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Abstract

We study the transient and limiting behavior of a queue with a Polya

arrival process. The Polya process is interesting because it exhibits path-

dependent behavior; e.g., it satisfies a non-ergodic law of large numbers:

The average number of arrivals over time [0, t] converges almost surely to a

nondegenerate limit as t → ∞. We establish a heavy-traffic diffusion limit

for the
∑

n

i=1
Pi/GI/1 queue, with arrivals occurring exogenously according

to the superposition of n i.i.d. Polya point processes. That limit yields a

tractable approximation for the transient queue-length distribution, because

the limiting net input process is a Gaussian Markov process with stationary

increments. We also provide insight into the long-run performance of queues

with path-dependent arrival processes. We show how Little’s law can be stated

in this context and we provide conditions under which there is stability for a

queue with a Polya arrival process.
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1. Introduction

In almost all queueing models, the impact of initial conditions dissipates as time

evolves. Thus, for stationary models interest usually centers on the steady-state
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distribution and convergence to it for various initial condiitons. The asymptotic loss

of memory (appropriately defined) is also anticipated in queueing models with time-

varying arrival rates, as evidenced by results for the time-varying Gt/Mt/st + GIt

many-server fluid model in [32] and the weak ergodicity results for nonhomogeneous

Markov chains in Chapter V of [28]. In contrast, here we consider a queueing model

in which the long-run behavior of the arrival process depends critically on the early

history of the arrival process.

Such a stochastic process is said to exhibit path-dependent behavior. There has

long been substantial interest in systems with path-dependent behavior, as can be

seen from [1], [2] and the citations to them. The classic example is the familiar Polya

urn model discussed in Feller [14], first studied by Polya and Eggenberger [37]. There

is an urn containing r red balls and b blue balls. At each step, we select one ball in the

urn at random and then return that ball and one new ball of the selected color to the

urn. The proportion of balls of any given color has a path-dependent limit, converging

almost surely to a random limit, which has the beta distribution, depending on the

parameters r and b. The different converging paths depending on the early history are

shown in Figure 1 of [2]. (Figure 1 in §2 here is an analog.)

For the allocation of scarce resources in systems with path-dependent behavior, it

is natural for queues to arise. Thus we are motivated to consider a queue with a

path-dependent arrival process. Hence we consider the
∑n

i=1 Pi/GI/1 queue, which is

a single-server queue with unlimited waiting space the first-come first-served service

discipline and independent and identically distributed (i.i.d.) service times with a

general distribution, with arrivals according to the superposition of n i.i.d. Polya

point processes. A Polya point process can be represented as a limit of Polya urn

models as indicated on p. 480 of [14]. Theorem 1 shows that the Polya point process is

a stationary point process, while Theorem 3 shows that it satisfies a non-ergodic law of

large numbers (LLN), which we use as our definition of path-dependence. Proposition

3 (from [7]) shows that the superposition process is a special generalized Polya process

as considered by [30, 8], which inherits those properties.

We establish several results for queues with Polya point process arrival processes.

Our main contribution here is Theorem 5, which establishes a heavy-traffic limit

that provides, via Corollary 6, a tractable description of the transient queue length
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distribution in the
∑n

i=1 Pi/GI/1 queueing model when the service-time distribution

has finite second moment, exposing the performance impact of the path-dependent

behavior of the arrival process. That follows from Theorem 4, which establishes a

functional central limit theorem (FCLT) for the
∑n

i=1 Pi superposition process, showing

that the limit is a Gaussian Markov process with stationary increments (Ψ-GMP, Ψ

mnemonic for SI to denote Stationary Increments) studied in [16].

Here is how this paper is organized: In §2 we place our superposition process in

the context of generalized Polya processes, as developed in [30, 8, 7]. In Theorems 1

and 2 we identify generalized Polya processes that are stationary point processes and

show how this class can be used to represent any generalized Polya process. In §3 we

establish the FCLT for the superposition process and state various consequences. In §4
we establish the FCLT with an extra drift and exhibit some striking properties of the

Ψ-GMP with drift, further exposing the path-dependent behavior. In §5 we establish

the associated heavy-traffic limit for the
∑n

i=1 Pi/GI/1 queue.

Afterwards, we provide additional results and discussion. In §6 we obtain stability

results for the single server queue and then establish steady-state results for queues

with Polya arrival processes when either (i) there are infinitely many servers or (ii)

there is a single server with an adaptive rate-matching service-rate control in the spirit

of [41]. In §7 we present some remaining technical details. In §8 we present conclusions

and discussion.

We conclude this introduction by discussing related work. First, we note that queues

with Polya arrival processes have been considered previously as a way to capture

exceptional variability by [34] and [35, 36]; we discuss that earlier work in Remark

2. Second, the heavy-traffic limit of the
∑n

i=1 Pi/GI/1 queue can be regarded as a

Gaussian queue with a net input process that is a Ψ-GMP with drift. Thus this paper

is related to the large literature on Gaussian queues, which can be seen from [11, 10].

The FCLT here yields a Ψ-GMP with positive dependence, i.e., in which the increments

over disjoint intervals are positively correlated; see Corollary 4. As we indicate in §8,
similar limits hold for processes with negative dependence. That leads to convergence

of empirical processes to the Brownian bridge and related queueing heavy-traffic limits

as in [22, 26].



4 Fendick and Whitt

2. Generalized Polya Point Process with Stationary Increments: Ψ-GPP

The Polya point process has been extended to the generalized Polya process (GPP)

by Konno [30] and Cha [8]. A GPP N ≡ {N(t) : t ≥ 0} is a Markov point process with

stochastic intensity (defined in terms of the internal histories Ht; e.g., see §1.8 of [3])

by

λ(t) ≡ λ(t|Ht) ≡ (γN(t−) + β)κ(t), (1)

where N(0) = 0, γ and β are positive constants, κ(t) is a positive integrable real-valued

function and ≡ denotes equality by definition. The classical Polya point process is the

special case of (1) with β = 1 and

κ(t) =
1

γt+ 1
, t ≥ 0. (2)

Many properties of the GPP were deduced in [8] by exploiting the restarting prop-

erty.

Proposition 1. (the restarting property, [8].) If N is a GPP with parameter triple

(κ(t), γ, β), then the conditional future process Nu(t) ≡ N(u+t)−N(u) given N(u) = n

and the history up to time u is itself a GPP with parameter triple (κ(u+ t), γ, β+nγ).

Theorem 1 of [8] establishes the joint distribution of a GPP by exploiting the

restarting property. As a consequence, the marginal distribution of a GPP starting

at N(0) = 0 has a simple form.

Proposition 2. (negative binomial marginal distribution, [8].) If N is a GPP with

parameter triple (κ(t), γ, β), then N(t) has a negative binomial distribution with prob-

ability mass function (pmf)

P(N(t) = k) ≡ f(k; r, p(t)) = C(β, γ, k)(1− p(t))rp(t)k, k = 0, 1, 2, . . .

where

r = β/γ, p(t) = 1− exp{−γK(t)}, K(t) ≡
∫ t

0

κ(s) ds, t ≥ 0,

and

C(β, γ, k) = Γ((β/γ) + k)/Γ((β/γ))k!
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with Γ being the gamma function, so N(t) has mean and variance

E[N(t)] =
rp(t)

1− p(t)
and Var(N(t)) =

rp(t)

(1 − p(t))2
, t ≥ 0.

For general function κ(t), the time-varying behavior can be complicated, but it

simplifies for the classical Polya point process and closely related processes (allowing

β 6= 1). Indeed, for κ(t) in (2) the GPP is a (strictly) stationary point process, i.e., the

joint distribution of any k increments is independent of time shifts, as we show next.

In the spirit of [16], we thus call the GPP with triple (κ(t), γ, β) for κ(t) in (2) a (β, γ)

Ψ-GPP (again Ψ as a mnemonic for SI to indicate stationary increments).

Theorem 1. (a stationary point process: the Ψ-GPP.) Consider a GPP with param-

eter triple (κ(t), γ, β). If κ(t) is given by (2), then 1− p(t) = κ(t),

E[N(t)] = βt and Var(N(t)) = βt(1 + γt), t ≥ 0. (3)

Moreover, the joint distribution of k increments N(si + ti + h)−N(si + h), 1 ≤ i ≤ k,

is independent of h > 0 for all h, so that N is a stationary stochastic point process

with

Cov(N(s), N(t)) = βs(1 + γt), 0 ≤ s ≤ t < ∞. (4)

Proof. For κ in (2),

K(t) ≡
∫ t

0

(γs+ 1)−1 ds = γ−1 log (γt+ 1), t ≥ 0,

so that 1 − p(t) = e−γK(t) = κ(t). Then the conclusion about the distribution of a

single increment follows from the displayed distribution of an increment in Theorem 1

(ii) of [8]. For the covariance in (4), write

Var(N(t− s)) = Var(N(t) −N(s)) = Var(N(t)) + Var(N(s)) − 2Cov(N(s), N(t)),

where the first equality follows from stationary increments, to obtain

Cov(N(s), N(t)) = [Var(N(t)) + Var(N(s)) − Var(N(t− s))]/2

and then use the variance formula in (3).

For the joint distribution of k increments, we first observe that, without loss of

generality, we can assume that the k increments are disjoint and contiguous, so that
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they represent a partition of a fixed interval (s, s + t] into finitely many subintervals.

(We are thus initially adding intervals and determining the joint distribution for more

intervals.) We then apply Theorem 3 and Remark 3 of [8] to conclude that the

conditional distribution for the sequence of times when N increases on (s, s+ t] given

that N(s+ t) −N(s) = k is, first, independent of s and, second, is itself the same as

that of the order statistics of k i.i.d. random variables, each with probability density

function

f (x) ≡ γκ (x) exp (γK (x))

exp (γK (t))− 1
, 0 ≤ x ≤ t,

assuming s = 0. If κ(t) is given by (2), then f(x) = 1/t; i.e., the pdf of the uniform

distribution. That in turn implies that the joint distribution of the k disjoint and

contiguous increments N(si + ti + h) − N(si + h), 1 ≤ i ≤ k, all within some larger

interval (s + h, s + t + h) is independent of h > 0 for all h. That follows because

the conditioning event that N(s + t + h) − N(s + h) = k has a distribution that is

independent of h and then the conditional distribution of the points within the interval

given that N(s+ t+h)−N(s+h) = k is also independent of h. Finally, we go from the

case of contiguous intervals to the original case by integrating out in order to obtain

the desired marginal distribution; e.g., when we let the probability that one interval is

≤ ∞, then that interval drops out. �

We now show that any GPP with general κ(t) in (1) can be expressed as a unique

deterministic time-transformation of a Ψ-GPP based on (2). As a consequence, limits

established for Ψ-GPP will extend to GPPs by the continuous mapping theorem. Let
d
= denote equality in distribution, including for stochastic processes.

Theorem 2. (characterization of GPP) Let N̂ be the GPP with parameter triple

(κ(t), γ, β) satisfying (1); let N be the Ψ-GPP with parameter triple (κ(t), γ, β) satis-

fying (1) and (2); and let

M(t) ≡
∫ t

0

µ(s) ds, t ≥ 0, (5)

where µ is a continuous positive function on [0,∞). Then

{N̂(t) : t ≥ 0} d
= {N(M(t)) : t ≥ 0},
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if and only if

M(t) = γ−1(eγK(t) − 1), t ≥ 0, where K(t) ≡
∫ t

0

κ(s) ds. (6)

Proof. The stochastic intensity of N can be interpreted as

λ(t) ≡ λ(t|Ht−) ≡ lim
h→0

P(N(t+ h)−N(t) = 1|Ht−)

h
,

where {Ht : t ≥ 0} is the family of histories associated with N . Let C(t) = N(M(t)),

t ≥ 0, be the composition process and let λC(t) be its stochastic intensity function.

Let {Ct : t > 0} be the histories associated with C. Because of (5), Ct = NM(t), t ≥ 0.

Then

λC(t) ≡ λC(t|Ct−) ≡ lim
h→0

P(C(t+ h)− C(t) = 1|Ct−)
h

= lim
h→0

P(N(M(t+ h))−N(M(t)) = 1|NM(t)−)

h

= lim
h→0

P(N(M(t) + δ(h))) −N(M(t)) = 1|NM(t)−))

δ(h)

δ(h)

h
,

where

δ ≡ δ(h) ≡ M(t+ h)−M(t) = µ(t)h+ o(h) as h ↓ 0.

Hence,

λC(t) = λ(M(t))µ(t) =
(γN((M(t)) + β)µ(t)

γM(t) + 1
,

where we use the specific form of κ(t) in (2) because N is the Ψ-GPP.

Now let λ̂(t) be the stochastic intensity associated with N̂ . Then

λ̂(t) = (γN̂(t) + β)κ(t), t ≥ 0.

Under the condition that N̂(t) = N(M(t)), we have

γN̂(t) + β = γN((M(t)) + β.

Hence, λC(t) = λ̂(t) for all t ≥ 0 if and only if

µ(t)

γM(t) + 1
= κ(t), t ≥ 0. (7)

Integrating both sides of (7), we get (6), as claimed. In closing we mention two

alternative proofs: The first can be based on the martingale characterization of the
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stochastic intensity as in §1.8 of [3]. Then λ(t) ≡ λ(t|Ht) is the stochastic intensity of

N in (1) if

E[N(b)−N(a)|Ha] = E[

∫ b

a

λ(s) ds|Ha]

for all intervals (a, b]. The second is to directly show that the finite-dimensional

distributions are the same. �

Remark 1. (index of dispersion.) To better understand the impact of the variability

as a function of time in an arrival process upon the performance of a queueing model,

we have shown in [17] and [42, 43] that it is often helpful to look at the index of

dispersion for counts, which for a (β, γ) Ψ-GPP is

I(t) ≡ Var(N(t))

EN(t)
= 1 + γt, t ≥ 0. (8)

From (8), we see that the variability increases without bound as t increases by this

measure, consistent with Theorem 3. The IDC is also considered in [34] and [35, 36]

under the name “peakedness,” which is often used to describe traffic variability, but

more commonly in a different way; see [31] and references there.

We next apply Theorem 1 to characterize the nature of the path-dependent behavior

for a (β, γ) Ψ-GPP. We do that from the following non-ergodic law of large numbers

(LLN); e.g., see §5.1 of [20] and references there.

Theorem 3. (non-ergodic LLN.) If N(t) is (β, γ) Ψ-GPP, then

t−1N(t) → L(γ, β) as t → ∞ w.p.1, (9)

where L has a gamma distribution with shape β/γ and rate 1/γ, and thus mean E[L] =

β and variance Var(L) = βγ.

Proof. Because the increments N(n)−N(n− 1), n ≥ 1, form a stationary sequence,

we can apply the Birkhoff ergodic theorem as in Theorem 6.2.1 of [6] to establish

the almost sure convergence of N(n)/n as n → ∞. The almost sure convergence of

N(t)/t as t → ∞ is an easy consequence, e.g., using N(⌊nt⌋) ≤ N(t) ≤ N(⌊nt⌋ + 1)

for ⌊nt⌋ ≤ t < ⌊nt⌋ + 1. Next, from (3), we see that E[N(t)/t] = β for all t > 0

and V ar(N(t)/t) = β(1 + γt)/t → βγ as t → ∞. The limiting gamma distribution for
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N(t)/t is obtained by taking a limit as t → ∞ of the characteristic function φN(t)/t(s) =

φN(t)(s/t). In particular, using Taylor-series asymptotics in the last step, we obtain

φt−1N(t)(s) =

(

1− p(t)

1− p(t)eis/t

)β/γ

=

(

1

1 + [p(t)/(1− p(t))](1− eis/t)

)β/γ

=

(

1

1 + γt(1− eis/t)

)β/γ

=

(

1

1 + γt(1− (1 + (is/t) +O(1/t2))

)β/γ

→
(

1

1− isγ

)β/γ

as t → ∞.

Finally, we recognize the limit as the characteristic function of the claimed gamma

distribution. Convergence of characteristic functions then applies the convergence in

distribution by Theorem XV.2 of [15]. �

Theorem 3 implies that the pure birth process N has a limiting rate as t → ∞, but

that rate is random.

Corollary 1. (asymptotically Poisson with a random rate.) If N(t) is a (β, γ) Ψ-

GPP, with stochastic intensity λ(t) in (1), then

λ(t) → L(γ, β) as t → ∞ w.p.1,

where L is the gamma random variable in (9) above with shape β/γ and rate 1/γ.

Hence, asymptotically as t → ∞, the point process behaves as a Poisson process at

random rate L(γ, β).

Proof. Multiply and divide by t in (1) and observe that the numerator converges to

γL by Theorem 3, while the denominator converges to γ. �

Remark 2. (instability of the P/GI/1 queue.) Theorem 3 and Corollary 1 imply

that the queue length process is not stable in the P/GI/1 queue with a Polya arrival

process; i.e., there does not exist a random variable Q with P(Q < ∞) = 1 such that

Q(t) ⇒ Q as t → ∞, where ⇒ denotes convergence in distribution. That contradicts

various conclusions about steady-state performance in [34] and [35, 36]. We elaborate

on stability and discuss ways to stabilize performance in queues with Polya arrival

processes in §6, but our main goal is to obtain a tractable approximation for transient

performance in a class of P/GI/1 models. That is established by Theorem 5 and

Corollary 6.
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We illustrate Theorem 3 by showing the results of a simulation experiment. Figure

1 plots the empirical distribution of N(100)/100 based on 50, 000 i.i.d. samples (left)

and 25 individual sample paths of N(t)/t over [0, 200] for a stationary Polya point

process with parameter pair (β, γ) = (1, 1), assuming that (2) holds (right).

Figure 1: Display of the empirical distribution of N(100)/100 (left) and 25 individual sample

paths of N(t)/t over [0, 200] (right) for a stationary Polya point process N with (β, γ) = (1, 1).

p
ro
p
o
rt
io
n

N(100)/100

N
(t
)/
t

t

Figure 1 shows that much of the uncertainty about the long-run average disappears

after an initial time t, e.g., t = 50, but the process Nu(t) ≡ N(t + u) − N(u), t ≥ 0,

given that N(u) = m, is itself a new GPP by the restart property in Proposition 1

above. Additional results about this conditional process are given in [8]. We now

apply [8] to further quantify the impact of starting at time u. The following result is

elementary to prove, but the relations are revealing.

Corollary 2. (impact of starting later) If Nu(t) ≡ N(u + t) − N(u) conditioned on

N(u) = m, where N is the Ψ-GPP with parameter triple (κ(t), β, γ) for κ(t) in (2),

then Nu is a new Ψ-GPP with parameter triple (κu(t), βu, γu) for

κu(t) = κ(u + t), βu ≡ β +mγ and γu ≡ γ.

Consequently, Nu(t) has a negative binomial distribution for each t ≥ 0 with

E[Nu(t)] =

(

βu

γu

)(

pu(t)

1− pu(t)

)

=
(β +mγ)t

γu+ 1
,

where

pu(t) ≡
ηut

ηut+ 1
, where ηu ≡ γ

γu+ 1
,

so that

E[Nu(t)] ≤ E[N(t)] if and only if (m/u) ≤ γ.
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Moreover, for 0 ≤ s ≤ t,

Cov(Nu(s), Nu(t)) = (βuηu/γu)s(1 + ηut) = E[Nu(s)](1 + ηut) and

Iu(t) ≡ Var(Nu(t))

E[Nu(t)]
= 1 + ηut,

where ηu is strictly decreasing in u with η0 = γ and ηu → 1 as u → ∞.

Proof. This result mostly follows from the restart property from [8] stated here in

Proposition 1. We also apply the explicit distribution of Nu(t) given in (20) of [8]. The

stationarity property follows from essentially the same proof as for Theorem 1. �

We close this section by comparing the Ψ-GPP to another self-exciting process.

Remark 3. (comparison to the Hawkes process.) The non-degenerate limit in Theo-

rem 3 makes the Ψ-GPP quite different from the widely applied Hawkes [24, 25] process

and most of its variants. For the basic Hawkes process in (8) of [24], instead of (1) we

have

λ(t) ≡ λ(t|Ht−) ≡ ν +

∫ t−

−∞

g(t− u) dN(u) (10)

where N is defined over the entire real line and g is a nonnegative kernel satisfying

η ≡
∫∞

0
g(u) du < 1, so that the stationary rate is ν/(1 − η). Hawkes processes are

alternative self-exciting processes, but they are stationary and ergodic point processes;

e.g., see [4]. Thus Hawkes processes are not path-dependent. For applications of

Hawkes processes to queues, see [9, 18].

3. Convergence to a Ψ-GMP

We now show that a properly scaled sequence of the superpositon of i.i.d. Ψ-GPP’s

in §2 converges to a Ψ-GMP, the Gaussian Markov process with stationary increments

studied in [16]. (In fact, [16] focuses on a multivariate Ψ-GMP.) We obtain all possible

univariate Ψ-GMP’s exhibiting positive dependence, as we explain in §8.
For n ≥ 1, let

An = N1 + · · ·+Nn (11)

be the sum of n i.i.d. GPP’s each with parameter triple (κ(t), γ, β). We first note that

our superposition process is another GPP.
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Proposition 3. (superposition, Theorem 1 of [7].) The superposition of two indepen-

dent GPP’s with parameter triples (κ(t), γ, βi), i = 1, 2, is itself a GPP with parameter

triple (κ(t), γ, β1 + β2). If each GPP is a Ψ-GPP, then so is the superposition process.

Then the superposition process satisfies the non-ergodic LLN in Theorem 3.

We now apply the usual FCLT spacial scaling, but without scaling time by n (as in

(2.1) on p. 226 or (8.4) on p. 320 of [40]). In particular, for n ≥ 1, let

An(t) ≡ n−1/2(An(t)− βnt), t ≥ 0, (12)

Let ⇒ denote convergence in distribution and let D ≡ D[0,∞) be the usual function

space of right continuous real-valued functions; e.g., as in [5] or [40].

Theorem 4. (FCLT for the superposition process.) Consider the scaled superposition

process An(t) in (12). For κ(t) in (2), so that in (11) N1 is a (β, γ) Ψ-GPP while An

is an (nβ, γ) Ψ-GPP,

An ⇒ A in D as n → ∞, (13)

where A is a Ψ-GMP, i.e., a zero-mean Gaussian Markov process with stationary

increments and covariance function

Cov(A(s), A(t)) = E[A(s)A(t)] = βs(1 + γt) = Cov(N1(s), N1(t)). (14)

The limit A also satisfies the stochastic differential equation

dA(t) = µ(t)A(t) dt + σ dB(t), t ≥ 0, (15)

where A(0) ≡ 0, B is standard Brownian motion,

µ(t) ≡ βγ

β + βγt
= (t+ (1/γ)−1) and σ =

√

β. (16)

Proof. For the limit in (13), we apply Hahn’s [21] FCLT for sums of processes in

Theorem 7.2.1 of [40]. We verify the moment inequality conditions in that theorem

in §7. The SDE characterization in (15) and (16) follows from Theorem 3 of [16]. A

Gaussian process with that covariance kernel is a Markov process by Theorem 8.1 on

p. 233 of [12]. �

Remark 4. (parameters.) Even though (14) shows identical structure in the covari-

ance functions of the Ψ-GPP N1 in (11) and the Ψ-GMP A in (13), the conventions
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here for the parameters are not the same as in [16]. When N1 is a (β, γ) Ψ-GPP, A is

an (α∗, β∗) = (β,−βγ) Ψ-GMP in [16].

Remark 5. (structural analogs.) Many properties of the Ψ-GMP were established in

[16]. Properties also can be deduced as a consequence of Theorem 4. Lemma 4 of

[16] established an analog of the restarting property in Proposition 1. A variant of the

proof of Theorem 3 shows that the Ψ-GMP also satisfies a non-ergodic LLN, with a

Gaussian limit instead of a gamma distribution. Additional properties of a Ψ-GMP

with drift are established in the next section.

4. Convergence to a Ψ-GMP with Drift

For stable queueing models, there tends to be a negative drift in the potential

net input process. Hence, in this section we consider a modification of the FCLT in

Theorem 4 to produce a drift in the Ψ-GMP limit process. For that purpose, let

{µn : n ≥ 1} be a sequence of real numbers that satisfies

µn → 1 and
√
n(µn − 1) → µ as n → ∞. (17)

We are primarily interested in the case µ < 0. Let Ad,n(t) = An(µnt) and

Ad
n(t) = n−1/2(Ad,n(t)− βnt) = n−1/2(An(µnt)− βnt), t ≥ 0. (18)

Let e ≡ e(t) = t, t ≥ 0, be the identity function in D and let Dk be the usual k-fold

product space.

Corollary 3. (FCLT with a drift.) If (17) holds in addition to the assumptions of

Theorem 4, then

Ad
n ⇒ A+ ωe in D as n → ∞

for Ad
n in (18) and ω ≡ βµ.

Proof. We apply the continuous mapping argument for composition with centering

as in §13.3 of [40]. For that purpose, let

(M̄n(t),Mn(t)) ≡
(

µnt,
√
n(µn − 1)t

)

.
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Note that Ad
n = An ◦M̄n+Mn, where ◦ denotes the composition map. It is elementary

that

(M̄n,Mn) → (e, µe) in D2 as n → ∞

Then apply Theorem 11.4.5 of [40] with Theorem 4 above to get the joint convergence

(An, M̄n,Mn) ⇒ (A, e, µe) in D3. Then the limit preservation in Theorem 13.3.1 of

[40] yields

Ad
n = (An ◦ M̄n + βMn) ⇒ A+ µβe in D as n → ∞.

�

We now state three properties of a GMP with drift. The first two provide additional

characterization of the path-dependent behavior.

Proposition 4. (conditional mean, Lemma 4 from [16].) If Ad ≡ A + ωe as in

Corollary 3, where A is a Ψ-GMP satisfying (14) in Theorem 4, then

E[Ad(s+ t)−Ad(s)|Ad(u), 0 ≤ u ≤ s] = ω(s)t for all s, t ≥ 0,

where

ω(s) ≡ ω + γ(1 + γs)−1(Ad(s)− sω).

Proposition 4 shows that conditioning on the history induces the process to have a

new constant drift.

Let Cor(X,Y ) ≡ Cov(X,Y )/
√

Var(X)Var(Y ) be the correlation function.

Corollary 4. (correlation between non-overlapping time intervals, Proposition 2 of

[16].) For Ad as in Proposition 4,

Cor(Ad(t+ s+ u)−Ad(t+ u), Ad(t+ s)−Ad(t)) =
γs

γs+ 1

for all t ≥ 0 and u ≥ s ≥ 0.

Corollary 4 concludes that the correlation between increments over non-overlapping

intervals of equal lengths depends on the length of the intervals (s here) but not at

all on the separation between the intervals (u here). The following corollary gives the

limiting distribution. Let Φ(x) ≡ P(N(0, 1) ≤ x) be the standard normal cdf and let

Φc(x) ≡ 1− Φ(x).
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Corollary 5. (asymptotics for the cdf.) For Ad as in Proposition 4,

lim
t→∞

P(Ad(t) ≤ x) = Φ(−ω/
√

βγ) (19)

for all x and all t ≥ 0. Moreover,

lim
x→−∞

lim
t→∞

P(Ad(t) ≤ x) = Φ(−ω/
√

βγ)

lim
x→+∞

lim
t→∞

P(Ad(t) > x) = Φc(−ω/
√

βγ). (20)

Proof. To get (19), we can directly take the limit in the Gaussian distribution of

Ad(t), which is

P(Ad(t) ≤ x) = Φ

(

(x− ωt)
√

t(1 + βγt)

)

,

from which (20) follows directly. �

Corollary 5 can be understood by recognizing the the standard deviation is the same

order t as the mean; i.e., E[Ad(t)] = ωt and t−1
√

Var(Ad(t) → √
βγ as t → ∞. Thus,

P(Ad(t) > 0) does not approach 0 or 1 as t increases.

5. Heavy-Traffic Limit for the
∑

n

i=1
Pi/GI/1 Queue

We now consider the single-server queue with arrival process Ad,n(t) = An(µnt)

defined before (18). We assume that the service times are independent of the arrival

process, mutually i.i.d. with a general distribution having mean 1/β and squared

coefficient of variation (scv, variance divided by the square of the mean) c2s, where

the service times are independent of the arrival times. We work with the associated

renewal counting process C(t). Since we center with βnt in (18), we assume that the

rate of this renewal process is also β. Let the scaled service process be

Sn(t) ≡ n−1/2(C(nt) − βnt), t ≥ 0, (21)

As in §9.3 of [40], for the service process, we only require a standard FCLT. Thus, that

part of the following theorem can easily be generalized.

Let Xn ≡ Ad
n − Sn, n ≥ 1 and let

Qn(t) ≡ n−1/2Qn(t), t ≥ 0, (22)
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where {Qn(t) : t ≥ 0} is the queue length (number in system) process in the system

with initial queue length Qn(0), arrival process {Ad
n(t) : t ≥ 0} defined before (18) and

scaled service renewal counting process {Sn(t) : t ≥ 0} defined in (21) above.

With those definitions, we apply the one-dimensional reflection map in §13.5 of [40].

Let φ : D×R → D be the reflection map mapping a net input function x with x(0) = 0

and an initial queue length q(0) with q(0) ≥ 0 into q(t) for t > 0 by

φ(x)(t, q(0)) = q(0) + x(t)− inf
0≤s≤t

{min {q(0) + x(s), 0}}, t ≥ 0. (23)

The reflection map in (23) is a continuous function on its domain.

Theorem 5. (heavy-traffic FCLT for the
∑n

i=1 Pi/GI/1 queue.) Consider a sequence

of
∑n

i=1 Pi/GI/1 queues indexed by n, where the nth arrival process is the scaled

superposition process Ad
n(t) in (18) and (11), while the scaled service process is the

scaled renewal counting process Sn(t) in (21). We make the following assumptions

about the initial conditions: Let the arrival process after time 0 be independent of

Qn(0); let the remaining service time in process at time 0, if any, have finite mean;

Let all customers enter service in order of arrival from the service renewal counting

process. If n−1Qn(0) ⇒ Q(0) as n → ∞ and Xn ≡ Ad
n − Sn, then

(Ad
n, Sn, Xn, Qn) ⇒ (A+ ωe, S,X,Q) in D4 as n → ∞,

where ω ≡ µβ, A is a Ψ-GMP, while S = β3/2csB with B being standard Brownian

motion, X ≡ Y + ωe, Y ≡ A− S, and Q ≡ φ(X,Q(0)) for φ in (23). In particular, Y

is a Ψ-GMP with

E[Y (s)Y (t)] = βs(1 + γt) + β3c2ss and Var(Y (t)) = βt(1 + γt) + β3c2st,

for 0 ≤ s ≤ t and so parameter pair (α∗, β∗) = (β + β3c2s,−βγ) in the terminology

of [16], while X is a Ψ-GMP with Var(X(t)) = Var(Y (t)) and deterministic drift

ω ≡ µβ.

Proof. We apply standard methodology for establishing a heavy-traffic FCLT for a

single-server queue. We apply Donsker’s FCLT for the service times in §4.3 of [40] and

the inverse equivalence in Theorem 7.3.2 of [40], in particular Corollary 7.3.2 on p. 236

of [40], to obtain

Sn ⇒ β3/2csB in D as n → ∞,
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where B is a standard Brownian motion (BM). Then we can apply Corollary 3 to

obtain the limit Ad
n ⇒ A+ ωe in D. Joint convergence for (Ad

n, Sn) then follows from

independence and Theorem 11.4.4 of [40]. We can then apply Theorems 9.3.3, 9.3.4

and 9.8.2 in [40]. �

Remark 6. (other processes) As indicated in Theorems 9.3.3 and 9.3.4 of [40], we

can also obtain a heavy-traffic limit for other processes, including the workload and

departure process, jointly with the limit above, by the same argument.

By the continuous mapping theorem with the projection map, we have the following

corollary providing a limit for the marginal distributions. Theorem 5 of [16] provides

the explicit form of the marginal distribution of the limit process, so that it can provide

useful numerical results. Let the pdf of the joint limiting distribution be denoted by

f(xs, qs, qs+t) ≡ fX(s),Q(s),Q(s+t)(xs, qs, qs+t) (24)

and similarly for the associated marginal pdf’s and conditional pdf’s. We express the

limiting distribution in terms of the exponential function and the standard normal cdf

Φ(x) ≡ PN(0, 1) ≤ x) and pdf φ(x). Let the associated cdf of (N(m,σ2)
d
= m+σN(0, 1)

be denoted by Φ(x;m,σ2) and similarly for the others. To connect with [16], let

ωs ≡
α∗ω − β∗xs

α∗ − β∗s
and β∗

s ≡ α∗β∗

α∗ − β∗s
, (25)

where

α∗ ≡ β and β∗ ≡ −βγ (26)

as in Remark 4. Let δ(·) be the Dirac delta function and let 1A be the indicator

function, equal to 1 on A and 0 elsewhere.

Corollary 6. (marginal limiting distributions.) Under the conditions of Theorem 5,

(Xn(s), Qn(s), Qn(s+ t)) ⇒ (X(s), Q(s), Q(s+ t)) in R
3 as n → ∞,

where X(s) is a (mean-ωs, variance s(α∗ − β∗
s s)) Gaussian random variable for β∗

s in

(25), while the joint limiting distribution has joint pdf

f(xs, qs, qs+t) = f(xs)f(qs|xs)f(qs+t|xs, qs), (27)
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where, assuming P(Q(0) = q0) = 1,

f(xs) ≡ φ(xs;ωs, s(α
∗ − β∗s)) =

1
√

s(α∗ − β∗s)
φ

(

xs − ωs
√

s(α∗ − β∗s)

)

,

f(qs|xs) ≡
(

1− e{−2qs(qs−xs)/(α
∗s)}
)

(δ(qs − q0 − xs)1{qs≥0} + 1{qs−q0−xs≥0}δ(qs))

+

(

(4qs − 2xs)e
{−2qs(qs−xs)/(α

∗s)}

α∗s

)

1{qs−q0−xs≥0}1{qs≥0}, and

f(qs+t|xs, qs) ≡
1

√

t(α∗ − β∗
s t)

φ

(

qs+t − qs − ωst
√

t(α∗ − β∗
s t)

)

+ e{−2qs+t(β
∗

s qs+t−α∗ωs)/α
∗2}(A1 +A2)

for A1 ≡
(

4β∗
sqs+t − 2α∗ωs

α∗2

)

Φ

(

(2β∗
sqs+t − α∗ωs) t− α∗(qs+t + qs)

α∗
√

t(α∗ − β∗
s t)

)

and A2 ≡
(

α∗ − 2β∗
s t

α∗
√

(t(α∗ − β∗
s t)

)

φ

(

(2β∗
sqs+t − α∗ωs) t− α∗(qs+t + qs)

α∗
√

t(α∗ − β∗
s t)

)

(28)

for qs, qs+t ≥ 0. As a consequence, the associated conditional cdf, for qs+t ≥ 0, is

P(Q(s+ t) ≤ qs+t|X(s) = xs, Q(s) = qs) = Φ

(

qs+t − qs − ωst
√

t(α∗ − β∗
s t)

)

−e

(

−2qs+t(β
∗

s qs+t−α∗ωs)

α∗2

)

Φ

(

(2β∗
s qs+t − α∗ωs)t− α∗(qs+t + qs)

α∗
√

t(α∗ − β∗
s t)

)

. (29)

and, for qt ≥ 0,

P(Q(t) ≤ qt) = Φ

(

qt − q0 − ωt
√

t(α∗ − β∗t)

)

−e

(

−2qt(β
∗qt−α∗ω)

α∗2

)

Φ

(

(2β∗qt − α∗ω)t− α∗(qt + q0)

α∗
√

t(α∗ − β∗t)

)

. (30)

Proof. We give a brief overview of the proof in [16] (appearing on the last two pages),

which draws heavily on [22]. We focus on X(t) ≡ Y (t) + ωt, where Y is an (α∗, β∗)

Ψ-GMP for (α∗, β∗) = (β + β3c2s,−βγ) and ωt is the drift, as in Theorem 5. We

exploit known results for the Brownian bridge by looking at increments from the past

conditioned on later process values. For that purpose, let X(s)(t) ≡ X(s+ t) −X(s)

for some (s, t) with 0 ≤ s ≤ t. We observe that conditioning X(s) on both X(s) = xs

and Q(s) = qs results in a new (α∗, β∗
s ) Ψ-GMP for β∗

s in (25) that depends on xs but

not qs. Further conditioning it on X(s)(t) = x
(s)
t for some t ≥ s results in yet another

(α∗, t−1α∗) Ψ-GMP with drift t−1x
(s)
t on [0, t] (which no longer depends on β∗

s ). That

process depends on x
(s)
t but on neither qs nor xs. Therefore, the process obtained by
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conditioning {Q(u) : s ≤ u ≤ s + t} on X(s) = xs, Q(s) = qs and X(s)(t) = x
(s)
t

begins at state qs at time s and evolves according to a net input process that is an

(α∗, t−1α∗) Ψ-GMP on the interval [0, t]. That process is scaled Brownian bridge, for

which the distribution of the queue length was previously obtained by [22]. The result

in (29) is obtained from that conditional queue length distribution using the law of

total probability. We remark that f(qs|xs) in (27) is the density of the cdf

P(Q(s) ≤ qs|X(s) = xs) =
(

1− e{−2qs(qs−xs)/(α
∗s)}
)

1{qs−q0−xs≥0}1{qs≥0} (31)

as derived by [22]. It suffices to apply the product rule for differentiation in (31).

�

Some further insight can be gained from further Gaussian LLN limits for the limit

process. For that purpose, let Xs(t) ≡ (X(s + t)|X(s) = xs) and Qs(t) ≡ (Q(s +

t)|X(s) = xs, Q(s) = qs). Let N(m,σ2) denote a normal random variable with mean m

and variance σ2 and let (x)+ ≡ max {x, 0}, so that P(N(m,σ2)+ = 0) = P(N(m,σ2) ≤
0).

Corollary 7. (LLN limit for the limit process.) Given the Ψ-GMP limit in Theorem

4 and the associated heavy-traffic limit in Theorem 5 and Corollary 6, we have the

following limit

t−1(Ad(t), S(t), X(t), Q(t), Xs(t), Qs(t)) (32)

⇒ (N1(ω, βγ), 0, N1(ω, βγ), N1(ω, βγ)
+, N2(ωs,−β∗

s ), N2(ωs,−β∗
s )

+) in R
6

as t → ∞ for some constant s > 0 and (ωs, β
∗
s ) in (26), where (N1, N2) is a random

vector in R2 with Gaussian one-dimensional marginal distributions.

Proof. For the first three processes, we exploit the distribution as a function of t

as in the proof of Corollary 5. For the next two processes, note that P(X(t) ≤ xt) →
Φ((x− ω)/

√
βγ) as t → ∞ as just described and

P(Q(t) ≤ tq|X(t) = tx) = (1− e−(2t2q(q−x))/α∗s)1{tq−tx≥q0}1{q≥0}

= (1− e−(2t2q(q−x))/α∗s)1{t≥q0/(q−x)}1{q−x>0}1{q≥0}

→ 1{q−x>0}1{q≥0} as t → ∞.
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. The joint pdf for the two limits is therefore

f̄(x, q) ≡ f̄(x)f̄ (q|x) = 1√
βγ

φ((x − ω)/
√

βγ)(δ(q − x)1{q≥0} + δ(q)1{q>x}).

The joint pdf for the limits of the last two processes is similarly obtained. �

Figure 2 illustrates the heavy-traffic limits established in this section by plotting

results of simulations of the scaled queue-length process in the
∑n

i=1 Pi/D/1 queue.

Figure 2: Display of the empirical cdf of Qn(t)/t for 0 ≤ t ≤ T in the
∑

Pi/D/1 queue with

Qn(t) in (22), β = γ = µ = 1 for T = 25 (left) and 500 (right), compared to Q(t)/t in (32).
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We consider the (β, γ) Ψ-GPP with parmeters β = γ = 1 as a function of the number

n of processes superposed. We introduce a negative drift in the limit process by using

(17) with µ = 1. We let the service times initially have mean (and fixed value) 1, but

that becomes 1/n with the scaling in (21). We look at n ranging from 4 to 200. We

consider two values of T : 25 and 500. The similarity of the plots supports Corollary 7.

The convergence as n increases supports Corollary 6. Numerical study indicates errors

roughly of order 1/
√
n.

Remark 7. (insights from Corollary 7) Contrary to the usual queueing behavior, the

limits are continuous functions of the drift constant ω, showing that the usual critical

level for stability does not apply to the limit process. We elaborate on this property in

§6.1 below. The limit for the last two components in Corollary 7 shows that the limit as

t → ∞ is not independent of fixed s. Corollary 7 also quantifies the growing variability

in all processes except for the service-time process as t increases. The conditional

random variable Qs(t) is highly variable as t increases for any given conditioning event

(X(s), Q(s)) = (xs, qs).
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6. Steady-State Results for Queues with Ψ-GPP Arrivals

This section is somewhat of a departure from §3-§5, because we no longer consider

FCLT’s or heavy-traffic limits. In this section we present further results for queues

with Ψ-GPP arrivals. In §6.1 we obtain some elementary stability results and show

that we can obtain both positive and negative results from a sample-path version of

Little’s law. In §6.2 we show that stability can be achieved when there are infinitely

many servers. In §6.3 we show that it is also possible to devise adaptive service policies

that stabilize performance in a single-server queue with Ψ-GPP arrivals. We use new

(but similar) notation in this section.

6.1. Stability and Little’s Law

We first discuss the implications of the LLN in Theorem 3 for the P/GI/1 queue

with a Polya arrival process. For this purpose, let the service times have mean 1.

Given Theorem 3, the following is a standard heavy-traffic law of large numbers for

overloaded queues, as in Theorem 5.3.2 of [40].

Corollary 8. (explosion.) Let Q(t) be the queue length process, starting with Q(0) =

0, in the P/GI/1 queue with a (β, γ) Ψ-GPP arrival process, where 0 < β < ∞ and

0 < γ < ∞, and i.i.d. service times with mean 1. Then

t−1Q(t) → max {L(β, γ)− 1, 0} as t → ∞ w.p.1,

so that

P(Q(t) → ∞ as t → ∞) = P(L(β, γ) > 1),

where

0 < P(L(β, γ) > 1) < 1.

We illustrate the less critical role of the usual traffic intensity by showing the results

of a simulation experiment. Figure 3 plots the 25 individual sample paths of Q(t)/t

over [0, 250], starting empty, for a P/D/1 queue with parameter pairs (β, γ) = (0.5, 1)

(left) and (β, γ) = (1.5, 1) (right). These plots only clearly display the paths that tend

to be unstable by time t = 250. There are 3 of these in the 25 plots for β = 0.5 on

the left, but about 12 in the 25 plots for β = 1.5 on the right. However, Corollary 2
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implies that we cannot draw a firm conclusion about ultimate stability by what we see

over the interval [0, 250].

Figure 3: Display of twenty-five individual sample paths of Q(t)/t for 0 ≤ t ≤ 250, starting

empty, for a P/D/1 queue with parameter pairs (β, γ) = (0.5, 1) (left) and (β, γ) = (1.5, 1)

(right).
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Nevertheless, there is a version of Little’s law in this setting. That can accommodate

quite general initial conditions, but for simplicity assume that the system starts empty.

Let Wk be the waiting time of customer k and let

L∗ ≡ lim
t→∞

t−1

∫ t

0

Q(s) ds, W ∗ ≡ lim
n→∞

n−1
n
∑

i=1

Wk and λ∗ ≡ L(β, γ). (33)

Corollary 9. (Little’s law.) Consider the P/GI/1 queue with a (β, γ) Ψ-GPP arrival

process starting with Q(0) = 0 as above, where 0 < β < ∞ and 0 < γ < ∞.

(a) If W ∗ in (33) is well defined and finite and if L(β, γ) < 1, which occurs with

positive probability, then L∗ in (33) is well defined and

L∗ = λ∗W ∗ < ∞.

(b) If L(β, γ) > 1, as occurs with positive probability, then L∗ in (33) is well defined

but L∗ = ∞. Moreover, W ∗ is then also well defined and

W ∗ = L∗ = ∞.

Proof. For part (a), we apply the sample-path version of Little’s law from [38]. For

part (b), we apply Corollary 8 together with (6) in [44]. Sufficient conditions for more

results are also given in [44]. �
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6.2. The Ψ-GPP/GI/∞ Queue

We next consider the Ψ-GPP/GI/∞ infinite-server queue. We show that bounded

service times ensures reaching steady state in finite time. Let
d
= denote equality in

distribution.

Theorem 6. (infinite-server queue with bounded service times.) For an infinite-server

queue with a (β, γ) Ψ-GPP arrival process, if the service times are: (i) independent

of the arrival process, (ii) mutually i.i.d. each distributed as a random variable V and

(iii) P(V ≤ ζ) = 1 for some ζ < ∞, then the number of busy servers Q(t) reaches

steady state by time ζ, i.e.,

Q(u)
d
= Q(t) and E[Q(u)] = βE[V ] for all u ≥ t ≥ ζ. (34)

Proof. We apply a useful device from §2 of [19]. We note that if the service times

are deterministic with P(V = d) = 1, then

Q(t) = N(t)−N(t− d) for all t ≥ d. (35)

Because the Ψ-GPP arrival process has stationary increments, the distribution of Q(t)

in (35) is independent of t for t ≥ d, and so has reached steady state by time d.

We next observe that Q(t) also reaches steady state in finite time when the service

time distribution has finite support within the interval [0, ζ]. Hence, suppose that

P (V = di) = qi, 1 ≤ i ≤ n. Now we can classify the arrivals by “type” according

to their service time, where this type assignment is done independently of the arrival

process Thus, the distribution of Q(t) is the sum of the number of each type in the

system at time t, so that we can write

Q(t) =
n
∑

i=1

Qi(t) =
n
∑

i=1

[N(t)−N(t− di)]Ti(t, di) (36)

where Ti(t, di) is the proportion of the N(t) −N(t − di) arrivals in [t − di, t] that are

of type-i, i.e., have service times di, which has a multinomial distribution.

We then observe that the distribution of Q(t) is independent of t, because the

random vector (N(t) − N(t − di) : 1 ≤ i ≤ n) is independent of t in Rn for all

t ≥ max {di : 1 ≤ i ≤ n}.
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The joint distribution of (Ti(t, di) : 1 ≤ i ≤ n) is somewhat complicated, but we can

directly deduce that it has property (34) and we can write down the mean

E[Q(t)] =

n
∑

i=1

E[Qi(t)] =

n
∑

i=1

E[N(t) −N(t− di)]E[Ti(t, di)]

=
n
∑

i=1

βdiE[Ti(t, di)] = βE[V ]. (37)

Since the probability distributions with finite support in [0, ζ] are dense in the space

of all probability distributions with support in [0, ζ], we obtain the general results by

taking a limit. To obtain the limit, note that we can express Q(t) in terms of the

arrival times Ti associated with the arrival process N(t) and service times Vi by

Q(t) =

N(t)
∑

i=1

1{Ti+Vi>t} (38)

Representation (38) implies that Q(t) is almost surely a continuous function of the

service times with respect to the limit process, so that we can apply the generalized

continuous-mapping theorem in Theorem 3.4.4 of [40]. In particular, we see that Q(t)

is almost surely a continuous function of the service times except when Ti + Vi = t for

some i. For any cdf of V , that almost surely does not occur because

∞
∑

i=1

P(t ≤ Ti ≤ t+ ǫ) = P(N(t+ ǫ)−N(t) ≥ 1) ≤ E[N(t+ ǫ)−N(t)] = βǫ

by (3). We see that the probability is 0 by letting ǫ ↓ 0. Hence we can apply the

generalized continuous mapping theorem to deduce that the distribution of Q(t) is

almost surely a continuous function of the distribution of V in this setting. �

6.3. Adaptive Service Processes to Enforce Stability

Suppose that we let the service rate at time t depend on the history of the arrival

process up to that time. In particular, let the arrival-history-dependent service rate be

µ(t) ≡ µ(t|Ht) =
λ(t)

ρ
=

γN(t) + β

ρ(γ(t) + 1)
for all t ≥ 0. (39)

The proposed control is a variant of the rate-matching service-rate control in [33, 41].

The following is an analog of Theorem 3.1 of [41].
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Theorem 7. If the arrival-history-dependent service process in (39) with ρ < 1 is used

in the single-server queue with Q(0) = 0 and the GPP arrival process having parameter

triple (κ(t), γ, β) with κ in (2), then the pair of rates satisfies the joint limit

(λ(t), µ(t)) → (L(γ, β), L(γ, β)/ρ) as t → ∞ w.p.1, (40)

where L(γ, β) is the gamma random variable in Theorem 3. Moreover, the queue length

process {Q(t) : t ≥ 0} is distributed the same as in an M/M/1 queue in a random

environment, so that

Q(t) ⇒ Q as t → ∞, where P(Q = k) = (1 − ρ)ρk, k ≥ 0, (41)

as in the M/M/1 queue with traffic intensity (arrival rate divided by the maximum

potential service rate) ρ.

Proof. First, the joint limit in (40) follows easily from Corollary 1 and (39). For the

connection to M/M/1, we start by representing the counting processes N(t) and S(t)

in terms of Poisson processes, using the martingale representation for point processes

as in §1.8 of [3]. Let Π1(t) and Π2(t) be two independent rate-1 Poisson counting

processes. Then the counting process N can be represented as Π1(Λ(t)), t ≥ 0, where

Λ(t) is the cumulative rate function associated with λ(t) and the compensator of the

point process, i.e.,

Λ(t) ≡
∫ t

0

λ(s) ds, t ≥ 0.

Because of (39), we thus have

{(N(t), S(t)) : t ≥ 0} d
= {(Π1(Λ(t)),Π2(ρ

−1Λ(t))) : t ≥ 0};

e.g., see Theorem 6.4.1 of [13]. Then the queue length process Q(t) can be expressed

as the reflection map applied to the net-input process Y (t) ≡ N(t) − S(t). Let Q̃(t)

and Ỹ (t) be the corresponding processes in an M/M/1 queue with arrival rate 1 and

service rate 1/ρ, i.e., Ỹ (t) ≡ Π1(t)−Π2(ρ
−1t). With this representation we have

{Y (t), Q(t) : t ≥ 0} d
= {(Ỹ (Λ(t)), Q̃(Λ(t))) : t ≥ 0},

where {Λ(t) : t ≥ 0} is independent of {(Ỹ (t), Q̃(t)) : t ≥ 0}. Because Λ(t) → ∞ as

t → ∞ w.p.1, we have the claimed representation and convergence in (41). �
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7. Completing the Proof of Theorem 4

We complete the proof of Theorem 4 by verifying the two inequality conditions in

Hahn’s theorem [21] as in Theorem 7.2.1 of [40]. To do so, we prove convergence in

D[0, 1], as in [21], but we note that essentially the same arguments shows convergence

in D[0, T ] for any T > 0 and therefore implies convergence in D[0,∞); see Section 12.9

of [40].

By Theorem 1, E[A1(s)A1(t)] = βs(1+γt), when A1 is the centered process defined

in (12). First, for 0 ≤ t1 ≤ t2 ≤ 1,

E
[

(A1(t2)−A1(t1))
2
]

= β (t2 − t1) (1 + γ (t2 − t1))

= β
(

t2 + γt22
)

− β
(

t1 + γt21
)

− 2βγt1 (t2 − t1)

≤ β
(

t2 + γt22
)

− β
(

t1 + γt21
)

. (42)

so that condition (2.3) of Theorem 7.2.1 in [40] is met by (42) here.

We will also show that

E[(A1 (t)−A1 (t1))
2
(A1 (t2)−A1 (t))

2
] ≤ c (t2 − t1)

2
(43)

for 0 ≤ t1 ≤ t ≤ t2 ≤ 1 and a constant c, so that condition (2.4) of Theorem 7.2.1 in

[40] will be met as well.

To do explicit calculations, we again apply Theorem 3 and Remark 3 of [8], as in

the proof of Theorem 1. That applies for any GPP N1, the conditional distribution

for the sequence of times when N1 increases on (0, 1) given that N1 (1) = k is the

same as that of the order statistics of k i.i.d. random variables, each with probability

density function

f (x) ≡ γκ (x) exp (γK (x))

exp (γK (1))− 1
, 0 ≤ x ≤ 1.

For a Ψ-GPP, f (x) = 1. Hence, the conditional distribution for the ordered sequence

of times when the Ψ-GPP N1 increases on (0, 1) given that N1 (1) = k is the same as

that of the order statistics of i.i.d. uniform random variables Uj on [0, 1].

Following the proof of Theorem 14.3 of [5], let p1 = t − t1, p2 = t − t2; let Vj

be (1− p1) or −p1 as Uj lies in [t1, t) or not; let Wj be (1− p2) or −p2 as
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Uj lies in [t, t2] or not. Also let V =
k
∑

j=1

Vj , W =
k
∑

j=1

Wj , Ṽ =
(

N1(1)− β
)

p1 and

W̃ =
(

N1(1)− β
)

p2. Then

E

[

(A1 (t)−A1 (t1))
2
(A1 (t2)−A1 (t))

2 |N1 (1) = k
]

= E











k
∑

j=1

(

Vj +
(k − β) p1

k

)





2



k
∑

j=1

(

Wj +
(k − β) p2

k

)





2

|N1 (1) = k







= E

[

(V + Ṽ )2(W + W̃ )2|N1(1) = k
]

= E

[

(

(VW + V W̃ ) +WṼ + Ṽ W̃
)2

|N1(1) = k

]

≤ 4E
[

(V W )2 + (V W̃ )2 + (WṼ )2 + (Ṽ W̃ )2|N1(1) = k
]

, (44)

where the last inequality follows from the Cauchy-Schwartz inequality.

It follows from Theorem 1 (i) of [8] that N ≡ N1 (1) has a negative binomial

distribution with moment generating function

M (s) =

(

θ

1− (1− θ) es

)r

where r = β/γ and θ = (1 + γ)
−1

. Then,

E (Np) =

(

dp

dsp
M (s)

)

s=0

for p ≥ 1

which implies that

E[N ] = β, E
[

N2
]

= βγ + β2 + β

E
[

N3
]

= β(2γ2 + 3βγ + 3γ + β2 + 3β + 1) and

E
[

N4
]

= β(6γ3 + 11βγ2 + 12γ2 + 6β2γ + 18βγ + 7γ + β3 + 6β2 + 7β + 1).(45)

By (14.10) of [5], E
[

(VW )2 |N1 (1) = k
]

≤ 6 k2p1p2, so that

E

[

(VW )2
]

≤ 6E
[

N2
]

p1p2. (46)

Similarly,

E

[

(

V W̃
)2
]

= E

[

Np1 (1− p1) ((N − β) p2)
2
]

, E

[

(

Ṽ W
)2
]

= E

[

Np2 (1− p2) ((N − β) p1)
2
]

,
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and

E[
(

Ṽ W̃
)2

] = E[((N − β) p1)
2
((N − β) p2)

2
]. (47)

Using Macsyma for algebraic simplification, we find first, by (44),

E[(A1 (t)−A1 (t1))
2
(A1 (t2)−A1 (t))

2
]

≤ Ω ≡ 4

(

E

[

(VW )
2
]

+ E

[

(

V W̃
)2
]

+ E

[

(

Ṽ W
)2
]

+ E

[

(

Ṽ W̃
)2
])

. (48)

Then, by (45)-(47), we find that

Ω = 4β
(

6γ3p1p2 + 3βγ2p1p2 + 8γ2p1p2 + 4βγp1p2 + γp1p2 + βp1p2 − p1p2 + 2γ2p2 + βγp2

+3γp2 + βp2 + p2 + 2γ2p1 + βγp1 + 3γp1 + βp1 + p1 + 6γ + 6β + 6
)

p1p2

≤ 4β(6γ3 + 3βγ2 + 12γ2 + 6βγ + 13γ + 9β + 7)p1p2

= 4β(6γ3 + 3βγ2 + 12γ2 + 6βγ + 13γ + 9β + 7) (t− t1) (t2 − t)

≤ 4β(6γ3 + 3βγ2 + 12γ2 + 6βγ + 13γ + 9β + 7) (t2 − t1)
2
. (49)

Thus we conclude that (2.4) holds for

c = 4β(6γ3 + 3βγ2 + 12γ2 + 6βγ + 13γ + 9β + 7).

Under those conditions, Theorem 7.2.1 in [40] shows that An ⇒ A where A is a zero-

mean Gaussian process with the same covariance kernel as A1.

Remark 8. (easier proof of Theorem 4 fails.) A candidate easier proof of Theorem

4 for sums of Markov processes is provided by Theorem 7.2.2 of [40], but Conditions

(2.9) and (2.10) there are not satisfied in our case. The proof of Theorem 4 shows that

the expectation in (44) conditional on N = N1(1) does not have a uniform bound of

the form of the right-hand side of (43). The uniform bound in (43) is obtained from

the conditional expectation only after accounting for the distribution of N . Therefore,

the candidate easier proof for sums of Markov process fails in our case.

8. Conclusions

In this paper we have helped expose the performance consequence on a single-server

queue of having a path-dependent arrival process. Our first main result is Theorem
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4, which shows that a superposition of Ψ-GPP’s, which is itself a Ψ-GPP, converges

to a Ψ-GMP as studied in [16]; i.e., the limit process is a Gaussian Markov process

with stationary increments. Our second main result is the consequence for queueing

models in Theorem 5. Corollaries 6 and 7 provide explicit performance approximations

for the queueing processes. Such explicit representations are unusual in the theory of

Gaussian queues.

In the process of establishing the results above, we also clarified the role of Ψ-GPPs

within the larger class of GPPs in Theorems 1 and 2. The Ψ-GPP and the limiting

Ψ-GMP exhibit positive dependence, but the class of Ψ-GMP’s considered in [16]

also include processes exhibiting negative dependence. We close by observing that it is

possible to obtain all possible Ψ-GMP’s considered in [16] by limits like that in Theorem

4. Indeed, all possible limits are obtained by considering linear combinations of uniform

empirical processes and superpositions of Ψ-GPP’s. That is natural because both

processes can be regarded as superposition processes. The case of negative dependence

connects with previous heavy-traffic limits for queues in [22, 26]. In fact the proof

of the explicit form of the distribution of the reflected Ψ-GMP in Corollary 6 already

drew on the structure of Brownian bridge, as can be seen from our sketch of that proof.

Additional insight into the steady-state performance of queues with path-dependent

arrival processes was provided by the results in §6. We showed how Little’s law can be

stated in this context and we provided conditions under which there is stability for a

queue with a Polya arrival process.
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