 3 here. The spectral representation for the solution
in Eq. (2.7) appears to be a new result.

Proof: Let

p1(x1,x2, . . . ,xn−1|xn) ≡ P (X(t1) ∈ dx1, . . . ,X(tn−1) ∈ dxn−1|X(tn) = xn)
dx1, . . . , dxn−1

, (4.32)

p2(xn) ≡ P (X(tn) ∈ dxn)
dxn

, (4.33)

and

p(x1,x2, . . . ,xn) ≡ P (X(t1) ∈ dx1, . . . ,X(tn) ∈ dxn)
dx1, . . . , dxn

. (4.34)

They are related by

p(x1,x2, . . . ,xn) = p1(x1,x2, . . . ,xn−1|xn)p2(xn). (4.35)

In the setting of Theorem 4, estimators are jointly sufficient if they are jointly sufficient
with respect to Eq. (4.34) and are the maximum-likelihood estimators if they maximize
Eq. (4.34). �

By Lemma 2, Eq. (4.32) coincides with the density of the same name in Eq. (4.20).
Let Σ ≡ Γ (tn, tn). If Rank(Σ) = m, then Eq. (4.33) has the familiar form of a multivariate
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Gaussian density,

p2(xn) = (2π)−m/2|Σ|−1/2exp
(
−1

2
tr(Σ−1xnxT

n )
)
. (4.36)

The density in Eq. (4.36) does not exist when Rank(Σ) < m, but, in that case,
there exists a matrix N with dimension m× (m− Rank(Σ)) such that Rank(N) =
m− Rank(Σ) and NTΣ = 0; see page 527 of Rao [39]. Then, NTX(tn) has a variance
of zero and is, therefore, equal to its mean w.p.1, that is, NTX(tn) = NTEX(tn) = 0
w.p.1. In this case, Section 8a.4 on pages 527–528 of Rao [39] shows that X(tn) will have
the density,

p2(xn) =

⎧⎨⎩ (2π)−Rank(Σ)/2|Σ|−1/2
+ exp

(
−1

2
tr(Σ−xnxT

n )
)
, NTxn = 0,

0, otherwise,
(4.37)

where |Σ|+ denotes the product of the nonzero eigenvalues of Σ (and where Σ− denotes any
generalized inverse of Σ as before). If Rank(Σ) = m, then N = 0, in which case Eq. (4.37)
agrees with Eq. (4.36). Therefore, the density in Eq. (4.35) is equal in the general case to
the product of Eq. (4.37) and p1(x1,x2, . . . ,xn−1|xn) from Eq. (4.20).

When Eqs. (2.7) and (2.8) hold, xnxT
n = tnα̂− t2nβ̂ in Eq. (4.37). Furthermore, the case

in Eq. (4.37) where NTxn = 0 applies if and only if 0 = NTxnxT
nN = NT(tnα̂− t2nβ̂)N .

Consequently, Eq. (4.37) depends on the sample vector xn only through α̂ and β̂. The proof
of Lemma 3 shows that Eq. (4.20) depends on the sample vectors x1,x2, . . . ,xn only through
α̂. Since both terms on the right-hand side of Eq. (4.35) depend on the sample vectors only
through α̂ and β̂, the joint sufficiency of α̂ and β̂ follows from the Fisher–Neyman theorem
for any given Rank(Σ).

Section 8a.5, page 532 of Rao [39] implies for the case in which Rank(Σ) = 1 that

Σ̂ = xnxT
n (4.38)

is the maximum-likelihood estimator of Σ ≡ Γ (tn, tn) in Eq. (4.37). Then, Eq. (2.3) implies
that any estimators α̂ and β̂ satisfying xnxT

n = tn(α̂− β̂tn) will maximize Eq. (4.37). In
particular, Eqs. (2.7) and (2.8) do. By Lemma 3, α̂ from Eq. (2.7) is the maximum-likelihood
estimator of Eq. (4.32). Since α̂ and β̂ from Eq. (2.7) and Eq. (2.8) maximize the terms on
the right-hand side of Eq. (4.35) individually, they are the maximum-likelihood estimators
of the parameters of Eq. (4.34).

By Eq. (2.3) and Eq. (2.7),

Eα̂ =
1

n− 1
E

n−1∑
i=1

t2i+1xix
T
i − titi+1xix

T
i+1 − titi+1xi+1x

T
i + t2i xi+1x

T
i+1

titi+1(ti+1 − ti)

=
1

n− 1

n−1∑
i=1

t2i+1Γ (ti, ti)− titi+1Γ (ti, ti+1)− titi+1Γ (ti+1, ti) + t2i Γ (ti+1, ti+1)
titi+1(ti+1 − ti)

=
1

n− 1

n−1∑
i=1

α = α,

so that α̂ is unbiased. Then, by Eqs. (2.3), (2.7), and (2.8),

E(tn(α̂− β̂tn)) = ExnxT
n = Γ (tn, tn) = tn(α− βtn),

so that β̂ is unbiased as well.
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Proof: Since Z is a ψ-GMP with drift on [0, T ], Γ (t, s) = s(α− βt) for 0 ≤ s ≤ t ≤ T .
When 0 < s < T , the covariance matrix Γ (s, s) = s(α− βs) is nonsingular by Lemma 1.
Applying the same logic as in the proof of Lemma 2,

E[Z(s)(t)|Z(s) = zs] = E[Z(s+ t)−Z(s)| Z(s) = zs]

= (s+ t)ω + Γ (t+ s, s)Γ (s, s)−1(zs − sω)− zs

= ωst

for t ≥ s, where ωs is defined as in Eq. (2.9); and

E[(Z(s)(u)− E[Z(s)(u)|Z(s) = zs])(Z(s)(t)− E[Z(s)(t)|Z(s) = zs])| Z(s) = zs]

= Γ (u+ s, t+ s)− Γ (u+ s, s)Γ (s, s)−1Γ (s, t+ s)

= t(α− βsu)

for u ≥ t ≥ s, where βs is also defined in Eq. (2.9). The result in Lemma 4 then follows
because Z is a Markov process. �

Proof: Theorem 5 is the special case when m = 1 of Theorem 6. Under the assumptions
of Theorem 6, {Z(t) ≡ tω + X(t) : 0 ≤ t ≤ T} where ω is a constant vector and X is an
(α,β) ψ-GMP on [0, T ]. �

Fixing s, let {Z(s)(t) ≡ Z(s+ t)−Z(s) : 0 ≤ t ≤ T − s}. Also, let Z ≡ Zi denotes the
ith component of Z, and let Z(s) ≡ Z(s)

i denotes the ith component of Z(s). Fixing u, let

H(z(s)
u |zs,qs) ≡ P (Z(s)(u) ≤ z(s)

u |Z(s) = zs, Q(s) = qs), (4.39)

F (qs+u|zs,qs) ≡ P (Q(s+ u) ≤ qs+u|Z(s) = zs, Q(s) = qs), (4.40)

and

F (qs+u|zs,qs, z
(s)
u ) ≡ P (Q(s+ u) ≤ qs+u|Z(s) = zs, Q(s) = qs,Z

(s)(u) = z(s)
u ). (4.41)

The process {Z(s)(t) : 0 ≤ t ≤ T − s|Z(s) = zs, Q(s) = qs} that is obtained by condi-
tioning Z(s) on both Z(s) = zs and Q(s) = qs has the same distribution as the process
{Z(s)(t) : 0 ≤ t ≤ T − s| Z(s) = zs} that is obtained by conditioning Z(s) on Z(s) = zs

alone because Z is a Markov process and Q(s) is determined by {Z(v) : 0 ≤ v ≤ s} by
Eq. (2.10). By Lemma 4,

E[Z(s)(t)|Z(s) = zs] = ωst

for t ≥ s, where ωs is defined as in Eq. (2.9); and

E[(Z(s)(u)− E[Z(s)(u)| Z(s) = zs])(Z(s)(t)− E[Z(s)(t)| Z(s) = zs])| Z(s) = zs]

= t(α− βsu)

for u ≥ t ≥ s, where βs is also defined in Eq. (2.9). By Corollary 1, the R
1- valued process

{Z(s)(t) : 0 ≤ t ≤ T − s|Z(s) = zs, Q(s) = qs} = {Z(s)(t) : 0 ≤ t ≤ T − s|Z(s) = zs}
is then an (α, βs) ψ-GMP with drift ωs on [0, T − s] where α, ωs and βs are defined in
Eq. (2.18), so that

H(z(s)
u |zs,qs) = N(z(s)

u ;ωsu, u(α− βsu)), (4.42)

where N(y;μ, σ2) ≡ ∫ y

−∞ exp(−(x− μ)2/(2σ2))/
√

2πσ2dx is the cumulative distribution
function for a normal random variable with mean μ and variance σ2.
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By the above results and Lemma 2, the process {Z(s)(t) : 0 ≤ t ≤ u ≤ T − s| Z(s) =
zs, Q(s) = qs, Z

(s)(u) = z
(s)
u } that is obtained by conditioning {Z(s)(t) : 0≤ t≤u≤T − s|

Z(s) = zs, Q(s) = qs} on Z(s)(u) = z
(s)
u is an (α, u−1α) ψ-GMP with drift u−1z

(s)
u on [0, u].

Since that process does not depend on ωs from (2.18), it does not depend on zs.
To summarize, conditioning Z(s) on both Z(s) = zs and Q(s) = qs results in an (α, βs)

ψ-GMP with drift ωs on [0, T − s]. That process depends on zs but not qs. Further con-
ditioning it on Z(s)(u) = z

(s)
u for some u ≤ T − s results in an (α, u−1α) ψ-GMP with

drift u−1z
(s)
u on [0, u]. That process depends on z

(s)
u but on neither qs nor zs. Therefore,

the process obtained by conditioning {Q(t) : s ≤ t ≤ s+ u} on Z(s) = zs, Q(s) = qs, and
Z(s)(u) = z

(s)
u begins in state qs at time s and evolves from there according to a net input

process that is an (α, u−1α) ψ-GMP with drift u−1z
(s)
u on [0, u]. That process is a scaled

BB. Section 3 of Hajek [22] derived the distribution for the length of a queue with such a
net input process. Following the development there, we find that

F (qs+u | zs, qs, z
(s)
u ) =

{
1− e−2qs+u(qs+u−z(s)

u )/(αu), qs+u ≥ max(qs + z
(s)
u , 0)

0, otherwise.
(4.43)

Then,

F (qs+u|zs,qs) =
∫ qs+u−qs

−∞
F (qs+u|zs,qs, z

(s)
u )dH(z(s)

u |zs,qs) for qs+u ≥ 0, (4.44)

where the limits of integration follow from Eq. (4.43). Using the technique for completing
the square in the exponent (demonstrated in the example on page 13 of Harrison [24]), we
evaluate Eq. (4.44) using Eqs. (4.42) and (4.43) to obtain Eq. (2.11).

Proof: The identities in Eqs. (2.13) and (2.14) follow from well-known properties of condi-
tional densities; see, for example, Theorem 8.3.3 on page 142 of Whittle [48]. The expression
in Eq. (2.15) describes the density of Eq. (2.11). By the same logic as led to Eq. (4.43) above,

P (Q(s) ≤ qs|Z(s) = zs) =
{

1− e−2qs(qs−zs)/(αs), qs ≥ max(Q(0) + zs, 0)
0, otherwise.

�

The expression in Eq. (2.16) describes its density. Because Z is an (α, β) ψ-GMP with
drift ω, P (Z(s) ≤ zs) = N(zs;ωs, s(α− βs)) and the expression in Eq. (2.17) describes its
density.
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