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Abstract Service providers routinely share information about upcoming waiting
times with their customers, through delay announcements. The need to effectively
manage the provision of these announcements has led to a substantial growth in the
body of literature which is devoted to that topic. In this survey paper, we systematically
review the relevant literature, summarize some of its key ideas and findings, describe
the main challenges that the different approaches to the problem entail, and formulate
research directions that would be interesting to consider in future work.
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1 Introduction

Most service providers routinely share various levels of information with their cus-
tomers. This information may be about the quality of the service provided, the service
design, the current number of people in the system, the duration of anticipated delays,
etc. In broad terms, sharing information with customers is deemed beneficial for two
main reasons. First, customers usually appreciate receiving some feedback from ser-
vice providers, rather than being “kept in the dark” during their service experiences,
i.e., the quality of service is perceived to be higher because of such feedback. Second,
because customers in service systems are people who typically change their behaviors
in response to any information that they receive, information-sharing may be viewed
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as a lever of control in the system which, if managed in an effective manner, could be
used to the benefit of the service provider.

Here, we focus on a setting where the service provider shares information about
upcoming waiting times with customers, in the form of delay announcements. Nowa-
days, sharing delay information with customers is widespread: It is used in various
service contexts such as amusement parks, call centers, hospitals, retail stores,
immigration and border controls, transportation networks, etc. By and large, the
announcements play a dual role: First, they increase customer satisfaction by reducing
the uncertainty about upcomingwaits; and second, they are a tool of voluntary demand
modulation because they encourage customers to join low-congestion states, and deter
them from joining high-congestion states, i.e., they allow for a better match between
demand and supply. Due to both its practical relevance and its theoretic appeal, the
problem of effectively managing the provision of delay announcements in service
systems is interesting to practitioners and academics alike. In particular, recent years
have witnessed a remarkable growth of the body of literature devoted to studying that
problem. In this paper, we survey that body of literature.

1.1 Do customers appreciate delay announcements?

For motivation, we begin by summarizing some of the main findings on the psycho-
logical impact of delay announcements. An important maxim in service science is
that customers do not like the uncertainty associated with waiting. This finding has
been confirmed with airline delays [77], banks [57], and websites [82]. Aversion to the
uncertainty in waiting is also underlined as one of the axioms in Maister [59]. More
generally, Leclerc et al. [58] provide empirical evidence (via experimental study) that
waiting may be viewed as a cost for delayed individuals. Delay announcements are
useful because they are means to reducing that undesirable uncertainty.

Another psychological benefit of delay announcements relates to the distinction
between perceived time and actual time [43]. To be specific, the relationship between
the perception of time and the evaluation of the waiting experience is mediated by
several factors, including the perceived control over time [62]. Delay announcements
are beneficial because they enable customers to have increased control over their waits.
For example, if the waiting time is sufficiently long, a customer may elect to perform
other tasks while waiting. Thus, customer waits may be perceived to be shorter. Even
in settings where the delay information has no impact on the perceived duration of the
wait, it typically has an impact on both the acceptability of the wait and the affective
response to waiting [47]. Moreover, the announcements are usually helpful because
they provide customers with a sense of progress during their waiting experiences [63].

1.2 Focus and aim

In this survey, we restrict attention to papers where the firm decides on whether and
how to communicate delay information to its customers. In particular, customers can-
not search for this information, nor can they acquire it themselves, for example, as in
Hassin and Haviv [36], Hassin and Roet-Green [40], and Yang et al. [88]. We restrict
attention to sharing waiting-time information, and do not include papers which con-
sider alternative forms of shared information, for example, on the service quality or
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the service rate; for example, see Hassin [34] and Veeraraghavan and Debo [79]. Also,
because the queueing-theoretic literature which studies properties of waiting times is
vast, we restrict attention to papers that relate specifically to delay announcements.
The first mathematical model of a queueing system with rational customers is Naor
[65], where the queue is assumed to be observable to customers; the first unobserv-
able model is studied in Edelson and Hilderbrand [24]. Numerous extensions to both
models have been considered in the queueing-games literature, and the majority of
those papers are relevant, albeit indirectly, to the problem of sharing delay information
in queueing systems; see Hassin and Haviv [38] and Hassin [35] for comprehensive
surveys. Of those papers, we only consider ones which compare, in a broad sense,
the observable and unobservable models. Essentially, this amounts to quantifying the
value of sharing delay information.

In this survey paper, our objectives are: (i) to classify and systematically review the
relevant papers; (ii) to identify themain challenges entailed in the different approaches
to the problem; (iii) to synthesize some keyfindings of the literature; and (iv) to identify
gaps in the literature and formulate research directions which would be interesting to
investigate in the future.

1.3 A bird’s eye view: key insights

In what follows, we synthesize some key findings of the literature, i.e., we address
objective (iii) above; detailed descriptions of each of the papers referenced below are
relegated to later sections of this survey.

Heterogeneity can be exploited through the announcements. In a setting where delay
information is shared with customers, one general insight is that alternative levels of
heterogeneity can be effectively managed, through the provision of delay announce-
ments, to lead to superior outcomes. In that sense, the announcements may be viewed
as a type of pricing toolwhich segments the customer population in an appropriateway,
for example, as in priority pricing [1]. For one example, with a homogeneous customer
population, the manager can benefit from “creating” heterogeneity by controlling the
breadth of shared real-time congestion information; indeed, having both informed and
uninformed customers can lead to improved throughput, social welfare, or operational
performance [44]. For another example, heterogeneity in customers’ tolerances for
waiting can be effectively managed through the provision of delay announcements
to lead to increased throughput and social welfare [18,28]. For yet another exam-
ple, unobservable heterogeneity in customer types (reward from service and waiting
cost) can be managed by the announcements to lead to increased profits [91]. For a
last example, the heterogeneity in service capacities, between two competing service
providers, makes sharing real-time delay information beneficial, for both market share
and operational performance, for the low-capacity firm [75].

More information is not always better. One may have different objectives in mind
when assessing the value of providing delay information, and those objectives may
be impacted by that information in different ways. While the value of information
provision is usually context-dependent, one general principle is that providing more
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information need not always lead to improved performance andmay even be detrimen-
tal. From a human psychology angle, customers do not always prefer more granular
information [7,47]. For both social welfare and throughput, less granular delay infor-
mation may be beneficial ([15,16,28,29,33,45,69], etc.). Moreover, non-verifiable
and non-quantifiable information may improve both the firm’s profit and the expected
utility of customers [5]. Finally, under certain conditions, providing delay informa-
tion may make the system more volatile and can lead to longer delays on average
[10,19,42,66].

Of course, providing delay announcements helps in many cases. In particular,
another general insight is that providing real-time delay information usually yields
the greatest benefit, for example, for profit, social welfare, and throughput, when the
system experiences heavy congestion ([16,33,42,44], etc.). Also, from an accuracy
perspective, various delay predictors can be proved to have a superior performance
under such high-congestion conditions as well, particularly when the system is large
[50,51].

There is no single “best” announcement. There is no universal best way to predict
waiting times, and the accuracy of a specific announcement depends on both the
amount of state information available, and the specific modeling context [84]. Thus,
there is a need to consider several such contexts and to study performance under each
specific setting. There are also different measures of performance, ranging from the
average error, for example, using theMSE, to penalizing under or overestimation [55].

In broad terms, under the MSE criterion, and conditional on some system-state
information, for example, the queue length, the conditional expectation of the waiting
time, given that information, is the most accurate prediction. While calculating condi-
tional expectations is possible under certain conditions, it is, generally, a difficult task.
Moreover, those resulting conditional expected values tend to perform poorlywhen the
specific modeling assumptions under which they were derived fail to hold [50]. Thus,
one needs to consider alternative, and simpler, ways to predict delays, for example, by
exploiting the recent history of delays in the system [10]. Such delay-history-based
predictions can perform remarkably well, for example, in large heavily congested sys-
tems with or without customer abandonment, even when customers respond to the
announcements [49]. There is also some empirical evidence substantiating their good
performance in practice [71,72]. However, they do not perform well in other settings,
such as when the system is small or lightly loaded [78,90], or under time-varying
conditions [52]. The main takeaway is this: While the literature does not give us a
conclusive answer as to what type of announcement to use under all circumstances,
it does provide valuable insights on the appropriateness of various announcements in
different settings.

Data methods and queueing-theoretic methods are complementary. The recent pro-
liferation of empirical studies, in the context of delay announcements, prompts one to
evaluate the alternative methods that are used to address that problem. In broad terms,
the literature ranges from analytical work, typically substantiated by simulation-based
results ([8,83], etc.), to empirical work in the context of a well-defined structural
model ([3,81,89], etc.), to work which relies, for the most part, on data-mining meth-
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ods [7,70–72]. Each body of work is important in its own right, and it is crucial to
emphasize the complementarity of those different approaches. Indeed, while relying
on queueing models is instrumental to gain insight into performance and, importantly,
allows for a mathematical framework through which controlling that performance
is made possible, queueing-theoretic methods typically lack robustness in that they
remain intimately tied to the specific technical assumptions under which the analysis
is derived.

Empirical studies in the context of a well-defined structural model on customer util-
ity have been instrumental in both validating existing models on customer response to
the announcements, and extending those models as well. Grounded in both empirical
evidence and theoretic analysis, they enable a better management of delay announce-
ments in practice.

Data-mining methods are clearly superior in terms of accuracy. Thus, if accuracy
is the sole objective in mind, then there seems to be little value in going beyond them.
However, data-mining techniques are limited in that they are “black-box” techniques
that do not, in general, further our understanding about the dynamics of the system.
Recently, the combination of those two frameworks (queueing and data-based) has
been advocated in several papers [7,70–72]. Indeed, the delay predictors in those
papers are inspired by both queueing-theoretic methods and data-mining techniques
and are shown to yield superior performance with real-life data sets. In the same
spirit, Bassamboo and Ibrahim [11] propose a correlation-based approach to quantify
the accuracy of delay announcements across different queueingmodels. That approach
enables an easier assessment of that accuracy with real-life data, which circumvents
the need to fit entire queueing models to data in order to gain insight into performance.

1.4 Organization

In this paper, we classify papers based on the assumptions that they make about the
way customers respond to the announcements. In particular, we identify three main
literature sub-streams:

– In § 2, we survey papers which model customers as queued entities that do not
react to the announcements received. This literature stream focuses, for the most
part, on investigating the accuracy of various wait-time predictors in alternative
queueing models.

– In § 3, we survey papers which model customers as utility-maximizing, forward-
looking, decision makers. The focus of this stream is, primarily, on designing the
effective control of the system, by studying the timing, breadth, and granularity of
the shared information.

– In § 4, we survey papers which assume that customers respond to the announce-
ments, but where the specifics of the customer decision-making process, leading
up to that response, are not modeled. In other words, customer response is assumed
to be exogenous. The main objective of this stream is to study the existence and
properties of resulting system equilibria, where announcements and actual delays
“are close” in some sense.
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For each one of the above categories, we precede our review of the relevant papers
by outlining the main challenges in the corresponding stream of the literature. We
conclude this survey by listing some potential future research directions in § 5.

2 Customers as queued entities

We begin by surveying papers which treat customers as queued entities that do not
react to the announcements that they receive. For the most part, this branch of the
literature focuses on studying ways of accurately predicting future waiting times. This
is important for two main reasons: (i) from a practical perspective, systematically
making inaccurate announcements may lead to customer distrust in those announce-
ments and, ultimately, customer dissatisfactionwith the service provided; and (ii) from
an analytical perspective, studying waiting times in queueing systems allows for the
derivation of structural results which are useful for our general understanding of those
models.

In broad terms, two types of methods are typically used for predicting waiting
times: Queueing-theoretic and data-based. For queueing-theoretic methods (§ 2.2),
the focus is on systematically considering alternative queueing models, and studying
the accuracy of various real-time delay predictors in those models. The predictors
may exploit different types of information about the state of the system at the time
of the announcement, for example, the queue length or the history of recent delays.
Relying on data-based methods for delay prediction (§ 2.3) is relatively recent, and
it usually allows for superior predictive power. For background on the analysis of
queueing systems and their approximations, we refer the reader to, for example, Gross
[27], Billingsley [13], and Whitt [85]. For a primer on data-mining methods, we refer
the reader to Tan et al. [76].

2.1 Snapshot of the main challenges

Usually, the modeling framework adopted in the line of literature is a G/G I/s + G I
multi-server queueing system, which has a general stationary arrival process, inde-
pendent and identically distributed (IID) service times with a general distribution, s
homogeneous servers working in parallel, a first-come-first-served discipline, unlim-
itedwaiting space and IID times forwaiting customers to abandon, againwith a general
distribution. For tractability, the all-Markovian M/M/s + M model is typically con-
sidered instead.

To measure accuracy, one must first decide on an appropriate measure. Typically,
average measures of accuracy are used, for example, the mean-squared error (MSE),
which incorporates both the variance of the estimator and its bias. Under the MSE
criterion, the conditional expectation of thewaiting time, given some state information,
is themost accurate prediction (there is no bias in this case). However, calculating such
expected values is generally hard, and there is usually a need to resort to alternative
predictions. The relative MSE, which is equal to the MSE divided by the expected
waiting time, is useful for a relativemeasure of accuracy. One can also rely on accuracy
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measures which penalize overestimation and underestimation, for example, by using
a newsvendor-like objective where different costs are assigned to each.

Assessing the predictive power of alternative estimators is usually done through a
combination of analytical and numerical methods. On the one hand, deriving closed-
form expressions for prediction errors allows for an understanding of the dependence
of those errors on alternative model parameters; on the other hand, detailed simulation
studies allow for the extension of theoretical results to realistic settings which are not
amenable to direct analysis.

To illustrate the complexity in doing direct analysis, let us consider an announce-
ment which is equal to the delay of the Last customer to have Entered Service (LES)
at the time of arrival of the new delayed customer. In what follows, we deliberately
keep our exposition at a high level to convey key intuition. The LES announcement is
accurate if the (stochastic) state of the system that the LES customer encounters upon
arrival, for example, the queue length, is “not too different” from the state that the
new customer, to whom the announcement is made, encounters. In other words, we
need to determine whether the time scale at which the state of the system changes is
“much larger” than the magnitude of the LES delay; if so, then the state of the system
would not change considerably during the LES delay, i.e., the LES delay should be an
accurate prediction. Because doing direct analysis is prohibitively difficult, there is a
need to resort to approximations. This is often possible by relying on a many-server
heavy-traffic framework, where results on asymptotic accuracy are derived. There is
no single way of defining asymptotic accuracy; usually, a properly scaled sequence
of differences between wait-time estimators and corresponding delays is shown to
converge to 0, for example, in a distributional sense. Importantly, one must first decide
on an appropriate asymptotic regime.

To describe large systems, which are usually of primary interest, one alternative is
to consider the quality-and-efficiency-driven (QED) or Halfin–Whitt regime [26,32],
which strikes a balance between service quality and operational efficiency. To describe
a system where waiting times are long, one can focus on the Efficiency-Driven (ED)
regime instead [86]. Analysis in the QED regime is simplified for two main reasons:
(i) the system exhibits economies of scale so that, asymptotically, waiting times are
negligible, and (ii) a snapshot principle [68] holds, under certain conditions, so that the
state of the system during the waiting time of a delayed customer changes negligibly.
When the system is overloaded, fluid-model approximations and ED diffusion-scale
refinements perform remarkably well and are typically used to establish asymptotic
accuracy.

2.2 Queueing methods for delay prediction

Because there is no universal “most accurate” predictor, i.e., one which performs well
in all queueing contexts,Whitt [84] systematically explores alternativeways of predict-
ingwaiting times in amulti-server queueingmodel withmultiple classes, under certain
distributional assumptions, by exploiting various levels of system-state information.
The types of information considered involve the queue length, individual customer
abandonment and service rates, remaining service times of customers in service, etc.
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Full cumulative distribution functions of customer waiting times are estimated in each
case, through either exact analysis or approximations.

Following up on Whitt [84], in a series of papers Ibrahim and Whitt [50–53] inves-
tigate the asymptotic accuracy of alternative real-time delay announcements, based
on either the queue length or the history of delays, in queueing systems with several
realistic features, such as time-varying arrivals and general distributional assumptions.
The predictors that Ibrahim and Whitt consider are all single-number estimates, for
example, the mean of the wait-time distribution conditional on the queue length seen,
or LES. For the most part, they consider the MSE criterion for accuracy and rely
on a many-server heavy-traffic framework to: (i) derive approximations for MSE-
minimizing conditional expected wait-time values, given system-state information,
which serve as new announcements, and (ii) quantify the accuracy of the various
announcements considered. They substantiate their theoretical results with an exten-
sive simulation study and formulate general insights on the usefulness and limitation
of each type of delay prediction.

Ibrahim and Whitt focus solely on single-class systems. The performance of LES
in multi-class systems is considered numerically in Thiongane et al. [78]: The authors
use simulation to explore the accuracy of the LES predictor in the context of a Marko-
vian multi-server, multi-class system with abandonment. They explore the accuracy
of LES-based announcements, including the weighted average of LES predictions, as
well as predictors exploiting both the queue length and the LES delay. Bassamboo
and Ibrahim [11] study the performance of LES with multiple classes as well and
provide theoretical support to some of the numerical observations in Thiongane et al.
[78]. Nakibly [64] also considers a multi-class context and allows for heterogeneous,
class-dependent service rates. She considers both exact and approximate methods. For
example, in a two-server queueing system with a non-preemptive priority discipline
and exponential class-dependent service times, she describes the waiting-time distri-
bution using difference equations and a matrix geometric method. She also considers
an iterative algorithm to approximate that distribution in more complex models with
multiple priorities and many servers.

For an alternative measure of accuracy, Jouini et al. [55] consider a newsvendor
problem cost function instead, which allows penalization of overestimation and under-
estimation of delays using different cost parameters. They consider amulti-class queue
with a priority service discipline and time-varying arrival rates. They empirically vali-
date their theoretical results using data from a network of real-life call centers. In such
a network, determining the number of servers available at every time epoch is difficult
to do. In a system with both time-variations and an unknown number of servers, they
propose simple approximations for wait-time moments. They consider approximating
the corresponding wait-time distributions by using Erlang and Normal distributions
with those matched moments and find optimal announcements from these distribu-
tions. Finally, they take their results to data: They quantify the performance of their
predictors, along with a benchmark mean-delay predictor. They find that Erlang-based
predictions have a superior performance.
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2.3 Data-based methods for delay prediction

There has been recent interest in using data-mining techniques for delay prediction in
service systems. There are several papers which focus solely on data-mining methods
for wait-time prediction, for example, in healthcare settings [67], or transportation
systems [17]. In contrast, we focus here on papers which emphasize the importance
of combining both queueing-theoretic and data-mining methods.

Senderovich et al. [70–72] introduce a novel framework which combines process-
mining techniques, machine-learning algorithms, and queueing-theoretic results to
predict waiting times in service queues. Single-class systems are considered in
Senderovich et al. [71], andmulti-class systems in Senderovich et al. [72]. The authors
consider various predictors, including delay-history-based predictors, such as LES.
Such predictors are termed “snapshot” predictors because their asymptotic accuracy
in certain queueing contexts is substantiated by Reiman’s snapshot principle [68].
They also consider two average predictors, one which averages over the entire his-
tory of delays, and another which clusters waits according to k loads, using k-means
clustering. In general, snapshot predictors are found to be accurate in single-class set-
tings, consistently outperforming average predictors. In a multi-class setting, snapshot
predictors and regression-based methods yield good performance. Senderovich et al.
[71,72] are based on the analysis of call center data. Senderovich et al. [70] focus
on a healthcare setting instead. In particular, the authors rely on predictors which
combine patient information, for example, previous visits and other related informa-
tion, with real-time congestion measures, such as the current number of patients and
recent lengths of stay. The proposed prediction method is shown to have superior
performance.

Ang et al. [7] also consider a healthcare setting and use data sets from four hospitals.
They, too, emphasize a message similar to Senderovich et al. [70–72]: Combining
queueing-theoretic results with data-mining techniques leads to superior predictive
performance. They introduce a novel estimation method, Q-Lasso, which is inspired
by both queueing theory and the Lasso method of statistical learning. In particular,
they consider a queue-length-based predictor, which is equal to the ratio of the queue
length to the processing rate, as a covariate in the Q-Lasso method. The authors find
that the Q-Lasso method consistently outperforms other prediction methods such as
rolling-average methods. The authors also implement their method in a hospital and
discuss related implementation challenges.

3 Customers as decision makers

In this section, we survey papers which treat customers as forward-looking, utility-
maximizing, decision makers. The announcements do not directly impact payoffs in
the system, i.e, a customer is not compensated for following or discarding the wait-
time information. Moreover, the objectives of the different players, i.e., the firm and
its customers, are usually not perfectly aligned. For example, the firm may want to
increase throughput, whereas customers may want reduced waiting times. Hence,
the main premise in that literature is that the impact of the announcements arises
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indirectly in equilibrium. There aremany related questions: Does an equilibrium exist?
If so, is it unique? Assuming that a unique equilibrium exists, what are the values of
different objectives (revenue, social welfare, customer utility, etc.) at equilibrium?
Most importantly, what is the impact of sharing delay information? For background
on the analysis of single-server queues and basic game-theoretic concepts, we refer
the reader to chapter 1 in Hassin and Haviv [38].

It is important to note that while a single-server queueing system is often not an
accurate representation of a real-life system (which is usually much more compli-
cated, including multiple servers, general distributions, and key characteristics such
as customer abandonment), relying on a simplified single-server queueing framework,
with no customer abandonment, enables a tractable analysis which elucidates insights
that should hold more broadly, even when more complicated modeling features are
accounted for as well; for example, see § 1.3 for a short description of some of those
insights.

3.1 Preliminaries: the classical framework

The classical queueing system is an M/M/1 model. The first-come-first-served
(FCFS) discipline is considered, and there is unlimited waiting space. Arrivals are
according to a Poisson arrival process with rate λ, service times are independent and
identically distributed (i.i.d.) with rate μ, and there is a single server. Customers are
delay sensitive, andwe letC denote thewaiting cost per time unit for a customer (which
is assumed to be paid when the customer enters service). Customers also receive a
reward R from service.

In Naor [65], a customer inspects, upon arrival, the queue length (number of cus-
tomers in the system) and decides whether to join or balk. An individual joins a queue
of size i if, and only if, her expected utility R − C(i+1)

μ
≥ 0. The equilibrium joining

strategy, i.e., individual optimizing strategy, is a threshold-based strategy where cus-
tomers who observe n customers in queue upon arrival join if, and only if, n +1 ≤ ne,
where ne ≡ �Rμ/C�. The social benefit, per unit of time, assuming a threshold join-
ing strategy with threshold n is given by λ(1− pn)R − Cq, where pn is the stationary
probability of finding n in the system, given a maximum queue length of n, and q is
the expected queue length. A pure threshold socially optimal strategy exists, and Naor
[65] shows that the social benefit attains its maximum at a value ns ≤ ne. Rooted in
this classical result, a general theme in the queueing-games literature is that the selfish
behavior of utility-maximizing customers leads to sub-optimal equilibrium solutions
compared to the socially optimal solution. The aim is then to investigateways of restor-
ing the imbalance. In Naor’s framework, by imposing an appropriate admission fee,
i.e., a static, queue-length independent price, θ , customers can be motivated to adopt
the threshold ns instead of ne. The toll may also be set from a revenue maximizer’s
objective, i.e., to maximize λ(1 − pn)θ . In this case, the fee levied by the manager is
too high, i.e., nr ≤ ns ≤ ne, where nr is the corresponding equilibrium threshold.

Edelson and Hilderbrand [24] consider the basic unobservable model, where cus-
tomers do not observe the queue length upon arrival, andmake joining decisions based
on the expected waiting time. Customers may either join the queue, not join, or adopt a
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mixed strategy where they join with probability q. It is found that a unique equilibrium
strategy exists, and that it is based on the value of R: If R is “low,” then no customer
joins; if R is intermediate, then customers adopt a mixed strategy with joining proba-
bility qe ≡ μC/R; and, if R is large, then everyone joins. The social benefit function
attains its maximum at a value qsoc such that qsoc ≤ qe. Thus, as in the observable
case, individual optimization leads to queues that are longer than socially desired, but
the gap can be corrected by imposing an appropriate admission fee. We note that the
objectives of a profit maximizer and the social planner coincide.

3.2 Snapshot of the main challenges

With endogenous customer response, studying implications on different objectives is
not easy. A first-order issue is to decide on an appropriate objective. For example,
an engineer may care about throughput, whereas an economist may care about social
welfare. Moreover, different objectives may be affected by the delay information in
similar ways, but not always. For example, a naive view may assume that an increase
in throughput, i.e., number of served customers, must correspond to an increase in
waiting times. However, this need not be the case. Indeed, real-time delay information
usually allows for a better matching between supply and demand, so that we may
concurrently have increased throughput and shorter waiting times. Moreover, such
results tend to be intimately tied to the specific modeling assumptions made.

To illustrate the complexity in this line of research, we consider the basic ques-
tion: How does revealing information about the queue length, i.e., providing delay
information, affect throughput and social welfare? For throughput: In the observable
case, we know that revealing information would incite customers to join when the
queue length is short, and deter them from joining when the queue length is long.
In the unobservable case, where customers make their joining decisions based on the
expected waiting time, they would join more if the system is, overall, not highly con-
gested. Now, let us compare the observable and unobservable cases: It is not clear
what the aggregate effect on throughput should be. Revealing the queue length may
induce more customers to join, but if the system is, overall, lightly congested, then it
may also deflect some customers who encounter an “exceptionally” long queue. The
reverse argument holds when the system is heavily congested. Thus, it seems that no
general statement can be made, and that the load in the system should play a role. For
social welfare: We know from both Naor [65] and Edelson and Hilderbrand [24] that
customers create negative externalities on other customers, and that theymay join both
observable and unobservable queues when it is not socially optimal for them to do so.
Thus, it is not clear what the aggregate impact of revealing queue-length information
on social welfare would be. In general, more complex issues should be considered,
such as the granularity of the delay information (going beyond the reveal/ do not reveal
dichotomy above), as well as the timing and breadth of the shared information. The
literature that we survey next addresses such issues.

3.3 To reveal or not to reveal? Observable versus unobservable queues

We begin by surveying papers which compare the observable and unobservable sys-
tems, i.e., address whether or not to reveal queue-length information.
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Social welfare, revenue maximization, and throughput. Hassin [33] studied the impact
of information suppression from both the social planner’s and revenue maximizer’s
perspectives. In both cases, two quantities play a central role: (i) the potential arrival
rate, λ, and (ii) the value of service, relative to the cost of waiting, νs ≡ Rμ/C . Hassin
[33] compares profits, under profit-maximizing admission fees, in the observable and
unobservable cases. He finds that if customers are “very” sensitive to delay, νs ≤ 2,
i.e., C ≥ Rμ/2, then it is optimal to reveal the queue length for all λ > 0. However, if
customers are not very delay sensitive, νs > 2, then there exists a threshold, ΛR , such
that it is only optimal to reveal the queue length for λ > ΛR . The intuition behind
these results is as follows:When λ is large, many customers would opt to balk based on
average wait-time information, which is high because λ is high. In this case, disclosing
the queue-length information encourages more customers to join in low-congestion
states.While it is true that it also discourages customers from joining highly congested
states, the key is that these customers would have balked anyway in the unobservable
case; thus, revealing information helps the firm. We now turn to the social welfare
results. First, we note that the problem would be straightforward if a social welfare
maximizing fee can be imposed. In this case, revealing delay information can only
help the social planner since, in the observable case, a customer would enter only
when it is socially desirable to do so, but this is not the case in the unobservable
model. The more challenging case is when pricing cannot be socially controlled, for
example, because price regulation is not desirable, but information suppression can
be socially controlled. Under the assumption of a revenue-maximizing toll, the values
of νs and λ play similar roles, but the threshold on λ, ΛS , is different and it is shown
that ΛS < ΛR . Thus, a social planner may want to reveal the queue length when it is
not optimal for a revenue maximizer to do so, i.e., for ΛS < λ < ΛR . However, it is
never optimal to suppress information when a revenue maximizer voluntarily chooses
to reveal it, i.e., for λ > ΛR .

Chen and Frank [16] study how information suppression impacts throughput. Intu-
itions similar to the ones in Hassin [33] continue to apply, so we will be brief. In
particular, for a fixed admission fee, the role played by the system’s load is prominent.
On the one hand, if the arrival rate is low, in particular λ < Λ∗, then customers may
be turned away by real-time queue-length information, while they would have joined
with a (low) average wait-time information. This implies that λO < λU , i.e., the effec-
tive joining rate is smaller in the observable system than in the unobservable system.
On the other hand, if the arrival rate is high, in particular λ > Λ∗, then λO > λU .
Shone et al. [74] take a different view and focus on the situation where the decision of
a service provider to reveal the queue-length information does not affect throughput.
Shone et al. [74] assume out the possibility of optimizing the admission fee. They
compare the observable and unobservable systems in terms of joining rates, both indi-
vidually optimal (selfish) and socially optimal (altruistic), in addition to various other
system performance measures. The authors derive necessary and sufficient conditions
for the equality of equilibrium selfish and altruistic joining rates between the observ-
able and unobservable systems and show that both equalities cannot simultaneously
hold. Shone et al. [74] also observe that the decision of whether or not to reveal the
queue length depends strongly on νs , as was observed in Chen and Frank [16].
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A network of providers. The papers above focus on a setting with a single provider.
Singh et al. [75] consider a competitive environmentwith two service providers instead.
These providers may choose to diffuse different levels of information, either real-time
or historical. The paper studies the first mover’s benefit, i.e., the first provider to
announce real-time information. It considers two parallel M/M/1 queues, in a multi-
period setting, where one provider announces the real-time queue length, and the other
provider announces the expected delay of the previous period. For a performance com-
parison, the authors consider the market share and the expected delay, and customers
join the lower-delay alternative. The authors find that the benefit of being the first
mover depends on the service capacity. In particular, for the lower-capacity provider,
being the initiator in announcing real-time information increases the market share and
reduces delays. However, the same does not hold for the higher-capacity provider,
where results are mixed. The authors also find that social welfare always increases
when there is benefit on market share and delay.

Dong et al. [19] also consider a network setting with multiple providers, but they
focus on a network of hospitals instead. In particular, they study, in the context of
an empirical investigation, the impact of delay announcements on coordination in the
network. Coordination is measured through the correlations of delays between hos-
pitals: There is synchronization if those correlations are positive. This observation is
rooted in a queueing-theoretic result which establishes that the join-the-shortest-queue
(JSQ) discipline synchronizes queues in the system. Indeed, if customers check the
delay information, then it is reasonable to assume that they would join the shortest
queue, which would then lead to synchronization. Thus, exploring the impact of delay
information reduces to studying correlations between the waiting times at adjacent
hospitals. By relying on data of real-life announcements and patient response (mea-
sured through online searches), the authors investigate whether the announcements
do indeed impact the behavior of patients. They provide empirical evidence that this
is indeed the case. They also conduct an extensive numerical study to investigate
how sensitivity of customers to delays, the load of the system, and the heterogeneity
between hospitals impact the synchronization level in the system. They show that
using average wait predictors may lead to oscillations in the system, where customers
systematically flock to one of the two queues; this numerical observation is studied in
Pender et al. [66].

3.4 Granularity, timing, and breadth of the delay information

The papers above consider either full revelation or no revelation of real-time system-
state information. However, there are other considerations, such as the timing,
granularity, and breadth of the shared delay information. We now survey papers which
study decisions pertaining to those characteristics.

“Discrete” information: High and low announcements. The idea that full information
may not be necessary, and that a discrete high-low type of announcement may suffice,
already follows immediately fromNaor [65]. Indeed, in the observable case, customers
follow a threshold-type joining decision; this indicates that only the information on
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whether or not the queue length exceeds a threshold, L , should suffice. Because this
information structure is much simpler, there is interest in studying it. We note that
setting L = 0 corresponds to the unobservable model in Edelson and Hilderbrand
[24].

Altman and Jimenez [6] consider high-low announcements when there is no pricing
decision. First, the authors consider that the value of L is fixed (not necessarily at opti-
mum). In the social planner problem, they optimize the probabilities of accepting an
arrival if the queue length is below or above L . Next, they consider the individual opti-
mization problem where utility-maximizing customers make their joining decisions,
and investigate the ensuing equilibrium. In both problems, the optimal admission strat-
egy has the form of either accepting all arrivals when the queue length is below L , or
rejecting all arrivals when it is above L . The authors also show that imposing a socially
optimal L value in the individual optimization problem does not lead to the socially
optimal outcome. Hassin and Koshman [39] consider a similar setting as in Altman
and Jimenez [6], albeit with pricing decisions. In particular, customers are charged
pL when the queue length is below L , and pH otherwise. Hassin and Koshman [39]
demonstrate how to obtain the maximum value of social welfare in Naor’s model by
using their coarse dynamic pricing scheme.

The above two-signal strategy arises at equilibrium in Allon et al. [5]. In this paper,
the authors relax two fundamental assumptions: (i) that the firm is truth-telling in
revealing information, and (ii) that the information shared is quantifiable and ver-
ifiable by customers. As such, they allow for a richer information set which also
includes intentional vagueness: A firm is intentionally vague when it provides the
same announcement in different states of the system. They show that even though
the information provided to customers is non-verifiable, it can improve the profits
of the firm and the expected utility of customers. The incentives of the firm and its
customers are neither perfectly misaligned (they both prefer shorter waits), nor per-
fectly aligned (the firm benefits from higher throughput, whereas the customers do
not). This misalignment between the firm and its customers plays a key role in the
analysis: Depending on its level, different equilibria emerge. Of particular interest
are equilibria with influential cheap talk, i.e., ones where the firm can induce distinct
customer actions based on different unverifiable messages.

Different levels of information. Wenow turn to the literature investigating the problem
of finding the “best” type of delay information to share. Duenyas and Hopp [20]
investigate that problem in a manufacturing setting. Each customer who places an
order generates a reward for the firm, and there is a penalty for being late (per unit
time exceeding the quoted lead time). In response to a quoted lead time, a, each
customer places an order with probability p(a). Duenyas and Hopp [20] derive an
optimal quotewhichmaximizes the expectedprofit (revenueminus penalty cost), under
both infinite (G/G/∞) and finite (G/G/1) capacity settings. In the infinite-capacity
case, the optimal quote does not depend on the current backlog in the system. In
the finite-capacity alternative, the optimal lead-time quoting policy is state-dependent
and increasing in the state, i.e., the higher the congestion, the higher the lead-time
quote. Specifically, a profit-maximizing firm should give granular, state-dependent
information rather than rely on a coarse information-sharing scheme.
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In their model, Duenyas and Hopp [20] trade the reliability of the quoted delay
for maximizing throughput: While there is a penalty for being late, the firm is not,
otherwise, restricted in the quote that it provides, i.e., it is not constrained to being
reliable. In contrast, Dobson and Pinker [18] consider a similar problem but assume
that the firm must provide reliable quotes: The state-dependent lead-time quote pro-
vided, li , depends on the number i of customers in the system and is a fractile from
the conditional wait-time distribution which must be met (100τ)% of the time. In
other words, letting Wi denote the conditional steady-state waiting time, we must
have that P(Wi ≤ li ) = τ . The proportion of customers who join the system, in
response to li , is given by α(li , τ ). Dobson and Pinker [18] compare alternative sce-
narios, Sk , which reflect different levels of information granularity: For scenario Sk ,
customers are provided with a state-dependent announcement li for i < k, and with a
static announcement for i ≥ k. Increasing k amounts to increasing the granularity of
the delay information. The authors derive a sufficient condition under which sharing
more information increases throughput, and emphasize that this need not always be
the case. Importantly, they demonstrate that higher throughput may also be associated
with lower expected waiting times, and less variable waits, because the delay informa-
tion deters customers from joining highly congested states, and encourages customers
to join low-congestion states. They also highlight the importance of customer hetero-
geneity, i.e., the extent to which different information granularity leads to different
demand rates: The greater the heterogeneity, the higher the throughput, i.e., the higher
the value that can be derived from quoting lead times.

The role played by customer heterogeneity is also central in the work of Guo and
Zipkin. Guo and Zipkin [28] consider three levels of information: (1) no informa-
tion, (2) partial information, i.e., queue length upon arrival, and (3) full information,
i.e., exact waiting time. For performance measures, they consider throughput and the
expected customer utility. Customers are assumed to be heterogeneous in their delay
costs. Specifically, each arriving customer has a cost type, θ , which is drawn from a
continuous and bounded distribution, H , and density function, h. There is also a basic
cost function, c(w), associated with a wait w. Thus, the cost incurred by a θ -customer
who is delayed for w is equal to θc(w). Different levels of delay information incite
more or fewer customers to join. The information provided also segments customers
depending on their delay sensitivity: A customer who joins under one type of informa-
tion may balk under another type. Guo and Zipkin [28] demonstrate that both system
throughput and customer utility, under different information levels, are impacted by
the shape of the customer delay distribution. Depending on that distribution, they char-
acterize conditions under which information helps either the customers or the service
provider. The main takeaway is that more information may or may not be beneficial,
depending on the distribution of customer delay sensitivity. In subsequent papers, the
above results are generalized to systems with phase-type service times [29], different
levels of information [30], and alternative cost functions [31].

In a series of papers, Burnetas and Economou [15], Economou and Kanta [22,23],
and Economou et al. [21], the authors quantify the impact of state information on
system dynamics under various assumptions. Burnetas and Economou [15] consider
an M/M/1 queue with setup times. In particular, when a new customer arrives to
an empty system, the server requires an exponentially distributed time with rate θ
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before beginning service. At time t , the state of the system is described by the pair
(N (t), I (t)), where N (t) is the number of customers in the system and I (t) = 0
or 1 is the state of server (idle or busy, respectively). Customers may be exposed to
different levels of information about the system, corresponding to four cases: (i) fully
observable,where customers observe both N (t) and I (t); (ii) almost observable,where
customers observe only N (t); (iii) almost unobservable, where customers observe only
I (t); (iv) fully unobservable, where customers do not observe either I (t) or N (t).
In all cases, customer equilibrium strategies are analyzed, as well as the stationary
behavior in the system and the social benefit for all customers. Economou et al. [21]
consider an extension of Burnetas and Economou [15] where both general service and
general setup times are allowed. Economou and Kanta [23] assume that the waiting
space is divided into compartments, to be served sequentially in increasing order, and
joining customers may know either the compartment number (but not their position
in the compartment that they join) or their position within a compartment (but not the
compartment number). Both information levels correspond to partial information since
customers do not fully observe the system state in either case. For a frame of reference,
if a customer knows both the compartment index and the compartment position, then
the model reduces to the model in Naor [65], whereas if neither are known then
the model reduces to the model in Edelson and Hilderbrand [24]. Economou and
Kanta [22] and Wang and Zhang [80] assume that the server may break down and
require repair. The time to repair is considered to be equal to 0 in the former and
is exponentially distributed in the latter. The authors in those two papers compare
two levels of information: (i) fully observable, where customers know both the queue
length and the state of the server, and (ii) partially observable, where customers know
only the queue length. Both papers compare equilibrium threshold balking strategies
in their contexts.

Timing and breadth. The question of when to make a delay announcement, and the
extent to which information should be shared, have also been investigated in the liter-
ature. He and Down [42] rely on both heavy-traffic analysis and simulation to study
performance in a queueing system where only a fraction of customers are informed
about waiting times. Specifically, they consider two customer classes and two server
pools. Dedicated customers in each class can only be served by one of the two pools,
for example, because of a language requirement. A fraction of customers is flexible
and may choose one of the two server pools depending on which has the shortest
queue. He and Down [42] focus on the expected waiting time for both classes and
demonstrate that “a little flexibility goes a long way” in that delay information (the
queue length) significantly improves performance even when a small proportion of
customers are informed about waiting times. They also address the question of infor-
mation updating by considering, numerically, a setting where the mean waiting time is
updated periodically, and customers use themost recent update in making their joining
decisions. They show that there could be significant degradation in performance if the
delay information is not updated frequently enough, and the system may experience
oscillation behavior because customers herd together for one queue for a period of
time.
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Hu et al. [44] also address the question of the breadth of the information shared.
They consider a setting where only a fraction of customers are informed about the
queue length in the system. Informed customers make their joining decisions based
on the observed queue length. Uninformed customers make their joining decisions
based on the expected waiting time in the system. The fraction of informed customers
is assumed to be exogenous. Informed customers join the system in accordance with
the threshold joining policy in an observable queue, as in Naor [65]. Uninformed cus-
tomers randomize their joining decisions. Uninformed customers indirectly influence
informed customers by influencing the distribution of the queue length in the system.
The authors find that, in systems which are not under very low loads, informing a
fraction of customers about real-time delay information increases either the through-
put or the social welfare. Their results depend on both the offered load in the system
and the joining behavior of uniformed customers. To relate their results to Chen and
Frank [16]: They find that when the offered load is low enough, throughput decreases
with the information. Similarly, if the offered load is high enough, then throughput
increases with the information. However, in the intermediate region for the offered
load, throughput is maximal if only a fraction of customers are informed. Also, while
the standard view, as inHassin [33], is that social welfare is always improved by reveal-
ing the queue, the authors demonstrate that when the offered load is high enough, it
is optimal to have only a fraction of informed customers, i.e., social welfare does not
always increase by revealing the queue length to everyone. In short, the presence of
uninformed customers improves throughput under low offered loads and increases
social welfare under high offered loads.

Despite its practical importance, the question of timing of the announcements
remains understudied, with the vast majority of papers assuming that the announce-
ment is given immediately upon arrival of the delayed customer. At a high level, the
trade-off is as follows: Postponing the announcement allows the firm to make a more
informed decision about whether or not to admit the customer. With more informa-
tion at its disposal because of the delay in making the announcement, the firm should
benefit. However, postponing the announcement also means potentially keeping cus-
tomers longer in queue. Thus, it is not clear whether a firm would want to resort to
this postponement. Allon and Bassamboo [4] address this question in the context of
an unobservable M/M/N queue; the model specifics are, otherwise, similar to Allon
et al. [5]. The authors focus on identifying conditions under which influential cheap
talk emerges in equilibrium. To model the system with postponed announcements,
they consider a two-stage system. The first stage, which models, for example, a call
center’s IVR, is an infinite-server queue which is essentially a delay station. The sec-
ond stage is an M/M/N queue: Upon entry to this M/M/N queue, the firm makes
a non-verifiable cheap talk type of delay announcement. The authors characterize the
optimal admission policy for the firm in the second stage and demonstrate that it is of
a threshold type where the threshold depends on the number of customers in the first
stage. They also characterize the set of possible equilibria in the delayed cheap talk
game and compare these to the non-delayed game. They show that such a compari-
son is complex: The firm may or may not benefit, i.e., create credibility and impact
customer behavior, from delaying the delay information.
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Pender et al. [66] also consider the impact of delaying the delay announcements.
Specifically, they study the oscillation behavior observed in both He and Down [42]
and Dong et al. [19]. They use two deterministic fluid models to examine the effect
of providing customers with delayed delay information. In particular, they consider
two systems: System I consists of two infinite-server queues where arriving customers
receive delayed information about the queue length. The delay in information is quanti-
fied by a deterministic parameterΔ. Customers choose which queue to join depending
on the delayed delay information that they receive, in accordance with a multinomial
logit customer choice model. By analyzing the dynamics of the resulting fluid model,
the authors demonstrate that there is asynchronous behavior between the two queues
if Δ is large enough, i.e., there are systematic oscillations and no stable equilibrium.
System II also consists of two infinite-server queues, but the delay information is in
the form of a time-average of the queue-length information in a window of length Δ

instead. In this case as well, the authors demonstrate a similar asynchronous behavior
between the two queues if the window over which the average is taken is long enough.

Roet-Green and Hassin [69] also consider a setting where customers learn delayed
information about the queue length in the system but, contrary to Pender et al. [66],
the delay in information is assumed to be random (exponentially distributed), corre-
sponding to the travel time needed for a customer to join the queue after the delay
information is received. In other words, customer joining decisions are not instanta-
neous. A customer joining strategy is a vector that assigns a probability of traveling to
each possible queue length. Because the travel time is not negligible, a customer who
had decided to join a system based on “old” queue-length information may decide to
balk upon arrival to the system if the real-time queue length is too long. Thus, customer
decisions are made at two successive epochs. The authors investigate the structure of a
symmetric Nash equilibrium. They find that customers often adopt a double-threshold
strategy: Customers travel when the queue length is short, balk or mix between balk-
ing and traveling when the queue length is at an intermediate length, and travel when
the queue length is long. The intuition is that a customer who observes an interme-
diate queue assumes that previous customers must have observed short queues, and
are now on their way. Thus, the system’s congestion is likely to soon increase and,
consequently, the customer decides to balk. The intuition is reversed when a customer
observes a long queue: In this case, that customer assumes that previous customers
must have observed an intermediate queue and balked. Thus, the congestion in the
system is likely to soon decrease, and the customer decides to join the queue. The
authors also demonstrate that social welfare may be higher under the no-information
model than under the delayed information model.

Hu andWang [45] consider a setting where customers share queue-length informa-
tion with each other. Because information is shared at the arrival epoch of an arriving
customer, it constitutes lagged information for a future customerwhowishes to join the
system based on this “historical” information. Customers decide to join or balk based
on previous information, but do not update their decisions upon arrival to the system
because they do not observe the queue length in the second stage, unlike in Roet-
Green and Hassin [69]. Indeed, they observe the queue length only upon entering the
system. The authors investigate how this shared information structure affects through-
put, expected queue length, and social welfare in the system, and draw comparisons
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between the full-information and no-information models. They find that (i) through-
put under shared information is less than that under full information; (ii) the expected
queue length under shared information is less than that under full information; and
(iii) social welfare may be lower or higher under shared information, depending on
the offered load in the system.

3.5 Joint optimization: announcements and other controls

Because delay announcements are levers of control in the system, it is natural to
investigate how a manager may jointly optimize the announcements with other levers
of control, such as staffing and scheduling decisions.

Armony and Maglaras [8,9] study joint routing and delay announcement decisions
in the context of a call center which offers a call-back option to delayed customers.
Specifically, callers are informed, upon arrival, of their predicted waiting time for real-
time service, and a delay guarantee for postponed service. There is a continuum of
delay-sensitive customer types, and customers assign utilities to joining either queue,
and join the queue corresponding to the highest utility. The problem is how to provide
accurate delay estimates and decide on an accompanying routing rule which guaran-
tees that the postponed service is offered within the specified deadline. This problem
is analytically difficult to solve, primarily because future arrivals from the postponed
service may affect the waiting times of customers who are already in queue. Thus, the
authors focus on the many-server heavy-traffic Halfin–Whitt regime instead. Under
this regime, the authors show that using a local version of Little’s law, i.e., announcing
the queue length encountered upon arrival divided by the arrival rate, is asymptoti-
cally consistent (it becomes accurate in large systems) under a threshold-type routing
rule which is asymptotically compliant (satisfying the delay guarantee constraint).
Specifically, the manager gives priority to real-time service customers, so long as
the queue-length for the postponed service does not exceed a given threshold. While
Armony and Maglaras [9] focuses on steady-state delay information, Armony and
Maglaras [8] considers state-dependent delay information instead. In comparing the
performance of the system with steady-state or state-dependent delay information,
the authors show that state-dependent information increases resource utilization while
improving the quality of service for real-time service.

Yu et al. [91] also consider a setting where a profit-maximizing firm uses the
announcements in conjunction with optimizing a routing rule, but where customer
types are unobservable to the manager. Because customers are heterogeneous in both
their delay costs and the values drawn from service, the firm may gain from customer
segmentation through a priority service discipline. There is information asymmetry
in the model: While the firm has private information about the congestion level in
the system, customers have private information about their types. Since information
on customer types is not observable by the firm, the announcements play a dual role:
They inform customers about upcoming (expected) delays, and they are means to elic-
iting information about customer types. In other words, the priority discipline used
by the firm depends on the announcements given. The authors examine the ability
of the firm to sustain an equilibrium with influential cheap talk in the above setting,
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and distinguish between two cases, depending on whether the two customer classes
considered have homogeneous or heterogeneous holding costs. In the homogeneous
case, they show that the firm can achieve its unconstrained first-best profit, where it
has both full information and full control over customers, through the provision of
delay announcements. In particular, a partial segmentation of the customer population
may be sufficient to achieve maximal profit. Moreover, under certain conditions, not
differentiating customers at all may be the profit-maximizing strategy. In the hetero-
geneous case, the firm can no longer achieve its first-best through the announcements.
Nevertheless, it can improve its profits by giving priority to customers who receive
the highest announcements. The authors also characterize babbling equilibria in the
system, where no credible information is shared with customers so that the state of
the system and the announcement given by the firm are independent; they also com-
pare babbling equilibria to influential equilibria where the firm communicates credible
information to customers. They find that providing credible delay information always
increases the firm’s profit, but may improve or hurt the expected total customer utility.

Ibrahim [48] also takes the view that the announcements can be used as a con-
trol tool which can be optimized jointly with other controls. In particular, the focus
there is on a queueing system where the number of servers is random. This setting
arises in sharing-economy applications, for example, because of the self-scheduling
behavior of work-from-home call center agents. Because agents show up at random,
there are congested periods in the system. Because of this congestion, the abandon-
ment distribution plays an important role. In particular, it can be controlled, via delay
announcements, to alleviate the cost of self-scheduling. The author studies how to
control the announcements, along with other tools, namely the compensation offered
to agents and the staffing level in the system, in order to minimize costs.

3.6 Empirical studies

The literature above is analytical in nature. The recent availability of granular data,
for example, at the call-by-call level in call centers, has made it possible to study
changes in customer behavior, in response to the announcements. We now recap the
main results from those papers.

Early empirical evidence which illustrates how customers update their patience
times in response to delay announcements, in call centers, can be found in Mandel-
baum and Zeltyn [61] and Feigin [25]. Akşin et al. [3] undertake a more detailed
empirical study to explore the impact on customer behavior and, in turn, on system
performance, due to the announcements. The authors begin by providing empirical
evidence, using a Cox regression analysis, substantiating the impact of the announce-
ments on the abandonment behavior of (call center) customers. Their data set has
two priorities, and the announcements are equal to the queue position or the elapsed
waiting time of the longest waiting customer; they are also made sequentially over
time. The study reveals that both the composition and sequence of the announcements
have an impact on customer abandonment behavior, and that customers who receive
longer announcements, or see a deteriorating delay condition (increasing announce-
ments during their wait), abandon earlier. The impact of the announcements is also
affected by the priority class of the customer.
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In order to explore the operational impact of the announcements, the authors use
a structural estimation approach: They model callers’ abandonment decisions as in
the optimal stopping time model introduced in Akşin et al. [2]. Specifically, time is
divided into periods, and a customer makes a decision on whether or not to abandon
at the beginning of each period. Customers are heterogeneous in both the rewards that
they receive from service and their per-unit waiting costs (both of these are drawn
from lognormal distributions). The announcements received impact the abandonment
distribution of callers which, in turn, impacts their decisions on staying or reneging,
sequentially over time. The parameters of that endogenous model for caller abandon-
ment are estimated from data, for each priority class. In order to study the impact of
the announcements, the authors assume a setting where customers receive only one
announcement upon arrival. By relying on the approximation inWhitt [87], they char-
acterize the equilibrium that arises in the system in steady state, where the equilibrium
is defined as one where the distribution of waiting times based on the optimal stopping
time model coincides with the distribution of the waiting time using the approxima-
tion from Whitt [87]. Through a simulation study, Akşin et al. [3] then study the
operational impact of the announcements. Their main conclusions are as follows: (i)
delay information helps customers make better decisions in the sense that callers who
receive a long (short) delay announcement abandon more and faster (less and slower);
(ii) the impact of the announcements is strongest when the state of the system is con-
gested; and (iii) the increased granularity of the wait-time announcement (exact queue
length position vs. range for the number in queue) leads to a smoother change in caller
behavior.

Yu et al. [89] also adopt an empirical approach in studying the impact of delay
announcements on customer patience. They begin by introducing the concepts of
informative and influential announcements. An informative announcement is one that
carries information about the current congestion level in the system, i.e., one where
longer delays do indeed correspond to larger announcements. An influential announce-
ment is onewhere the patience of customers changes in response to the announcements.
By statistically comparing the survival distributions of customers, the authors find that
the impact of the announcements is ambiguous: Some announcements are influential
and/ or informative, whereas others are not. This prompted the authors to undertake
a deeper investigation into the dynamics of the performance impact of the announce-
ments; they did so by relying on a structural estimation approach.

The structuralmodel is as follows:Customersmay returnmultiple times and, at each
return, receivemultiple delay announcements during theirwait. At each announcement
epoch, the caller revisits their decision of staying until service or reneging. Customers
are heterogeneous, but their heterogeneity is modeled through their cost–reward ratio
rather than separately through their service rewards and waiting costs. The cost–
reward ratios and variance of idiosyncratic shocks are then estimated from data. The
authors consider two models: (i) a base model where customers update their beliefs
about offered waits using the announcements received; (ii) a refined model where
not only customer beliefs but also the waiting costs of customers are impacted by
the announcements. The authors find that their second model explains the ambiguous
impact on customer impatience observed earlier in their data analysis. In particular,
they show that while the cost–reward ratio decreases in the offeredwait associatedwith
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the announcements (“I waited so long already, so why not wait a little longer?”), the
variance of the idiosyncratic shocks increases. This dual effect explains the nontrivial
impact of the announcements on customer behavior. The authors then explore, through
a simulation study, what managerial implications can be drawn from their analysis.
In particular, they find that providing delay announcements leads to an increase in
the surplus of customers (surplus is equal to reward minus waiting cost), and that less
refined delay information (in the form of three signals on the congestion of the system)
may lead to higher customer surplus than more granular information.

Yu et al. [90] undertake a field experiment in an Israeli bank’s call center to explore
the loss aversion of customers in time, and its dependence on the delay information
available. Specifically, customers who receive delay announcements typically form a
reference point based on the announcement received. If the actual waiting time experi-
enced is smaller than that reference point, then the time difference is considered a gain.
If the actual waiting time experienced is larger, then the time difference is considered
a loss. Loss aversion means that customers value lost timemore than they value gained
time. Customers are either provided with accurate, inaccurate, or no announcements.
By using a structural model to infer the customers’ value of time (the abandonment
behavior is modeled through an optimal stopping time problem), the authors find that
customers indeed exhibit loss aversion, and that this is independent of the correctness
of the delay information given. (Loss aversion is measured through an increase in the
per-unit waiting cost after the announcement.) However, the accuracy of the delay
announcement does have an impact on the reference point formed. Specifically, with
accurate information, the reference point coincides with the delay information given,
whereas with inaccurate information, customers use the observed average delay as a
reference point instead. This contradicts the standard viewpoint that firms should give
an inaccurate but high announcement to make the customers “feel better about their
waits.” Indeed, the analysis suggests that customers may disregard such inaccurate
announcements but retain their loss aversion.

In a related paper, Webb et al. [81] rely on a proportional hazards model for the
hazard rate of the abandonment distribution instead. The covariates used in that model
include the gain and loss in time effects due to the announcements. In particular, the
announcement creates a reference point which is the expectation of the wait time for
service. The authors find that a model in which customers react to the announced
value of the first announcement, and in which reference points are induced by the
first two announcements, is the best fit to their data. They also find that customers are
loss averse, that they fall for sink cost effects, and that a higher announcement leads
to more abandonment. Finally, they study implications on staffing decisions and find
that firms who take behavioral implications of the announcements into account can
significantly reduce their staffing levels.

4 Exogenous changes in customer behavior

In this section, we survey papers which model customer response to the announce-
ments, but do not explicitly model the dynamics of the customer decision process
leading up to that response. In other words, changes in customer behavior are assumed
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to be exogenous. While the literature in § 3 focuses on modeling customer join-
ing/balking decisions only, the papers in this section consider changes in customer
abandonment behavior as well and focus, for the most part, on the accuracy of the
announcements in light of those changes.

4.1 Snapshot of the main challenges

Studying the accuracy of delay announcements, when customers respond to these
announcements, is challenging. Indeed, changes in customer impatience affect sys-
tem dynamics and, in turn, the future announcements made. For example, if customers
abandon faster because of high announcements, then future waiting times, and future
announcements which depend on those waiting times, should be shorter. Thus, study-
ing the accuracy of the announcements involves characterizing an equilibrium in the
system. At a high level, an equilibrium must correspond to the long-run performance
in the system, where the average announced delay coincides with the average experi-
enced delay.

First, it is not clear whether such an equilibrium exists, or if it is unique; indeed,
there may be multiple equilibria and the system may exhibit oscillations between
those equilibria. Second, even when a unique equilibrium exists, it is not clear how
to specify that the announcement and the corresponding delay, which are both ran-
dom variables, coincide in that equilibrium, for example, this could be in expectation,
in distribution, or asymptotically when scaled in an appropriate way. Third, it is not
clear how stochastic fluctuations around the equilibrium affect the system’s perfor-
mance and the accuracy of the announcements. Even under Markovian assumptions,
explicit analysis of the underlying birth-and-death process is analytically complex.
This is so because the transition rates of the birth-and-death chain would all be depen-
dent on the announcements. Therefore, analysis is typically done in an asymptotic
heavy-traffic regime instead. However, establishing asymptotic accuracy is not easy,
primarily because it may be that the underlying stochastic processes, for example,
the queue-length process, do not even converge. Even if the underlying processes do
converge, then the analysis is complicated by the state-dependent nature of the arrival
and abandonment rates in the system, due to the announcements.

4.2 Accuracy and performance impact

One fundamental idea is that the announcements help by deterring the most impa-
tient customers from waiting, i.e., by converting late abandonment into early balking.
Indeed, since those customers would have abandoned anyway, inciting them to aban-
don immediately upon arrival, for example, balk, should help in reducing congestion
in the system while not affecting throughput.

Replacing exponential reneging with balking. Webeginwith the casewhere customers
who receive delay information consider it to be truthful, know their personal prefer-
ences, and are able to decide, upon arrival, whether they would be willing to wait at all.
In this case, all reneging is replaced by balking because of the announcement. Whitt
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[83] adopts this view, and compares two single-class M/M/s/r queueing systems
(where r denotes the maximum queue length allowed) with reneging and balking. In
particular,Model 1 assumes that customers balkwith a given probability and otherwise
join the system and may renege after some time. Model 2 assumes that customers are
given system-state information upon arrival, for example, the queue length. In Model
2, all reneging is replaced with balking at arrival. Because of the dynamics of customer
response, and conditional on the system state seen upon arrival, a customer does not
take other customers’ actions into account when making her own decision to join or
balk. By analyzing general birth-and-death processes, with announcement-dependent
rates, Whitt [83] shows that the number of customers in Model 1 is larger in Model 2
in the likelihood-ratio stochastic ordering sense. In other words, the announcements
lead to an improvement in performance by converting reneging after some delay with
balking upon arrival. Jouini et al. [56] extend Whitt [83] by considering a system with
two customer classes and a non-preemptive priority service discipline. In a model
where customers replace subsequent reneging with balking upon arrival, as in Whitt
[83], the authors do analysis to derive balking probabilities and moment expressions
for the virtual waiting times of the high and low priority customers.

In practice, delay announcements do not convert reneging entirely into balking
[25,61]. Indeed, it seems more common that the most impatient customers balk in
response to the information, while more patient customers elect to stay but update
their patience levels, depending on the announcement. If the announcement is long,
then there will be more balking, and less subsequent reneging, and vice versa. Thus,
there is a trade-off between reneging and balking, based on the announcement. This is
one of the main ideas in Jouini et al. [54]. The authors consider a delay announcement
which is equal to a fixed percentile of the waiting time, conditional on the queue length
seen upon arrival, and study how varying that percentile, or coverage β, impacts per-
formance in the system. Jouini et al. [54] consider three models: Model 0 assumes that
the delay information is exact, and arriving customers respond to that information by
balking upon arrival if their patience falls below that threshold; there is no subsequent
balking in the system. Thismodel is in the same spirit asWhitt [83], and it is argued that
this is indeed a reasonable model when customers fully trust the information that they
are given. Model 1 assumes no delay announcement, and that a higher proportion of
customers balks upon arrival because of the lack of information; customers may later
renege if their patience expires before reaching service. Model 2 introduces the idea of
a coverage-based announcement, where the firm announces a given percentile of the
waiting-time distribution. In this model, customers update their patience based on the
announcements that they receive: The updated patience rate, γ ′, is equal to a combina-
tion of their individual patience before the announcement, and the delay information
received (later approximated by an exponential distribution for the analysis). Under
an exponential assumption on the announcement-dependent abandonment, the authors
rely on the analysis of birth-and-death models to analyze the performance impact of
the announcements. For consistency, the announcement given must coincide with the
fractile of the stationary delay distribution. Thus, an equilibrium analysis is needed,
and the announcement-dependent abandonment rate is derived based on a fixed-point
algorithm. This algorithm reveals the dependence of γ ′ on β. Thus, varying β leads
to different performance in the system. The authors find that, all else held constant, an

123



Queueing Syst (2018) 89:49–79 73

announcement with more coverage leads to higher balking in lieu of late abandonment
from the queue. However, through investigating the value of the “optimal” coverage
(minimizing the balking probability, subject to a constraint on the reneging probability)
an important insight is reached: More coverage, which is equivalent to more precise
delay information, at the expense of a larger announcement, is not always better for
the service provider. Indeed, this would depend on a host of factors, including the way
in which customers react to the specific announcements that they receive.

Non-exponential but smooth abandonment. Armony et al. [10] go beyond the expo-
nential assumption on the abandonment distribution, in response to the announcement.
Direct analysis is hard, and the authors rely on two approximationmethods to study the
resulting equilibrium in the system: (i) a deterministic fluid model and (ii) an iterative
numerical algorithm, based on Whitt [87], where general abandonment is approxi-
mated by Markovian abandonment with state-dependent rates. The authors focus on
the performance impact of making the LES delay announcement. By analyzing the
fluid model, they derive conditions on customer response to guarantee the existence
and uniqueness of that equilibrium. In the fluid model, LES coincides at equilibrium
with a fixed delay announcement (FD), equal to the average equilibrium delay. This
motivates the authors to also consider an FD announcement, and they use simula-
tions to study the equilibrium behavior with both LES and FD announcements in the
M/G I/n + G I model. They validate both approximation methods, and illustrate that
the LES announcement is usually more effective, leading to smaller variance. Using
the framework in Armony et al. [10], one can quantify the value of communicating
delay information, for example, by comparing the equilibrium that arises with perfor-
mance in a system without announcements. This performance impact depends on the
assumptions made on the way customers respond to the announcements.

Armony et al. [10] do not discuss the accuracy of the individual announcements,
which involves quantifying the stochastic fluctuations around equilibrium. This is
done, in a similar setting, in Ibrahim et al. [49]. The authors demonstrate that the
LES announcement, with customer response to the announcements, is asymptotically
accurate in both the quality-and-efficiency-driven and efficiency-driven regimes. A
main technical issue in the analysis is demonstrating that the stochastic fluctuations
around the equilibrium in the system (when it exists and is unique) would not drive
the system out of that equilibrium, thus guaranteeing accuracy.

Abandonment “jumps”: Going beyond the fluid model. Armony et al. [10] illustrate
that the fluid model may not be accurate when the abandonment response to the
announcements is not smooth, for example, when there is an announcement-dependent
“jump” in abandonment, which is consistent with empirical evidence. To analyze the
system with such jumps necessitates going beyond the fluid approximation, i.e., a
more refined approximation is needed. Such an approximation is presented in Huang
et al. [46]. Because the announcements play a role in altering customer abandonment,
it is conceivable that jointly optimizing the control of announcements along with
the staffing level would lead to staffing levels that are different than in the absence of
announcements.Huang et al. [46] are thefirst to show this by considering anoverloaded
G I/M/s + G I queue where they jointly optimize the staffing level and the timing
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of the announcements, subject to quality-of-service constraints. The announcement-
dependent hazard rate of the abandonment distribution is assumed to be discontinuous.
In particular, they consider two types of delay announcements, corresponding to two
types of responses. The first is similar to Armony et al. [10], where customers who
hear an announcement upon arrival have a changed abandonment response at the point
of the announcement, as well as balking upon arrival in response to the announcement.
The second type of announcement ismade during thewaiting time, leading to an abrupt
increase in the likelihood of abandonment at the announcement epoch. The objective
of the paper is to quantify the impact of the non-smooth change in abandonment on
system performance and operational decisions. To do so, the authors introduce an
approximation based on scaling the patience-time distribution. They substantiate the
accuracy of their refined approximation, demonstrate that there is anO(

√
λ) reduction

in the staffing level due to the announcements, and show that the optimal timing of
the announcement coincides with the fluid offered waiting time.

5 Future research directions

In this section, we identify some “macro-level” themes that we believe would be
interesting to investigate in future research.

Bridging the psychological and the operational. As mentioned in Bitran et al. [14],
there is a general need to narrow the gap between mathematical models of cus-
tomer response in service systems, and the complex reality of human behavior and
psychology. The body of literature devoted to analyzing customer response to the
announcements generally assumes that changes in customer behavior arise from indi-
vidual customers maximizing their expected utilities from service and waiting. Some
papers have challenged whether such an approach is always appropriate. For example,
Guo and Zipkin [28] indicate that relying on utility-based approaches may lead to
counter-intuitive results, such as customers preferring more congested states. In the
same spirit, Allon et al. [5] indicate that customers may not be expected-utility max-
imizers and may, for example, prefer accuracy over no accuracy, or information over
no information. To wit, extant experimental work from psychology and marketing
studies offers important insight on how customers perceive and react to both having to
wait for service, and to receiving delay announcements while waiting (§ 1.1). There
remains ample opportunity to design more sophisticated models which incorporate
such psychological features, to test the validity of those models with data, and to
study implications on decision-making in the system.

One recent work in that vein is Yu et al. [90], which tests the loss aversion of
customers (to waiting) by conducting a field experiment in the context of a call cen-
ter. Webb et al. [81] study implications on operational decision-making with similar
behavioral features. Another relevant work, though not specifically related to delay
announcements, is Yuan et al. [92]. In this paper, service providers share a common
entertainment option, which alleviates the cost of waiting on their customers, but com-
pete on other service dimensions. This duality between cooperation and competition
is termed co-opetition. The authors demonstrate that a service provider’s profit can
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increase when engaging in co-opetition. In other words, Yuan et al. [92] quantify how
a psychological dimension, i.e., making the customer waiting experience more pleas-
ant, can indeed influence traditional operational measures, such as the firm’s profit.
Further studies, in the same spirit, are interesting venues for future research.

Alternative designs for delay announcements. In the literature on delay announce-
ments, it is commonly assumed that a single delay announcement is given to customers,
that the manager decides on whether or not to provide the announcement, and that the
delay information is given immediately upon arrival. Recent work has begun chal-
lenging those assumptions [5,45,66,69], primarily on issues concerning the timing of
the announcement, and how the announcements are actually diffused to the customer
population, for example, whether this is done by the manager or by the customers
themselves.

Recent technological advances have made it possible for firms to obtain a wealth of
data about individual customers, and to track the evolution of the service experience
in real time. This opens up an opportunity for a better segmentation of (heteroge-
neous) customers, for example, via targeted delay announcements, and a study of
the implications of such segmentation on performance in the system. Optimizing
the granularity of the information shared with such heterogeneous customers, poten-
tially sequentially during their stay, is an interesting topic for future research. Indeed,
experimental evidence suggests that people value a sense of progress during their wait-
ing times, which can be made possible through the announcements; for example, see
Munichor and Rafaeli [63].Moreover, by targeting customers with (multiple) different
announcements, thefirmcan incite different abandonment behaviors.Whilemodels for
rational customer abandonment have been advanced in some papers ([37,41,60,73],
etc.) and have been substantiated empirically in others [2,89], systems with endoge-
nous abandonment, which is dependent on delay announcements, remain understudied
in general. In a context with announcement-dependent abandonment, jointly optimiz-
ing the provision of announcements and the scheduling of those impatient customers
(for example, in the spirit of [12]) would be possible. Further exploration of, for exam-
ple, the design of a system with multiple announcements, the study of the dynamic
impact of such sequential announcements on customer behavior, and the analysis of
corresponding implications on the operational management of the system, and on
various related objectives, remain interesting venues for future research.

Toward building a service science. In this survey paper, we reviewed papers taking
different approaches to the effective management of delay announcements in service
systems. The overall objective of that rich body of work is to build a service science.
With that goal inmind, it is important to systematically studydifferent queueingmodels
with various complexities, and to paint a complete picture of the impact and accuracy
of delay announcements. Therefore, it is important to mention that several model
extensions remain under-explored, despite their prevalence in practice. Here is a non-
comprehensive list of such extensions: non-stationary and non-Poisson arrival models;
alternative service disciplines (beyond FCFS); multiple classes with heterogeneous
service rates and/or heterogeneous abandonment rates; queueing networks; queues
where capacity is uncertain, for example, due to the self-scheduling behavior of agents;
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queues where different levels of information are missing, for example, on service,
arrival, and abandonment rates, and on customer types and classification, etc.
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3. Akşin, Z., Ata, B., Emadi, S.M., Che-Lin, S.: Impact of delay announcements in call centers: an
empirical approach. Oper. Res. 65(1), 242–265 (2016)

4. Allon, G., Bassamboo, A.: The impact of delaying the delay announcements. Oper. Res. 59(5), 1198–
1210 (2011)

5. Allon, G., Bassamboo, A., Gurvich, I.: We will be right with you: managing customer expectations
with vague promises and cheap talk. Oper. Res. 59(6), 1382–1394 (2011)

6. Altman, E., Jimenez, T.: Admission control to an M/M/1 queue with partial information. In: Interna-
tional Conference on Analytical and Stochastic Modeling Techniques and Applications, pp. 12–21.
Springer, Berlin (2013)

7. Ang, E., Kwasnick, S., Bayati, M., Plambeck, E., Aratow, M.: Accurate emergency department wait
time prediction. Manuf. Serv. Oper. Manag. 18(1), 141–156 (2015)

8. Armony, M., Maglaras, C.: Contact centers with a call-back option and real-time delay information.
Oper. Res. 52(4), 527–545 (2004a)

9. Armony, M., Maglaras, C.: On customer contact centers with a call-back option: customer decisions,
routing rules, and system design. Oper. Res. 52(2), 271–292 (2004b)

10. Armony, M., Shimkin, N., Whitt, W.: The impact of delay announcements in many-server queues with
abandonment. Oper. Res. 57(1), 66–81 (2009)

11. Bassamboo, A., Ibrahim, R.: Delay announcements in service systems: When is the average wait good
enough? Working paper. Northwestern University (2017)

12. Bassamboo, A., Randhawa, R.S.: Scheduling homogeneous impatient customers. Manag. Sci. 62(7),
2129–2147 (2016)

13. Billingsley, P.: Convergence of Probability Measures. Wiley, Hoboken (2013)
14. Bitran, G., Ferrer, J.-C., Oliveira, P.R.: Om forum—managing customer experiences: perspectives on

the temporal aspects of service encounters. Manuf. Serv. Oper. Manag. 10(1), 61–83 (2008)
15. Burnetas, A., Economou, A.: Equilibrium customer strategies in a single server Markovian queue with

setup times. Queueing Syst. 56(3), 213–228 (2007)
16. Chen, H., Frank, M.: Monopoly pricing when customers queue. IIE Trans. 36(6), 569–581 (2004)
17. Demir, E., Demir, V.B.: Predicting flight delays with artificial neural networks: case study of an airport.

In: 2017 25th IEEE Signal Processing and Communications Applications Conference (SIU), pp. 1–4
(2017)

18. Dobson, G., Pinker, E.: The value of sharing lead time information. IIE Trans. 38(3), 171–183 (2006)
19. Dong, J., Yom-Tov, E., Yom-Tov, G.B.: The Impact of Delay Announcements on Hospital Network

Coordination and Waiting Times. Working paper. Northwestern University (2017)
20. Duenyas, I., Hopp, W.: Quoting customer lead times. Manag. Sci. 41(1), 43–57 (1995)
21. Economou, A., Gómez-Corral, A., Kanta, S.: Optimal balking strategies in single-server queues with

general service and vacation times. Perform. Eval. 68(10), 967–982 (2011)
22. Economou, A., Kanta, S.: Equilibrium balking strategies in the observable single-server queue with

breakdowns and repairs. Oper. Res. Lett. 36(6), 696–699 (2008a)

123

http://creativecommons.org/licenses/by/4.0/


Queueing Syst (2018) 89:49–79 77

23. Economou, A., Kanta, S.: Optimal balking strategies and pricing for the single serverMarkovian queue
with compartmented waiting space. Queueing Syst. 59(3), 237–269 (2008b)

24. Edelson, N., Hilderbrand, D.: Congestion tolls for Poisson queuing processes. Econom. J. Econom.
Soc. 43, 81–92 (1975)

25. Feigin, P.: Analysis of customer patience in a bank call center. Working paper, The Technion, Haifa,
Israel (2006)

26. Garnett, O., Mandelbaum, A., Reiman, M.: Designing a call center with impatient customers. Manuf.
Serv. Oper. Manag. 4(3), 208–227 (2002)

27. Gross, D.: Fundamentals of Queueing Theory. Wiley, Hoboken (2008)
28. Guo, P., Zipkin, P.: Analysis and comparison of queues with different levels of delay information.

Manag. Sci. 53(6), 962–970 (2007)
29. Guo, P., Zipkin, P.: The effects of information on a queue with balking and phase-type service times.

Naval Res. Logist. (NRL) 55(5), 406–411 (2008)
30. Guo, P., Zipkin, P.: The effects of the availability of waiting-time information on a balking queue. Eur.

J. Oper. Res. 198(1), 199–209 (2009a)
31. Guo, P., Zipkin, P.: The impacts of customers delay-risk sensitivities on a queue with balking. Probab.

Eng. Inf. Sci. 23(03), 409–432 (2009b)
32. Halfin, S., Whitt, W.: Heavy-traffic limits for queues with many exponential servers. Oper. Res. 29(3),

567–588 (1981)
33. Hassin, R.: Consumer information in markets with random product quality: the case of queues and

balking. Econom. J. Econom. Soc. 54, 1185–1195 (1986)
34. Hassin, R.: Information and uncertainty in a queuing system. Probab. Eng. Inf. Sci. 21(03), 361–380

(2007)
35. Hassin, R.: Rational Queueing. CRC Press, London (2016)
36. Hassin, R., Haviv, M.: Equilibrium strategies and the value of information in a two line queueing

system with threshold jockeying. Stoch. Models 10(2), 415–435 (1994)
37. Hassin, R., Haviv, M.: Equilibrium strategies for queues with impatient customers. Oper. Res. Lett.

17(1), 41–45 (1995)
38. Hassin, R., Haviv, M.: To Queue or Not to Queue: Equilibrium Behavior in Queueing Systems, vol.

59. Springer, Berlin (2003)
39. Hassin, R., Koshman, A.: Optimal Control of a Queue with High-Low Delay Announcements: The

Significance of a Queue. Working paper. Tel Aviv University (2017)
40. Hassin, R., Roet-Green, R.: The impact of inspection cost on equilibrium, revenue, and social welfare

in a single-server queue. Oper. Res. 65(3), 804–820 (2017)
41. Haviv, M., Ritov, Y.: Homogeneous customers renege from invisible queues at random times under

deteriorating waiting conditions. Queueing Syst. 38(4), 495–508 (2001)
42. He, Y.-T., Down, D.G.: On accommodating customer flexibility in service systems. INFOR 47(4), 289

(2009)
43. Hornik, J.: Subjective vs. objective time measures: a note on the perception of time in consumer

behavior. J. Consum. Res. 11(1), 615–618 (1984)
44. Hu, M., Li, Y., Wang, J.: Efficient ignorance: information heterogeneity in a queue. Manag. Sci (2017).

https://doi.org/10.1287/mnsc.2017.2747
45. Hu, M., Wang, J.: Efficient Inaccuracy: Information Sharing in a Queue. Working paper. University of

Toronto (2017)
46. Huang, J., Mandelbaum, A., Zhang, H., Zhang, J.: Refined models for efficiency-driven queues with

applications to delay announcements and staffing. Oper. Res. 65, 1380–1397 (2017)
47. Hui, M.K., Tse, D.K.: What to tell consumers in waits of different lengths: an integrative model of

service evaluation. J. Mark. 60, 81–90 (1996)
48. Ibrahim, R.: Managing Queueing Systems Where Capacity is Random and Customers are Impatient.

Working paper. University College London (2017)
49. Ibrahim, R., Armony,M., Bassamboo, A.: Does the past predict the future? The case of delay announce-

ments in service systems. Manag. Sci. 63(6), 1762–1780 (2017)
50. Ibrahim, R., Whitt, W.: Real-time delay estimation based on delay history. Manuf. Serv. Oper. Manag.

11(3), 397–415 (2009a)
51. Ibrahim, R., Whitt, W.: Real-time delay estimation in overloaded multiserver queues with abandon-

ments. Manag. Sci. 55(10), 1729–1742 (2009b)

123

https://doi.org/10.1287/mnsc.2017.2747


78 Queueing Syst (2018) 89:49–79

52. Ibrahim, R., Whitt, W.: Real-time delay estimation based on delay history in many-server service
systems with time-varying arrivals. Prod. Oper. Manag. 20(5), 654–667 (2011a)

53. Ibrahim, R., Whitt, W.: Wait-time predictors for customer service systems with time-varying demand
and capacity. Oper. Res. 59(5), 1106–1118 (2011b)
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