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Abstract. Motivated by the recent interest in making delay announcements in large ser-

vice systems, such as call centers, we investigate the accuracy of announcing the waiting

time of the last customer to enter service (LES). In practice, customers typically respond to

delay announcements by either balking or by becoming more or less impatient, and their

response alters system performance. We study the accuracy of the LES announcement

in single-class, multiserver Markovian queueing models with announcement-dependent

customer behavior. We show that, interestingly, even in this stylized setting, the LES

announcement may not always be accurate. This motivates the need to study its accu-

racy carefully and to determine conditions under which it is accurate. Since the direct

analysis of the systemwith customer response is prohibitively difficult, we focus onmany-

server, heavy-traffic analysis instead. We consider the quality-and-efficiency-driven and

efficiency-driven many-server, heavy-traffic regimes and prove, under both regimes, that

the LES prediction is asymptotically accurate if and only if asymptotic fluctuations in the

queue length process are small as long as some regulatory conditions apply. This result

provides an easy check for the accuracy of LES announcements in practice.We supplement

our theoretical results with an extensive simulation study to generate practical managerial

insights.

History: Accepted by Yossi Aviv, operations management.

Supplemental Material: Data and the online technical appendix are available at https://doi.org/10.1287/

mnsc.2016.2425.
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1. Introduction
We study the problem of making accurate delay

announcements in large service systems where cus-

tomer behavior is affected by the announcements.

Delay announcements are especially helpful in set-

tings where customers cannot observe the current state

of the system. This is typically true with unobserv-

able queues, such as in telephone call centers. Delay

announcements are also useful in other service set-

tings. For example, they are instrumental in hospital

emergency departments where queues may be observ-

able, yet patients often lack the experience and knowl-

edge needed to estimate their own delays; see Ang et al.

(2016). Because it is useful to have a specific context in

mind, we will generally focus here on call centers; e.g.,

see Akşin et al. (2007) for background.

1.1. Delay Announcements
System managers typically use delay announcements

as a relatively inexpensive way of alleviating customer

uncertainty about upcoming delays, thereby increas-

ing the level of customer satisfaction with the service

provided. Additionally, delay announcements have

been shown to strongly impact customer behavior.

For example, information about long upcoming delays

may induce some customers to balk (hang up imme-

diately). Customers who do not balk may change their

abandonment behavior, depending on the delay infor-

mation. Since delay announcements typically impact

customer behavior, they may be used as levers of con-

trol in the system. For example, delay announcements

may be used in a highly congested system to encour-

age the most impatient customers to balk or abandon,

thereby decreasing the number of callers on hold and

reducing system congestion; e.g., see Whitt (1999a, b),

Guo and Zipkin (2007), and Armony et al. (2009).

In this paper, we assume that delay announcements

are made to customers upon arrival to the system. To

make those announcements, we need effective ways of

accurately predicting, in real time, the waiting times of

delayed customers. We contend that making accurate

announcements is important because inaccurate delay

information may cause frustration for customers.

We focus on the last to enter service (LES) delay

announcement. The LES prediction is equal to thewait-

ing time of the last customer to have entered service
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prior to the arrival time of the new delayed customer.

The LES customer is the one who experienced the LES

delay. For a detailed discussion of the LES announce-

ment, see Ibrahim andWhitt (2009).We study the accu-

racy of theLES announcement inmodelswith customer

response. In particular, we assume that an arriving cus-

tomer may balk upon arrival with a given probabil-

ity, depending on the announcement. If he does not

balk, then he may subsequently abandon the queue

before receiving service, and his abandonment behav-

ior is also dependent on the announcement. To the best

of our knowledge, there are no studies of how customer

response to individual delay announcements impacts

the accuracy of these announcements. In this paper, we

take a step toward filling that gap in the literature.

1.2. Customer Response
In systems with no customer response, the LES an-

nouncement was shown to be remarkably accurate,

albeit under steady-state conditions only; see Ibrahim

and Whitt (2009). When customers respond to the

announcements, their behavior alters the performance

of the system, which in turn affects the future delay

announcements given. Therefore, studying customer

response requires an equilibrium analysis of the sys-

tem. However, it is not clear a priori when andwhether

such an equilibrium exists; there may even be multiple

equilibria. Moreover, even if a unique equilibrium can

be shown to exist, it is not clear how stochastic fluctua-

tions around that equilibrium will impact the accuracy

of the individual LES announcements. Thus, analyzing

systems with customer response entails a complicated

analysis. Herein lies the main technical contribution of

this paper.

In Figure 1, we illustrate the main complexity in

incorporating customer response to the announce-

ments. We plot simulation sample paths of actual

delays and LES predictions in an M/M/N + M queue-

ing model; see Section 3 for a description of this model.

We let N � 10,000; we deliberately choose such a large

number of servers to minimize the effect of stochastic

noise in the system (however, a smaller number of

Figure 1. Impact of Customer Response on the Accuracy of the LES Announcement
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servers, e.g., N � 100, also leads to similar results, but

the corresponding figures are not as clear). In the first

subplot of Figure 1, we assume that customers do not

respond to the announcements. In the second sub-

plot, we assume that customers respond according to

a linear abandonment-rate function; in the third sub-

plot, we assume that customers respond according to

a discontinuous abandonment-rate function (the spe-

cific functional forms of those abandonment-rate func-

tions do not matter here and are therefore omitted).

We choose system parameters so as to hold the aver-

age waiting time approximately constant across our

three models. Clearly, system dynamics are very sim-

ilar in the first and second subplots, but are very dif-

ferent in the third subplot. (Since all parameters are

held constant across the three graphs except for the

functional form of customer response, the change in

system dynamics is due to this difference in customer

response.) Indeed, actual delays and LES announce-

ments closely match in the first two subplots, but are

evidently out of sync in the third (with larger fluctu-

ations as well). In particular, since the abandonment-

rate function in the last subplot is discontinuous, small

fluctuations around the point of discontinuity drive

the abandonment behavior, and the waiting times in

the system, to vary substantially in short time inter-

vals. As a result, the two curves, corresponding to the

LES and actual delays, are out of sync in the plot. As

such, Figure 1 illustrates that system dynamics are inti-

mately tied to whether and how customers respond to

the announcements.

The accuracy of the LES announcements also de-

pends on customer response. Indeed, the first and

second subplots of Figure 1 illustrate the asymp-

totic accuracy of the LES announcements. Stochastic

fluctuations, due to the randomness in the system,

imply that the LES announcements are not exactly

equal to actual delays; nevertheless, the resulting errors

are of a small magnitude (this will be made more

precise later). However, the third subplot of Figure 1

clearly illustrates that the LES announcement is not

accurate, and consistently fluctuates between cycles of

overestimation and underestimation of actual delays.
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This substantiates the need to formulate conditions

under which the LES announcement will be accurate

in systems with customer response, which is what we

do in this paper. This lies in contrast to systems with-

out customer response, where the accuracy of the LES

announcement was shown to hold in steady state irre-

spective of specific assumptions on system parameters;

see Ibrahim and Whitt (2009).

1.3. Asymptotic Regimes
In this paper, we investigate the accuracy of the LES

delay announcement in a Markovian queueing model.

Even though ourmodeling framework is relatively sim-

ple, explicit analysis of the underlying birth and death

(BD) process is analytically complex. This is because

balking probabilities and abandonment rates are all

dependent on the announcements. Indeed, computing

the transition rates of the BD process requires, at the

minimum, keeping track of all customers in queue and

their respective announcements. Thus, instead of doing

direct analysis, we focus on establishing many-server

heavy-traffic limits, which provide useful insights. In

this paper,we focus on two such regimes: (i) the quality-

and-efficiency-driven (QED) or Halfin–Whitt regime

(Halfin and Whitt 1981, Garnett et al. 2002) and (ii) the

efficiency-driven (ED) regime (Whitt 2004).

The QED regime is particularly useful in describing

large well-managed systems because it strikes a bal-

ance between service quality and operational efficiency.

Even though waiting times in the QED regime are

asymptotically small, studying the asymptotic accuracy

of the LES announcement remains of practical impor-

tance in that setting. Indeed, the specific time scale

under consideration is critical. For example, operating

a hospital ward in the QED regime involves lengths of

stay that are in the order of days and waiting times

that are in the order of hours; see Armony et al. (2015).

As such, although waiting times are “small” compared

to service times, predicting them accurately remains

essential. The ED regime is useful in describing highly

congested systems where customer waiting times tend

to be long (in the order of service times) and virtu-

ally all customers are delayed before receiving service;

see Whitt (2004). Delay announcements are especially

important with such long waiting times. Through our

asymptotic analysis in both regimes, we establish the

relative accuracy of the LES announcement. By relative

accuracy, we mean the difference between the LES and

actual waits, scaled by the appropriate order of magni-

tude of delays in the system. Since the asymptotic mag-

nitude of waiting times in the ED regime is drastically

different from the QED regime, the scaling that we use

differs depending on the particular regime considered.

1.4. Main Insights and Contributions
1.4.1. A Result of Practical Importance. In both the

QED and ED regimes, we establish an important

asymptotic result that unifies our analysis throughout:

The relative error in the LES prediction is small if and only if
the relative error in the queue length is small; e.g., see The-
orems 1 and 2. By relative error in the queue length,

we mean the difference in the queue lengths seen upon

arrival by the LES customer and the newly arriving cus-

tomer (to whom the announcement is made), scaled by

the order of magnitude of the queue length in the sys-

tem. We emphasize that our result concerns the expe-

rience of individual customers in the system; thus, it is

stronger than a general result relating wait-time and

queue-length averages or distributions, such as Little’s

law; e.g., see Little and Graves (2008) and Bertsimas

and Nakazato (1995).

Our result provides a quick and easy check for the

accuracy of the LES announcement in practice. At a

high level, to be made more precise later, our result

implies that the LES announcement will be accurate if

the relative difference between the queue lengths seen

upon arrival by the LES and newly arriving customers

is not too large. Therefore, it is possible to check at

the arrival epoch of a new customer (which is also

the announcement epoch) whether or not the waiting

time that he is about to experience will be close to the

LES delay. In practice, a system manager may use this

result to decide when to make LES delay announce-

ments. This is particularly important since, (i) as indi-

cated above, these announcements may not always be

accurate, and (ii) real-time queue-length information is

typically readily available in service systems, such as in

amusement parks, banks, or hospitals, and is usually

easier to keep track of than wait-time information.

We also performed simulation experiments to inves-

tigate numerically how the relative error in the queue

length translates into the accuracyof theLESannounce-

ment. For example, based on our numerical results, we

find that for a large andheavily loaded system, a queue-

length error of less than 5% corresponds to a median

waiting time error that is about 4% for continuous and

strictly increasing abandonment-rate functions.

1.4.2. Contributions: The QED Regime. With announ-

cement-dependent abandonment, it is not clear how

customer response, particularly for small wait-time

values, will affect both the asymptotic behavior in the

system and the accuracy of the LES announcement. In

particular, it may be that discontinuous customer aban-

donment behavior at the origin could lead to asymp-

totically inaccurate LES announcements. We show that

this is not the case, and that the LES announcement is

asymptotically accurate in the QED regime, under rel-

atively mild conditions provided that the initial queue

length in the system is tight around its fluid limit.

1.4.3. Contributions: The ED Regime. With asymptot-

ically nonnegligible waiting times, the analysis of the

system involves a nontrivial equilibrium. Armony et al.

(2009) derived conditions guaranteeing the existence
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and uniqueness of such an equilibrium in an approxi-

mating deterministic fluid model of the system. In this

fluid model, all delayed customers receive the same

delay announcement at equilibrium, and they subse-

quently experience the same waiting time. In other

words, the LES announcement is accurate, at equilib-

rium, in the fluid model.

In the stochastic queueing system, waiting times

for served customers fluctuate around the equilib-

rium expected waiting time value (which is approxi-

mated by the deterministic fluid waiting time). Even

if the system is at equilibrium at fluid scale, it is

not clear how those stochastic fluctuations will impact

the accuracy of the individual LES announcements.

Armony et al. (2009) left the problem of “quantifying

the impact of (such) stochastic fluctuations for future

research” (p. 78). In this paper, we extendArmony et al.

(2009) and establish the asymptotic accuracy of the

LES announcement in the ED regime with customer

response. In particular, we formulate sufficient condi-

tions for which initializing the system at equilibrium

(at fluid scale) guarantees the asymptotic accuracy of

the LES announcement with customer response.

1.4.4. Insights Based on Numerical Experiments. In

Section 6, we describe results of simulation experi-

ments that quantify the accuracy of the LES announce-

ment. There, we further our understanding of how

customer response affects the accuracy of the LES

announcement. For example, we go beyond previous

work that focused solely on steady-state conditions.

We illustrate that the LES announcement may not be

accurate in the transient state of the system and derive

heuristic adjustments that outperform the straightfor-

ward LES announcement in that state. We also con-

sider examples where our main theoretical results fail

to hold. As such, we provide more evidence of the

importance of paying close attention to exactly how

customers respond to delay announcements.

The remainder of this paper is organized as fol-

lows. In Section 2, we review the relevant literature.

In Section 3, we introduce our model. In Section 4,

we present theoretical and numerical results for the

QED regime. In Section 5, we present theoretical and

numerical results for the ED regime. In Section 6, we

present simulation experiments which validate and

extend our theoretical results. In Section 7, we draw

conclusions. We present all proofs in the online techni-

cal appendix. We present additional simulation results

and related material in an online supplement available

on the authors’ webpages.

2. Literature Review
2.1. Asymptotic Analysis of Multiserver Queues
We perform an asymptotic analysis of queueing sys-

tems in this paper. In particular, we focus on both

the QED and the ED heavy-traffic limiting regimes.

The QED regime, or Halfin–Whitt limiting regime, was

first formalized in the seminal paper by Halfin and

Whitt (1981). The authors of that paper focused on

the classical GI/M/N model with a general renewal

arrival process, exponential service times, and no cus-

tomer abandonment; they showed that the delay prob-

ability approaches a limit strictly between 0 and 1

if and only if the system is staffed according to the

square-root staffing rule. Here is a sample of other

work along similar lines. Jennings et al. (1996) used

the QED regime to determine staffing levels in Marko-

vian queues with a time-varying demand. Fleming

et al. (1994) and Garnett et al. (2002) extended the QED

framework and incorporated the phenomenon of cus-

tomer abandonment into their models. Puhalskii and

Reiman (2000) studied multiclass queueing systems

with a renewal arrival process and phase-type ser-

vice times, both with and without customer priorities.

Talreja and Whitt (2009) extended the work of Garnett

et al. (2002) and established stochastic-process limits

for waiting times in multiserver queueing models with

generally distributed service times and times to aban-

don. For additional references, see Akşin et al. (2007).

The ED regime supports low-to-moderate quality of

service and often yields useful and simple approxi-

mations. Whitt (2004) derived stochastic-process lim-

its for the M/M/N + M model in the ED regime and

developed approximations based on those limits. Borst

et al. (2004) investigated the staffing problem of large

call centers in an asymptotic optimization framework.

They focused on three operational regimes, including

the QED and ED regimes. Whitt (2006) conjectured the

existence of a deterministic fluid limit for the general

G/GI/N +GI model in the ED regime. That fluid limit

was later established by Kang and Ramanan (2010)

and Zhang (2013). Talreja and Whitt (2009) established

stochastic-process limits for waiting times in the ED

regime as well.

2.2. Delay Announcements
The most closely related works to the current paper

are those by Armony et al. (2009) and Ibrahim and

Whitt (2009). Armony et al. (2009) studied the perfor-

mance impact of making LES delay announcements

by analyzing an approximating fluid model. They dis-

cussed the motivation for the LES delay announce-

ment and modeled changes in customer behavior that

result from such an announcement. However, unlike

our work here, the authors of that paper did not estab-

lish the accuracy of the individual announcements.

Ibrahim and Whitt (2009) established the accuracy

of the LES announcement in many-server Markovian

models, in the ED regime, but they did not consider

customer response to the announcements. They also
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focused solely on steady-state behavior in theirmodels.

Some other references related to delay announcements

includeWhitt (1999a, b), Armony andMaglaras (2004),

Guo and Zipkin (2007), Jouini et al. (2011), Allon et al.

(2012a, b), Jouini et al. (2015), and references therein.

The recent work by Senderovich et al. (2015) takes an

empirical process mining approach to study the accu-

racy of snapshot-based predictions (essentially delay-

history-based predictions such as LES). The authors

provide evidence of the accuracy of these predictions

with real-life data. Some of the published literature on

delay announcements focused on the problem of deter-

mining “the best”wait-time quote (by assuming appro-

priate cost structures) and studied the advantages of

both overestimating and underestimating anticipated

delays; e.g., see Jouini et al. (2015). In this paper, we

focus on the problem of accurately predicting antici-

pated delays in the system instead.

Several recent papers emphasize the importance

of incorporating customer response to the an-

nouncements and demonstrate empirically that cus-

tomers respond to delay announcements in practice.

Mandelbaum and Zeltyn (2013) quantified the effect of

the announcements by statistically estimating the haz-

ard rate of the abandonment-time distribution. Akşin

et al. (2017) modeled customer abandonment decisions

with delay announcements. They used an empirical

approach that estimates the parameters of the aban-

donment distribution from data and studied the effect

of customer behavioural changes in a queueing setting.

Yu et al. (2017) explored the impact of delay announce-

ments using an empirical approach. Interestingly, they

found that delay announcements affect customer aban-

donment behavior in a complex way, and that they

directly affect the waiting costs of delayed customers.

Acknowledging the importance of customer response

to the announcements, Huang et al. (2015) studied

the optimal timing of delay announcements and opti-

mal staffing decisions in an asymptotic framework that

accounts for the impact of delay announcements on the

abandonment-time distribution.

3. Modeling Framework
In this paper, we consider single-class M/M/N + M
queues, also known as Erlang A, with announcement-

dependent balking and abandonment. We let the times

between successive arrival epochs be independent and

identically distributed (i.i.d.) exponential random vari-

ables with rate λ. We assume that there are N homoge-

neous servers working in parallel. We let service times

be i.i.d. exponential random variables with rate µ. We

let the times to abandon be i.i.d. exponential random

variables with rate θ. The traffic intensity, ρ, is given

by ρ≡ λ/Nµ. There is unlimited waiting space, and we

use the first come, first served service discipline.

We envision that each delayed customer is given,

upon arrival, a single-number prediction of his wait-

ing time before entering service. A delayed customer,

arriving to the system at time t receives a delay

announcement wt and may balk upon arrival with

probability b(wt). If that customer does not balk, then

he will abandon the queue before being served if his

waiting time exceeds an exponentially distributed ran-

dom variable with rate θ(wt); that is, individual balk-
ing probabilities and abandonment rates depend on

the announcements.

We are now ready to give a precise definition of the

LES announcement. Let t denote the arrival epoch of

a new customer. Let the patience of that customer be

denoted by K(t). Let the virtual waiting time at time t
be denoted by W(t); i.e., W(t) is the waiting time of

a hypothetical infinitely patient customer arriving to

the system at time t. Let τN
t be the arrival time of the

last customer to have entered service prior to t in a

queueing system with N servers, which is defined as

τN
t � sup

{
s ≤ t: there is an arrival at time s,

s +W(s) ≤ t , and K(s) >W(s)
}

; (1)

the customer arriving to the system at time τN
t is the

LES customer at time t.

4. Asymptotic Accuracy of LES
in the QED Regime

Waiting times in the QED regime are asymptotically

small, converging to zero at a rate that is proportional

to 1/
√

N , as N→∞, where N is the number of servers.

Given that the magnitude of waiting times is asymp-

totically negligible, it seems natural to conclude that

only the abandonment response behavior at the origin

should matter asymptotically. In our setting, if system

dynamics could be well approximated by assuming

a constant abandonment rate, equal to θ(0), then the

asymptotic accuracy of LES should carry through from

previously established results, which do not assume

any customer response to the announcements (Ibrahim

and Whitt 2009).

However, customer abandonment response may

very well be rapidly changing around zero. In par-

ticular, we may have discontinuous customer aban-

donment behavior at the origin. For example, this

may arise in practice when customers are “extremely”

impatient to any waiting so that there is a jump in

their impatience in response to being announced a pos-

itive delay; e.g., see Figure 12 in Mandelbaum and

Zeltyn (2013). More generally, customer abandonment

response may be irregular in a real-life context: Yu

et al. (2017) present empirical evidence supporting

that delay announcements are influential on customer

abandonment times, but that there are “no particular
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patterns” (p. 6) for how announcements impact those

abandonment times. When customer abandonment

behavior changes rapidly around zero, approximating

system performance by using the abandonment rate at

the origin is no longer appropriate. With such aban-

donment behavior, it is not clear, a priori, how cus-

tomer response, particularly around the origin, will

affect both the asymptotic behavior in the system and

the asymptotic accuracy of the LES announcement.

Similar ideas about the importance of customer

abandonment behavior for small wait-time valueswere

advanced in Reed and Ward (2008) and Reed and

Tezcan (2012). These authors proposed heavy-traffic

limits that capture rapidly changing abandonment

behavior at the origin. Their limits result from scaling

the abandonment hazard-rate function appropriately

and involve the entire abandonment-time distribution.

They showed that the superiority of their new heavy-

traffic approximations is most pronounced when the

hazard rate changes rapidly around zero; that is,

they showed that simply approximating system perfor-

mance with abandonment behavior at the origin may

lead to poor approximations. In our setting, this means

that the asymptotic accuracy of LES is not obvious and

cannot be simply deduced from the existing literature.

In this section, we demonstrate that the LES announce-

ment is asymptotically accurate in the QED regime,

irrespective of customer abandonment response to the

announcements (around the origin or elsewhere), pro-

vided that the abandonment-rate function is bounded.

Interestingly, we show that this asymptotic accuracy

continues to hold for nonmonotonic and/or discon-

tinuous customer abandonment behavior. In contrast,

the third subplot in Figure 1 corresponds to an over-

loaded system, where additional initial conditions on

customer abandonment behavior are needed.

4.1. Asymptotic Framework
Consider a sequence of queueing systems indexed by

N , and let N→∞. Let the arrival rate in the Nth system

be given by λN
. There are N servers in the Nth sys-

tem, each having the same service rate µ. As in Garnett

et al. (2002), and consistently with the QED regime, we

assume that

lim

N→∞

√
N

(
1− λ

N

Nµ

)
� β, for β ∈ (−∞,∞). (2)

We now consider the Nth system in that sequence.

At time t, the LES delay announcement is given by

W N(τN
t ) for τN

t in (1). We let b: �+→ [0, 1], where �+

denotes the set of nonnegative real numbers. We

assume that b( · ) is a Lipschitz continuous, mono-

tone nondecreasing function with b(0) � 0. We also let

θ: �+→[ θ, ¯θ) with
¯θ > θ ≥ 0. A new arrival at time t

balks with probability b(W N(τN
t )). If the customer does

not balk, then he may abandon the queue prior to

beginning service, and his abandonment rate is given

by θ(W N(τN
t )). We assume that θ > 0 if β ≤ 0 in (2)

to guarantee the stability of the system. We note that

θ( · ) and b( · ) do not scale with N . We let ⇒ denote

convergence in distribution; see Whitt (2002). Next, we

state our main theorem and outline its proof. We rel-

egate the details of the proof to the online technical

appendix. In this section, we consider an exponential

patience distribution. In the online technical appendix,

we go beyond this assumption and consider a general

patience distribution; this is important because there

is empirical evidence showing that the patience distri-

bution is usually nonexponential in practice; e.g., see

Brown et al. (2005).

4.2. Main Theorem and Outline of Proof
Let ZN(s) denote the number of customers at time s
in the Nth system. We assume that the sequence

{(ZN(0) − N)/
√

N}N≥1
is tight; for more on tightness,

see Section 5 of Pang et al. (2007).

Theorem 1. For theM/M/N+Mmodel in theQEDmany-
serverheavy-trafficregime, if {(ZN(0)−N)/

√
N}N≥1

is tight,
then √

N |W N(t) −W N(τN
t )| ⇒ 0 in �, (3)

for every fixed time point t, as N→∞.

Theorem 1 specifies an initial condition that guar-

antees the asymptotic relative accuracy of the LES

announcement at time t. This condition implies that

the initial number of customers in the queue and the

initial number of idle servers are not too large, which

is consistent with QED characteristics and is a com-

mon assumption often made in the literature; e.g., see

Garnett et al. (2002).
1

Since delays are asymptotically of

the order of Op(1/
√

N),2 we divide the absolute differ-

ence in (3) by 1/
√

N . The key to proving Theorem 1 lies

in establishing that the LES announcement is relatively

accurate if and only if the relative difference between

the queue lengths seen upon arrival by a customer

and his corresponding LES customer is asymptotically

negligible.

4.2.1. Technical Challenges. In a system with no cus-

tomer response, the asymptotic accuracy of the LES

announcement follows directly from the snapshot

principle; e.g., see Reiman (1982) and Puhalskii and

Reiman (2000). In the existing literature, diffusion

limits for waiting times have been usually proven

using Puhalskii’s (1994) invariance principle for first-

passage times together with established diffusion lim-

its for queue-length processes; e.g., see Puhalskii and

Reiman (2000). However, employing a similar proof

technique is prohibitively difficult in our system; per-

haps even impossible. Indeed, our proof technique

does not rely on establishing diffusion limits for the
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(scaled) queue-length andwait-time processes in a sys-

tem with customer response. Instead of establishing

that convergence directly in the original system (with

customer response), we show that the snapshot princi-

ple holds in two bounding auxiliary queueing systems;

see the online technical appendix. As such, we show

that the snapshot principle must hold in the original

system too. The bounding arguments that we rely on

require that the scaled state at zero has a limit as N
goes to infinity. In particular, this is needed to be able

to apply the results of Garnett et al. (2002) to the upper

and lower bound processes (that bound our original

system). Our assumed tightness at the origin implies

that any sequence of diffusion-scaled states at time zero

has at least one converging subsequence. Then, we can

apply results from Garnett et al. (2002) with respect to

each such subsequence, and the asymptotic accuracy

of LES in our original system follows. It is important to

emphasize that our proof technique does not amount

to a standard sandwiching argument, i.e., to showing

that the scaled wait-time and queue-length processes

in the upper and lower bound systems converge to the

same limit. Indeed, the bounding processes do not con-

verge to the same limit; additionally, the processes in

the original system need not converge at all.

4.2.2. Proof Outline. To prove Theorem 1, we proceed

as follows. First, we show that the time between the

arrival epochs of the LES and current customer is neg-

ligible in the heavy-traffic limit. Then, we show that

the snapshot principle holds, i.e., that the queue length

(system state) changes negligibly between the arrival

epochs of the LES and current customer. When estab-

lishing that the relative error in the queue length is

small, we scale the difference in queue lengths by

√
N

since this is the order of magnitude of queue lengths

in the QED limiting regime; see Garnett et al. (2002).

Finally, we establish an asymptotic relation between the

queue length and the waiting time. Combining those

results yields Theorem 1.

4.3. Supporting Numerical Results
In this section, we describe results of a simulation

study that quantifies the accuracy of the LES announce-

ment. Our objective is to substantiate our theoreti-

cal results by considering many-server M/M/N + M
queues in the QED regime. To quantify the accuracy of

the LES announcement, we use the average squared

error (ASE): ASE ≡ (1/n)∑n
j�1
(a j − p j)2 , where a j > 0

is the virtual delay of customer j, p j is his predicted

delay, and n is the number of customers in our sam-

ple. The ASE is a point estimate of the mean squared

error, which is defined as the expected value of the

square of the difference between delay prediction and

actual delay. For abandoning customers, we compute

the delay experienced had the customer not abandoned

by keeping him “virtually” in queue until he would

have begun service.

Unless stated otherwise, our simulation results

throughout are based on 10 independent replications

of 2 million events each, where an event is either a ser-

vice completion, an arrival, or an abandonment from

the system. Our simulations are steady-state simula-

tions. For this, we exclude from each simulation run

the first 5,000 events so as to remove the effect of the

initial transient period. In Figure 2, we vary the number

of servers, N , and consider values ranging from N � 10

to N � 1,000. Without loss of generality, we assume

that the service rate is µ � 1; that is, we measure time

in units of mean service time. We define the balking

probability, b(w), as follows:

b(w)� 0.1− 0.1e−w
for w ≥ 0. (4)

This balking function yields a balking proportion of

roughly 6% in response to a delay announcement

w � 1, i.e., to an announcement equal to the mean ser-

vice time in the system. We let the abandonment rate

of a customer who does not balk be defined as

θ(w)� 0.75− 0.5e−w
for w ≥ 0. (5)

Then, θ(0) � 1/4 is the abandonment rate correspond-

ing to a delay announcement w � 0.

In Figure 2, we plot N × ASE(LES) as a function

of N . We fix ρ � 1. For ρ � 1 and relatively large val-

ues of N , QED approximations are relatively accurate;

see Garnett et al. (2002). Theorem 1 shows that the

LES announcement is asymptotically accurate in this

case. Figure 2 shows that N× ASE(LES) decreases as N

Figure 2. (Color online) N ×ASE(LES) in the M/M/N + M
Model in the QED Regime with Customer Response Given

by (4) and (5)
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increases and converges to 0 for large N . This is con-

sistent with our theoretical results where we show that

ASE(LES) is roughly o(1/N) in the QED regime.
3

Fig-

ure 2 illustrates that the LES announcement performs

relatively poorly with a very small number of servers

(N � 10), but its accuracy improves rapidly as the num-

ber of servers increases, e.g., causing a sharp decrease

for N× ASE(LES) in going from N � 10 to N � 30.

5. Asymptotic Accuracy of LES in the
ED Regime

We now focus on overloaded scenarios, in which the

arrival rate exceeds themaximumpossible total service

rate. In particular, we consider the ED limiting regime

where the asymptotic magnitude of waiting times is

nonnegligible. It is practically important to consider

the ED regime because we are primarily interested in

making delay announcements when delays are large.

Establishing the asymptotic accuracy of the LES

announcement in the ED regime is complicated. Essen-

tially, since waiting times are asymptotically long, the

state of the system may change significantly during

the LES delay, and the LES delay announcement may

not be close to the new arrival’s delay. With nonneg-

ligible waiting times and customer response to the

announcements, the analysis of the system involves

a complex equilibrium. Armony et al. (2009) derived

conditions guaranteeing the existence and uniqueness

of that equilibrium in an approximating determinis-

tic fluid model of the system. In this fluid model, all

delayed customers receive the same delay announce-

ment at equilibrium, and they subsequently expe-

rience the same waiting time. In other words, the

LES announcement is accurate, at equilibrium, in the

fluid model.

In the stochastic queueing system, waiting times

for served customers fluctuate around the equilib-

rium expected waiting time value (which is approxi-

mated by the deterministic fluid waiting time). Even

if the system is at equilibrium at fluid scale, it is

not clear how those stochastic fluctuations will impact

the accuracy of the individual LES announcements.

Armony et al. (2009) left the problem of “quantifying

the impact of (such) stochastic fluctuations” for future

research (p. 78). In this section, we extend Armony

et al. (2009) and establish the asymptotic accuracy of

the LES announcement in the ED regime. We show, in

Theorem 2, that initializing the system at equilibrium

at fluid scale is sufficient to guarantee that asymptotic

accuracy.

5.1. Asymptotic Framework
We consider a sequence of queueing systems indexed

by N , where N is the number of servers. The arrival rate

in the Nth system is given by λN � Nλ. We let N→∞
while holding the traffic intensity ρ > 1 fixed. For every

system, we fix the service rate and let it be equal to

µ, independently of N . Let
¯b(w) denote the probabil-

ity of joining the system (not balking) when receiving

an LES delay announcement equal to w. Then,
¯b(w) �

1 − b(w), where b(w) is the corresponding probabil-

ity of balking. We assume that
¯b(0) � 1,

¯b(w) → 0 as

w→∞, and
¯b( · ) is a strictly decreasing and continu-

ous function. We also assume that θ( · ) is a continuous
and strictly increasing function. These assumptions on

b( · ) and θ( · ) are sufficient to guarantee the existence

and uniqueness of a fluid equilibrium in the system,

as we show in Section 5.2.
4

We need those additional

assumptions on b( · ) and θ( · ) because the magnitude

of the equilibrium waiting time in the ED limit is not

asymptotically negligible, unlike in the QED limit. In

our proofs, we also assume that b( · ) and θ( · ) are dif-

ferentiable at that unique fluid equilibrium point. We

note that θ( · ) and b( · ) do not scale with N .

5.2. Fluid Steady-State Equilibrium
We begin by considering the fluid model approxima-

tion of the system. At equilibrium, the announced

delay must be consistent with the actual delay for

served customers, after customer response. Let w̄
denote an equilibrium waiting time in the fluid model.

Let z̄ denote an equilibrium fluid content in the sys-

tem. Then, w̄ and z̄ must satisfy the two following

equations:

λ ¯b(w̄) � µ+ θ(w̄)(z̄ − 1), (6)

w̄ �
1

θ(w̄) ln

(
1+

θ(w̄)(z̄ − 1)
µ

)
. (7)

Equation (6) is a balance equation that follows since

the long-run rate into the system must equal the long-

run rate out of the system, by service or abandon-

ment. Equation (7) follows from the relation between

the waiting time and the queue content in the fluid

model; e.g., see Equation (3.7) of Whitt (2006). In the

ED regime, we must have that λ > µ. The continuity

assumptions on
¯b( · ) and ¯θ( · ), along with the bound-

ary conditions on
¯b( · ), guarantee the existence of an

equilibrium. The monotonicity assumptions on those

two functions guarantee the uniqueness of that equilib-

rium. Thus, under our assumptions, there is a unique

solution (w̄ , z̄) that satisfies (6) and (7).

5.3. Main Theorem and Outline of Proof
In this section, we focus on a special case of cus-

tomer response: We assume that customer abandon-

ment behavior is unaffected by delay announcements;

customers may still balk upon arrival, and their

balking probabilities depend on the announcements.

Theorem 2 is our main theorem for this case (we pro-

vide its proof in the online technical appendix): it states

that under a mild technical condition on the func-

tion
¯b, LES is asymptotically accurate if the system
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is initialized at equilibrium at fluid scale; that is, we

impose convergence of ZN(0)/N to its fluid limit z̄ in

Theorem 2. Recall that ZN(s) is the number of cus-

tomers in the system at time s. For a back-of-the-

envelope example where this initial condition does not

hold, consider an initial system state where ZN(0) �
N(z̄ + δ) for some δ > 0. Then, the system state will

change considerably until the system reaches its equi-

librium, and the LES announcement will not be accu-

rate because it will overestimate the actual delay at all

times. Establishing the case with both announcement-

dependent balking and abandonment is more compli-

cated algebraically; that is whywe relegate the relevant

theorem and proof to the online technical appendix.

We also let T > 0.

Theorem 2. For the M/M/N +M model in the ED heavy-
traffic limiting regime with announcement-dependent balk-
ing and a constant abandonment rate θ, if

ZN(0)
N
⇒ z̄ in (6) and (7) as N→∞, (8)

then

‖W N(t) −W N(τN
t )‖[0,T]→ 0 almost surely as N→∞,

(9)

under the condition that���� ¯b′(w̄)
¯b(w̄)

���� < θ. (10)

It is readily seen that the condition in (10) is satisfied

when
¯b is equal to an exponentially decaying func-

tion whose rate is smaller than θ. It is important to

stress that we focus on the relative accuracy of the LES

announcement in this paper. By relative accuracy, we

mean the difference between the LES and actual delays,

scaled by the appropriate asymptotic order of magnitude of
delays in the system. As a result of this, the expressions

for asymptotic accuracy in the QED and ED regimes

are different; e.g., compare (3) with (9). The

√
N factor

in (3) is due to dividing the difference of the waiting

times by 1/
√

N , which is the asymptotic order of mag-

nitude of the waiting times in the system. Thus, the√
N factor is a reflection of the smaller magnitude of

waiting times.

5.3.1. Technical Challenges. As in the proof of Theo-

rem 1 for the QED regime, the main step is to show

that the relative error in the waiting times is asymp-

totically negligible if and only if the relative error in

the queue lengths is asymptotically negligible. In the

ED regime, the queue length is Op(N), and the wait-

ing time is Op(1); that is why we use these scalings

in (8) and (9), respectively. Since customer response

complicates system dynamics, it is difficult to charac-

terize limits for the wait-time process on [0,T] directly,

as in (9). Indeed, stochastic fluctuations in the wait-

ing times affect the LES announcements made, which

in turn affect balking probabilities. These probabilities

determine both the number of customers in the system

and subsequent waiting times. To circumvent that dif-

ficulty, we devise a stopping-time argument instead, as

in Gurvich and Whitt (2009).

5.3.2. Proof Outline. Our proof proceeds as follows.

We begin by bounding the stochastic fluctuations of

the scaled number of customers in the system up to

a given stopping time, σN
. We restrict attention to the

bounded stopping time, αN � min{σN ,T}. Then, we

show that if the stopped number of customers in the

system is close to its equilibrium value up to αN
, then

the stoppedwaiting timewill be close to its equilibrium

value up to αN
as well, i.e., we establish the stochas-

tic boundedness of the stopped waiting times. We do

so by proving an asymptotic relationship between the

waiting time in the system and a function of the num-

ber of customers in the system, and then exploiting a

Taylor series expansion argument. Next, we show that

T < σN
, for every T > 0; since T can be made arbitrarily

large, we obtain that the stopping time itself diverges

to ∞. For this, we establish that the scaled number of

customers in the system is stochastically bounded at
αN

as well. To do so, we exploit results on the conver-

gence of the scaled number of customers in a system

with state-dependent arrival rates (since balking prob-

abilities depend on the delay announcements made),

together with a bounding argument and the additional

technical condition in (10). Consequently, drawing on

the analysis above, (9) must hold too. In other words,

the relative errors in both the queue lengths and the

waiting times are asymptotically negligible, provided

that the system is initialized at its equilibrium fluid

steady state.

5.4. Supporting Numerical Results
5.4.1. Validating Theorem 2. We substantiate our the-

oretical results by considering many-server M/M/N +

M queues in the ED regime. For b(w) and θ(w), we

consider the functions in (4) and (5). With those balk-

ing and abandonment-rate functions, it can be readily

checked that a unique equilibrium exists in the system,

as per (6) and (7).

In Figure 3, we let ρ � 1.4 and consider the same

values for N as in Figure 2. With ρ � 1.4 and large N ,

ED approximations are relatively accurate; see Whitt

(2004). Figure 3 shows that N × ASE(LES) is roughly

constant as N increases. This suggests that the LES

announcement is asymptotically accurate in the ED

regime and that ASE(LES) converges to 0 at a rate that

is inversely proportional to N . This substantiates and

supplements our theoretical results. For example, in

Theorem 2 we show that ASE(LES) is asymptotically

negligible in the ED regime, but do not specify the
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Figure 3. (Color online) N ×ASE(LES) in the M/M/N + M
Model in the ED Regime with Customer Response Given

by (4) and (5)

100 200 300 400 500 600 700 800 900 1,000
1.0

1.1

1.2

1.3

1.4

1.5

1.6

Number of servers

N
× 

A
S

E
(L

E
S

)

rate at which it converges to 0. Figure 3 suggests that

ASE(LES) is O(1/N).5 Consistent with Figure 2 for the

QED regime, Figure 3 shows that the accuracy of LES is

poor with a very small number of servers (N � 10), but

quickly improves as the number of servers increases.

Indeed, Figure 3 shows that N × ASE(LES) does not

vary by much for N ≥ 30.

5.4.2. Customer Response and Fluid Equilibrium. As

illustrated in Figure 1, introducing customer response

to the announcements may significantly complicate

system dynamics. The main complexity in incorpo-

rating customer response to the announcements lies

in the existence, or possibly lack thereof, of a unique

equilibrium of the system. This equilibrium is non-

trivial when waiting times in the system are long,

e.g., as in the ED limiting regime. Theorem 2 shows

that if there exists a unique equilibrium of the system,

then initializing the system at that equilibrium, at fluid

scale, is sufficient to ensure the asymptotic accuracy of

the LES announcement. There, we imposed continuity

and strict monotonicity assumptions on θ( · ) and b( · ),
which guarantee both the existence and uniqueness

of that equilibrium. We also showed that the relative

error in the wait times is asymptotically negligible if

and only if the relative error in the queue lengths is

negligible.

We now consider abandonment-rate response func-

tions forwhich (i) there does not exist an equilibrium of

the system or (ii) there exist multiple equilibria of the

system. We investigate whether our previous results

continue to hold in such scenarios. Interestingly, we

show that this may not be the case. This is in contrast to

systems without customer response, where the asymp-

totic accuracy of the LES announcement was shown

to hold irrespective of specific assumptions on system

parameters; e.g., see Ibrahim and Whitt (2009).

Our objective is twofold: (i) to investigate, numeri-

cally, how the relative error in the queue length trans-

lates into the accuracy of the LES announcement in

systems where there exists a unique equilibrium and

(ii) to show that the equivalence between small wait-

time and small queue-length errors may not hold more

generally, specifically when an equilibrium does not

exist. Therefore, our results show that the existence (or

lack thereof) of a unique equilibrium strongly affects

the asymptotic accuracy of the LES announcement, and

illustrate how the respective magnitudes of wait-time

and queue-length errors are affected.

Stability of Wait-Time and Queue-Length Errors. Point

(i) above is important from a practical perspective so

that system managers, who may typically observe the

queue length, are able to quantify the errors in the LES

announcements based on the queue-length errors that

they observe.

In our simulation experiments, we collect relative

queue-length errors (differences between the queue

lengths seen by the new and LES customers, scaled

appropriately) and partition these into the following

intervals:

(0, 0.05), (0.05, 0.1), (0.1, 0.2), (0.2, 0.3), (0.3, 0.4),
(0.4, 0.5), and (0.5, 1).

For example, the first interval corresponds to queue-

length errors that are smaller than 5%, whereas the sec-

ond interval corresponds to queue-length errors that

are between 5% and 10%. For each interval, we collect

the corresponding relative wait-time errors in the sim-

ulation run. For example, we collect all relative wait-

time errors that correspond to queue-length errors that

are smaller than 5% (first interval), those that corre-

spond to queue-length errors that are between 5% and

10% (second interval), and so on. We then compute

the median of those wait-time errors to assess precisely

how the error in the queue length translates into the

wait-time error.

We consider two forms for the abandonment-rate

response function and assume that there is no cus-

tomer balking in the system. We consider θ
1
(w)

given by

θ
1
(w)� b − e−aw , where a , b > 0. (11)

With θ
1
(w), there exists a unique equilibrium of the

system, and our theoretical results continue to hold.

We vary a and b in (11) to consistently have that w̄ �

ln(ρ) � ln(1.4); this is the steady-state fluid waiting

time in a system with no customer response to the

announcements, and with θ(w) � 1 for all w. Increas-

ing a amounts to increasing the intensity of customer
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Table 1. Relative Errors for the Queue Length and Median Wait-Time Estimates for the M/M/1,000+ M Model with ρ � 1.4,
θ

1
(w)� b − e−aw

, and θ
0
(w) in (12)

θ
1
(w) in (11)

Queue length a � 0, b � 2 a � 0.5, b � 1.85 a � 1, b � 1.71 a � 1.5, b � 1.6 a � 2, b � 1.51 θ
0
(w) in (12)

<0.05 0.0428 0.0434 0.0436 0.0437 0.0439 0.103

∈(0.05, 0.1) 0.0479 0.0487 0.0490 0.0495 0.0497 0.101

∈(0.1, 0.2) 0.0618 0.0621 0.0627 0.0630 0.0630 0.115

∈(0.2, 0.3) 0.105 0.1076 0.109 0.108 0.108 0.153

∈(0.3, 0.4) 0.176 0.169 0.175 0.167 0.165 0.202

∈(0.4, 0.5) 0.185 0.210 0.202 0.237 0.231 0.229

>0.5 0.405 0.407 0.407 0.414 0.421 0.413

response to the announcements. Second, we violate the

continuity assumption and let

θ
0
(w)�

{
0.5 if w ≤ 0.5,

1.5 otherwise,
(12)

so that θ
0
(w) has a discontinuity at w � 0.5. Then, it is

not hard to show that there do not exist w̄ and z̄ that

simultaneously solve (6) and (7); thus, there is no equi-

librium of the system. In the online supplement, we

present more simulation results for various models; in

particular, we consider alternative abandonment-rate

functions and alternative system sizes and congestion

levels.

In Table 1, we report our results for N � 1,000 and

ρ � 1.4. Table 1 shows that the order of magnitudes

of the queue-length and wait-time errors are generally

close for θ
1
( · ), irrespective of a and b. For example,

for queue-length errors that are smaller than 5%, the

median of corresponding wait-time errors is about 4%.

Table 1 also shows that wait-time errors fluctuate less

extremely than queue-length errors. For example, for

queue-length errors that are in (0.1, 0.2), the median of

corresponding wait-time errors, under θ
1
( · ), remains

around 6%. This suggests that the LES announcement

will be accurate in practice, even when the queue-

length error is not too small.

In contrast, Table 1 shows that for θ
0
( · ), “large”

wait-time errors may correspond to “small” queue-

length errors. For example, a median wait-time error

of over 10% corresponds to queue-length errors that

are smaller than 5%. Indeed, because of the disconti-

nuity in θ( · ), it is possible that two customers who

encounter, upon arrival, the same queue lengths in

the system will still experience very different waiting

times. This is because customers waiting in the queue

may have considerably different abandonment rates,

depending on the announcements that they received,

so that the queue length seen upon arrival is not, by

itself, a sufficient indicator of the ensuing wait.

We now make a comparison with a system with no

customer response to the announcements, i.e., where

θc(w) � 1 for all w. In Figures 4 and 5, we plot rela-

tive errors for queue-lengths as a function of relative

errors for the waiting times under θ
0
(w) and θc(w),

respectively. On one hand, Figure 4 shows that small

queue-length errors of roughly 10% may correspond

to large wait-time errors of about 50%. On the other

hand, Figure 5 clearly shows that the relative errors

in the waiting times are small if and only if the rela-

tive errors in the queue lengths are small. Contrasting

Figures 4 and 5 illustrates how incorporating customer

response to the announcements may drastically change

the underlying dynamics of the system.

Stability of the Equilibrium. We now consider a system

where there exist multiple equilibria. In particular, we

exclude customer balking and consider that the aban-

donment rate

θ
00
(w)�


4 if w < 0.1,

7.5− 35w if 0.1 ≤ w < 0.2,

0.5 if w ≥ 0.2;

(13)

then, it is easy to verify that there exist three equilib-

ria of the system: w̄
1
� 0.084, w̄

2
� 0.15, and w̄

3
� 0.67.

Figure 4. (Color online) Relative Errors for the Waiting

Times and Queue Lengths for θ(w) in (12)
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Figure 5. (Color online) Relative Errors for the Waiting

Times and Queue Lengths for θ � 1
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In Figure 6, we plot the relative errors in the queue

lengths as a function of the relative errors in the wait-

ing times, for θ
00
(w) in (13); otherwise, we consider the

same modeling assumptions as in Figure 4. Figure 6

shows that some large wait-time errors correspond to

small queue-length errors, and vice versa. Once more,

comparing Figures 5 and 6 illustrates the changes in

system performance due to incorporating customer

response to the announcements.

In Figure 7, we plot sample paths of the LES delays

and actual delays observed in the same system as in

Figure 6. Figure 7 shows that the system alternates

between two equilibria. Indeed, the waiting times first

stabilize around w̄
1
� 0.084, and then around w̄

3
� 0.67.

It is interesting to see that w̄
2
� 0.15 is an unstable

equilibrium of the system, because small stochastic

fluctuations drive waiting times away from w̄
2
. Fig-

ure 7 illustrates an important phenomenon that is due

Figure 6. (Color online) Relative Errors for the Waiting

Times and Queue Lengths for θ(w) in (13)
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Figure 7. (Color online) LES and Actual Waiting Times in

the M/M/1,000+ M Model for ρ � 1.4 and θ(w) in (13)
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to incorporating customer response in the system:With

multiple equilibria, if the system is initialized around

one equilibrium, then stochastic fluctuationsmay drive

the system away from that equilibrium. In general,

our results in Theorem 2 no longer hold. This is why,

with customer response, we need to impose additional

assumptions on system parameters to guarantee stabil-

ity, as in Section 5.2.

6. Additional Numerical Results
In this section, we describe results of a simula-

tion study with the objective to improve our under-

standing of how customer response affects the accu-

racy of the LES announcement by going beyond

our theoretical results in Theorems 1 and 2. First,

we study how changes in model parameters (cus-

tomer response, congestion level, and arrival pro-

cess) affect the accuracy of the LES announcement, in

steady state (Sections 6.1–6.3). Then, we derive heuris-

tic adjustments to the LES announcement and show

that they are more accurate than the straightforward

announcement in the transient state, albeit at the

expense of requiring more information about system

parameters (Section 6.4).

In addition to the ASE, and to get a relative measure

of accuracy, we also compute point estimates of the rel-

ative average squared error (RASE), which is defined

as the ratio between the square root of the ASE and the

average waiting time in the queue. The RASE is useful

because it relates the error in the LES announcement

to the magnitude of waiting times in the system.

6.1. Congestion Effects
Webegin by studying how changes in the system’s con-

gestion level affect the accuracy of the LES announce-

ment. We control system congestion in two ways: (i) by
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Table 2. Accuracy in the M/M/N + M Model with ρ � 1.4
and Alternative k in (14)

k ASE(LES) Waiting time RASE(LES)

4 4.37× 10
−3

0.240 0.275

±2.3× 10
−5 ±3.2× 10

−4

2 7.40× 10
−3

0.408 0.211

±2.1× 10
−5 ±7.4× 10

−4

1 1.24× 10
−2

0.684 0.163

±7.2× 10
−5 ±1.2× 10

−3

0.2 4.17× 10
−2

2.40 0.085

±4.4× 10
−4 ±3.6× 10

−3

varying the magnitude of customer abandonment and

(ii) by altering the traffic intensity in the system. In

both cases, we exclude balking from the system to focus

solely on the effect of customer abandonment and traf-

fic intensity; i.e., we let b(w)� 0.

6.1.1. Abandonment-Rate Function. In Table 2, we

study how changes in the abandonment-rate function,

θ(w), affect the accuracy of the LES announcement. We

fix N � 100 and let ρ � 1.4, i.e., we focus on the ED

regime. We do so because customer abandonment is

then nonnegligible. We consider an exponential func-

tional form for θ(w), and vary its parameters to either

speed up or slow down customer abandonment; in

particular,

θ(w)� k ·
(
0.75− 0.5e−w )

for some k > 0. (14)

We consider the following values for k: 0.2, 1, 2, and 4.

(The expression in (5) corresponds to k � 1.) The sys-

tem experiences slower customer abandonment as the

value of k decreases and is then more congested.

Therefore, we expect that ASE(LES) will be large for

small values of k, but that the LES announcement

will be relatively more accurate, i.e., yielding a smaller

RASE(LES). Table 2 shows that this is indeed the case;

e.g., RASE(LES) ranges from roughly 28% for k � 2 to

roughly 9% for k � 0.1, whereas ASE(LES) is nearly 10

times larger for k � 0.1 than for k � 2.

Decreasing k leads to both an increase in ASE(LES)

and an increase in the average waiting time in the

system. Interestingly, Table 2 shows that for a given

decrease in k, the relative increase in ASE(LES) is equal

to the corresponding relative increase in the average

waiting time. For example, both ASE(LES) and the

average waiting time are multiplied by roughly 1.7 in

going from k � 4 to k � 2. Therefore, RASE(LES) will be

smaller for k � 2 than for k � 4. Indeed, Table 2 shows

that RASE(LES) for k � 1 is roughly 1/
√

1.7 ≈ 0.76×
RASE(LES) for k � 4. We observe similar relationships

for all other values of k considered in Table 2.

6.1.2. Traffic Intensity. For Table 3, we fix N � 100. We

consider θ(w) in (5). As before, we exclude balking

Table 3. Accuracy in the M/M/N + M Model for θ(w) in (5)

and Alternative ρ

ρ ASE(LES) Waiting time RASE(LES)

1 2.88× 10
−3

8.96× 10
−2

0.599

±1.7× 10
−5 ±6.9× 10

−4 ±3.6× 10
−4

1.2 8.22× 10
−3

0.429 0.211

±4.4× 10
−5 ±1.5× 10

−3 ±6.9× 10
−5

1.4 1.24× 10
−2

0.684 0.163

±7.2× 10
−5 ±1.2× 10

−3 ±5.1× 10
−5

1.6 1.51× 10
−2

0.878 0.140

±1.4× 10
−4 ±1.2× 10

−3 ±8.3× 10
−5

from the system. We vary ρ from 1.0 to 1.6. Con-

sistent with intuition, Table 3 shows that an increase

in ρ leads to both an increase in ASE(LES) and an

increase in the average waiting time. Table 3 also shows

that RASE(LES) decreases as ρ increases. For exam-

ple, RASE(LES) varies from roughly 60% for ρ � 1 to

roughly 14% for ρ � 1.6.
Interestingly, for a given increase in ρ, the rela-

tive increase in ASE(LES) is smaller than the relative

increase in the average waiting time. For example,

ASE(LES) is roughly three times larger for ρ � 1.4 than

for ρ � 1.2. In contrast, the average waiting time is

roughly five times larger for ρ � 1.4 than for ρ � 1.2. As

such, RASE(LES) is smaller for ρ � 1.4 than for ρ � 1.2.
We observe similar relationships for all other values

of ρ considered in Table 3.

This section demonstrates an important principle,

which should be useful from amanagerial perspective:

the relative accuracy of LES improves with increased

congestion in the system. As such, it is more useful

to implement LES delay announcements in more con-

gested systems. In particular, although the absolute

magnitudes of the LES errors increase as the conges-

tion in the system increases, the relative accuracy of

LES, relative to the increasing average waiting time,

improves. Comparing the first and last rows of Table 2,

we see that when the average waiting time is multi-

plied by 10, RASE(LES) is roughly divided by

√
10≈ 3.

Similarly, comparing the second and third rows of

Table 3, we find that when the average waiting time

is multiplied by 1.6, RASE(LES) is roughly divided

by

√
1.6≈ 1.3. So, based on our numerical examples,

it appears that when the average waiting time in the

system is multiplied by c > 1, as a result of increased

congestion, RASE(LES) is divided in that system by

approximately

√
c. This should give some indication to

practitioners regarding the relative accuracy of LES in

their systems.

6.2. Impact of Customer Response Intensity
We now study the impact of customer response on

the asymptotic accuracy of the LES announcement.

In particular, we show that the accuracy of the LES
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Table 4. Effect of Varying the Intensity of Customer Response on the Asymptotic Accuracy of LES in the M/M/100+ M
Model with ρ � 1.4 and the Abandonment-Rate Functions θ

1
, θ

2
, and θ

3

θ
1
(w) θ

2
(w) θ

3
(w)

a b ASE(LES) RASE(LES) a b ASE(LES) RASE(LES) a b ASE(LES) RASE(LES)

0 2 5.88× 10
−3

0.224 0 1 5.88× 10
−3

0.224 0 0 5.88× 10
−3

0.224

±2.3× 10
−5 ±2.3× 10

−5 ±2.3× 10
−5

2 1.51 6.22× 10
−3

0.231 2 0.32 6.57× 10
−3

0.238 1 −0.4 6.35× 10
−3

0.235

±3.2× 10
−5 ±2.2× 10

−5 ±2.9× 10
−5

4 1.3 6.27× 10
−3

0.230 4 −0.35 7.58× 10
−3

0.254 1.5 −0.66 6.76× 10
−3

0.243

±2.13× 10
−5 ±3.7× 10

−5 ±3.3× 10
−5

8 1.1 6.15× 10
−3

0.227 8 −1.7 1.09× 10
−2

0.301 2 −0.96 7.48× 10
−3

0.255

±3.2× 10
−5 ±6.5× 10

−5 ±4.0× 10
−5

10 1.03 6.08× 10
−3

0.226 10 −2.4 1.32× 10
−2

0.330 4 −2.8 1.99× 10
−2

0.421

±2.6× 10
−5 ±9.3× 10

−5 ±1.1× 10
−4

announcement degrades with the intensity of cus-

tomer response. We consider different abandonment-

rate functions and vary their parameters to increase

the “intensity” of customer response to the announce-

ments. To control for the effect of congestion, we hold

the expected waiting time in the system fixed.

In modeling customer abandonment response to the

announcements, we draw on the recent literature. In

particular, Brown et al. (2005) and Mandelbaum and

Zeltyn (2013) quantified the effect of the announce-

ments by statistically estimating the hazard rate of

the abandonment-time distribution and showing that

customers typically become more impatient as delay

announcements increase; e.g., see Figure 5 in Brown

et al. (2005) and Figures 13 and 14 in Mandelbaum

and Zeltyn (2013). Consistent with this evidence, we

assume in Section 5 that the abandonment rate is an

increasing function of the announcement.

Once more, we exclude balking from the system; we

also let ρ � 1.4 and N � 100. To ensure robustness, we

consider three functional forms for θ(w):
θ

1
(w)� b − e−aw , θ

2
(w)� aw + b ,

θ
3
(w)� b + e aw , where a > 0;

(15)

for example, letting k � 1 in (14) corresponds to θ
1
(w)

with a � 1 and b � 1.5. It is readily seen that the func-

tions θ
1
, θ

2
, and θ

3
are all continuous and strictly

increasing in w. Moreover, even though the sufficient

conditions on balking behavior stated in Section 5.1 do

not apply with a constant balking probability (equal

to 0), it is readily seen that a unique equilibrium contin-

ues to exist in each case. We vary a and b in (15) to con-

sistently have that w̄ � ln(ρ)� ln(1.4); this is the steady-
state fluid waiting time in a system with no customer

response to the announcements, and with θ(w)� 1 for

all w. Increasing a amounts to increasing the intensity

of customer response to the announcements.

In Table 4, we present estimates for ASE(LES)

and RASE(LES) for each abandonment-rate func-

tion. In each case, a � 0 corresponds to a constant,

announcement-independent, abandonment rate equal

to 1. Table 4 clearly shows that RASE(LES) increases

with a; that is, the LES announcement is less accu-

rate with customer response in the system. For exam-

ple, with θ
3
, RASE(LES) increases from roughly 22%

for a � 0 to roughly 42% for a � 4. (We do not increase a
further to guarantee that θ

3
(w) ≥ 0.) Similarly, for θ

2
,

RASE(LES) increases to roughly 33% for a � 10.

Table 4 illustrates an interesting phenomenon: The

asymptotic accuracy of the LES announcement does

not degrade as extremely for function θ
1
as it does

for functions θ
2
and θ

3
. Indeed, as explained in Sec-

tion 5, stochastic fluctuations, particularly around the

equilibriumwait-time value, typically impact the accu-

racy of the LES announcement. Comparing the values

of the derivatives of θ
1
, θ

2
, and θ

3
around w̄ reveals

that θ
1
changes more slowly than both θ

2
and θ

3
.

In other words, stochastic fluctuations around w̄ have

a relatively mild impact under θ
1
, which ensures that

the system state is relatively stable and that the LES

announcement is relatively accurate.

Our results show that the accuracy of the LES an-

nouncement is intimately tied not only to whether or

not customers respond to the announcements, but also

to how they do so. This substantiates the importance of

incorporating customer response in the analysis of the

system.

6.3. Time-Varying Arrivals
We now consider time-varying arrival rates. This

is practically important to consider because arrival

processes to service systems, in real life, typically

vary significantly over time. We consider a sinusoidal

arrival-rate intensity function to mimic cyclic behavior

that is common in arrival processes to service systems:

λ(u)� ¯λ+ ¯λα sin(γu), for 0 ≤ u <∞, (16)

where
¯λ is the average arrival rate, and α is the rela-

tive amplitude. Given an appropriate constant staffing
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Table 5. Effect of the Arrival-Rate Frequency γ on the

Accuracy of the LES Announcement

γ Cycle length ASE(LES) RASE(LES)

0 1.14× 10
−2

0.174

±3.8× 10
−5

0.0436 144 1.18× 10
−2

0.176

±8.0× 10
−5

0.0873 72 1.19× 10
−2

0.177

±9.5× 10
−5

0.262 24 1.38× 10
−2

0.190

±6.1× 10
−5

0.524 12 1.8× 10
−2

0.219

±6.6× 10
−5

1.571 4 2.79× 10
−2

0.268

±7.8× 10
−5

level, this arrival-rate function corresponds to alternat-

ing periods of underload and overload in the system.

As pointed out by Eick et al. (1993), the parameters of

the arrival-rate intensity function, λ(u) in (16), should

be interpreted relative to the mean service time. Then,

we speak of γ as the relative frequency. Small (large)

values of γ correspond to slow (fast) time variability in

the arrival process, relative to the service times.

6.3.1. Accuracy of the LES Announcement. In Table 5,

we study the effect of varying γ on the accuracy of

the LES announcement. We also include values of the

relative frequency as a function of the mean service

time, assuming a 12 hour daily cycle, e.g., from 8:00 a.m.

to 8:00 p.m.

As before, we consider b(w) and θ(w) in (4) and

(5). The first row in Table 5 corresponds to the case

with stationary arrivals, which we include here as a

benchmark. Consistent with intuition, Table 5 clearly

shows that the accuracy of the LES announcement

deteriorates as γ increases. Indeed, the LES announce-

ment performs poorly when the arrival rate changes

rapidly over time, because delays then vary systemat-

ically over time. For example, RASE(LES) ranges from

roughly 17% for γ � 0.0436 (slow time variation) to

roughly 27% for γ � 1.57 (fast time variation). Inter-

estingly, ASE(LES) appears to be roughly constant for

different values of γ.
The conclusions that we draw from Table 5 are con-

sistent with those in Ibrahim and Whitt (2011). They

showed, in the context of delay announcements with

no customer response, that the accuracy of the LES

announcement degrades as arrival rates become more

time variable. Table 5 shows that the same holds with

announcement-dependent balking and abandonment

as well.

6.3.2. Relative Errors of the Queue Length and Wait-
ing Times. With a stationary arrival process, in both

the QED and ED regimes, we established an important

Figure 8. Relative Errors for the Waiting Times and Queue

Lengths (γ � 0.0873, α � 0.3)
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asymptotic result that unified our analysis throughout:

The relative error in the LES prediction is small if and

only if the relative error in the queue length is small.

We now investigate whether this main result continues

to hold with time-varying arrivals as well. We con-

sider a system with a sinusoidal arrival-rate function

as in (16), and with N � 100 servers. We let γ � 0.0873,

α � 0.3, and ¯λ � 140. As such, the arrival rate fluctuates

from a minimum of 98 (ρ � 0.98) to a maximum of 182

(ρ� 1.82). In the bottom subplot of Figure 8, we plot the

relative errors for the waiting times and for the queue

lengths seen upon arrival in the system. The results in

Figure 8 are based on one simulation path, rather than

being averaged over multiple simulation replications

as before. In the top subplot of Figure 8, we plot the

arrival-rate function. Figure 8 shows that our asymp-

totic result continues to hold with time-varying arrival

rates. Indeed, the relative errors in the queue lengths

and waiting times increase and decrease in sync, as

can be seen by their matching curves in the plots. We

remove from the bottom subplot of Figure 8 the top and

bottom 0.5% of the relative errors, which correspond

to dividing by very small values for the queue length

and the waiting time.

6.4. Adjustments of the LES Announcement
Delay announcements are typically both noisy and

biased. The noise is equal to the variance of the con-

ditional waiting times (conditional on the information

about current system state); the bias is the difference

between the delay announcement and the expected

conditional waiting time in the system. The ASE of the

LES announcement captures both the aforementioned

noise and bias.

As with time-varying arrivals (Figure 8), Figure 9

shows that the LES announcement is typically biased
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Figure 9. (Color online) Actual and LES Delays in an

Initially Empty M/M/5,000+ M Model with ρ � 1.4 and

θ(w)� 1.51− e−2w
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in the transient state of a given system. In Figure 9,

we consider customer abandonment response accord-

ing to θ
1
(w) in (15) with a � 2 and b � 1.51; we let

N � 5,000 to reduce the effect of stochastic noise. For

example, in the transient state of a system, which is

initially empty, LES announcements are systematically

biased downward. In the online supplement, we derive

an adjustment of the LES announcement, in a system

with no customer response, that exploits fluid-model

dynamics. We show that this adjustment is more accu-

rate (less biased) than the LES announcement in the

transient state. The adjusted announcement, LESa , is

given by

LESa announcement�
1

θ
ln(ρ+ 1− ρe−θw

LES), (17)

where w
LES

is the direct LES announcement. In this

section, we derive adjustments of the LES announce-

ment in systems with customer response. Since the

direct analysis of transient fluid-model dynamics in

such systems is difficult, we derive heuristic adjust-

ments instead.

Our adjusted LES announcement in a system with

no customer response depends on the constant aban-

donment rate, θ, in the system, as shown in (17). Here,

we derive a heuristic adjustment of the LES announce-

ment by replacing θ (no response) with θ(0) (at the
origin); that is, we propose the following adjustment to

the direct LES announcement, w
LES

:

LES-H announcement

�
1

θ(0) ln(ρ+ 1− ρe−θ(0)wLES). (18)

We tried replacing θ(0) in (18) by θw
LES

, but this lead

to slightly less accurate delay announcements; this is

why we exclude such an announcement from consid-

eration here.

We also propose another adjusted LES announce-

ment which exploits the queue-length seen upon

arrival by the LES and new customers. Let QL
LES

denote the queue length seen upon arrival by the LES

customer, and let QLn be the queue length seen by the

new customer. Then, we study the accuracy of the fol-

lowing queue-length-based adjustment:

LES-QL announcement � w
LES
× QLn

QL
LES

. (19)

Additionally, we considered announcements based

on several past LES delays (either a predetermined

fixed number, or all LES delays occurring within a

certain time window) experienced by successive cus-

tomers in the system.We fit linear, quadratic, and expo-

nential functions to those delays (as a function of the

time of arrival to the system) and extrapolated those

functions to the time of arrival of the current customer.

We did so to obtain adjusted announcements based

on additional past delays besides the most recent LES

delay. Here, we do not include a separate discussion for

those adjusted announcements because numerous sim-

ulation experiments indicated that they did not consis-

tently perform better than the LES announcement.

In Table 6, we present estimates for both the ASE

and bias of the LES announcement and the heuristic

adjustments, LES-H and LES-QL. We let N � 1,000 and

ρ � 1.4. We consider different simulation run lengths,

but generally focus on the transient state of the sys-

tem, which we assume starts empty. We also con-

sider two abandonment-rate functions. Table 6 shows

that both LES-H and LES-QL are less biased than the

LES announcement and their ASEs are also smaller,

irrespective of the abandonment-rate function consid-

ered. Based on Table 6, we can also compute the noise

(i.e., conditional variance) in each of the predictions,

and find that it is smaller with LES-QL and LES-H

compared to LES. Table 6 also shows that ASE(LES-

QL) is generally slightly smaller than ASE(LES-H).

Since LES-QL is usually less biased than LES-H, as

shown by Table 6, this implies that LES-QL announce-

ments should be slightly more noisy than LES-H

announcements. In Figure 10, we plot LES-H, LES,

and actual delays for the same system as in Figure 9.

Figure 10 nicely illustrates how the LES-H and actual

delays closely match, particularly initially, and LES-

QL announcements exhibit slightly stronger variations,

consistently with Table 6.

In practical terms, selecting which predictor to

implement, either LES-H or LES-QL, ultimately de-

pends on the error measure that is of interest in the

system. Indeed, if themanager is interested in reducing

bias so that the announcements given are, on average,

close to actual delays, then our experiments suggest
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Table 6. Accuracy of Heuristic Adjustments for the LES Announcement in the M/M/1,000+ M Model with ρ � 1.4 and

Alternative Abandonment-Rate Functions

Run length ASE(LES) Bias(LES) ASE(LES-QL) Bias(LES-QL) ASE(LES-H) Bias(LES-H) Number delayed

θ(w)� 4w − 0.35 (units of 10
−4

for ASE and bias)

2,000 1.87± 1.7 95.6± 34 0.759± 0.24 −5.0± 14 0.841± 0.89 35.9± 32 164± 52

3,000 12.5± 4.0 300± 55 2.48± 0.71 −45.5± 17.2 3.09± 1.29 91.7± 53.2 932± 59

5,000 21.2± 3.5 354± 44 6.99± 2.0 −78.3± 47 11.4± 2.8 219± 40 2,740± 84

10,000 12.6± 1.7 118± 14 7.94± 1.2 −42.5± 13 7.93± 1.3 84.7± 16 7,749± 93

θ(w)�−2.8+ e4w
(units of 10

−4

for ASE and bias)

2,000 1.87± 1.7 95.6± 34 0.759± 0.24 −5.0± 14 0.841± 0.89 35.9± 32 165± 52

3,000 15.5± 5.7 331± 68 2.33± 0.63 −30.4± 14 4.42± 2.4 124± 66 910± 54

5,000 65.6± 16 228± 64 30.2± 11 −223± 42 45.1± 13 169± 55 2,834± 68

10,000 63.5± 23 103± 28 36.9± 11 −160± 49 45.8± 17 92.0± 19 7,773± 96

Figure 10. (Color online) Direct and Adjusted LES

Announcements, LES-H and LES-QL, and Actual Delays in

the Same Model as in Figure 9
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that LES-QL is the better alternative since it reduces

that bias. On the other hand, if the manager is inter-

ested in reducing the average square of the errors, so as

to penalize against both underestimation and overes-

timation in the announcements, then our experiments

suggest that LES-H is the better alternative.

7. Conclusions
In this paper, we studied the problem of making

accurate real-time delay announcements in large ser-

vice systems. In particular, we focused on the LES

delay announcement: This type of announcement is

practically appealing because it depends solely on

the history of delays in the system; i.e., it does not

require any additional information about current sys-

tem parameters.

There is ample empirical evidence showing that cus-

tomers typically respond to delay announcements in

practice; e.g., see Yu et al. (2017) and Akşin et al.

(2017). Nevertheless, to the best of our knowledge,

besides that by Armony et al. (2009), who focus solely

on a fluid model of the system, there are no stud-

ies of how the customer response impacts the accu-

racy of the individual announcements. In this paper,

we took a step toward filling that gap in the lit-

erature. In particular, we established the asymptotic

accuracy of the LES announcement in a system with

announcement-dependent balking and abandonment.

Doing so is complicated mainly because customer

response impacts system dynamics, which, in turn,

impact the future announcements made. For exam-

ple, customers who are announced a very long delay

may become very impatient and abandon rapidly. In

consequence to this increase in customer abandon-

ment, delays in the system decrease, which in turn

decreases future delay announcements. In response

to the decreased announcements, customers abandon

less, which causes the delays in the system to increase

again. Thus, future announcements will increase as

well. The analysis of such a system involves a complex

high-dimensional equilibrium since it is necessary to

keep track of all customers in queue and their respec-

tive announcements.

Our theoretical results showed that the LES an-

nouncement is asymptotically accurate, i.e., with a

large number of servers. Through our numerical study,

we found that the LES announcement performs rela-

tively poorly when the number of servers is very small,

but that its accuracy improves rapidly as the number

of servers increases. We also found that the relative

asymptotic accuracy of LES improves as the system’s

congestion increases, which suggests that this type of

announcement would be particularly useful in busy

service contexts.

Our results also illustrated that customer response

on one hand and time-variation in the arrival rates

on the other hand both lead to a degradation in

the asymptotic accuracy of the LES announcement.

We numerically investigated how the relative error in
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the queue length translates into the accuracy of LES

announcement and found that wait-time errors fluctu-

ate less extremely than queue-length errors, and that

the LES announcement should be accurate even when

the queue-length error is not so small. This provided a

practical dimension to our theoretical result establish-

ing the equivalence between the stability of wait-time

and queue-length relative errors. This is particularly

useful because real-time information about the queue

length is routinely collected, e.g., as in the automatic

call distributor of call centers.

There are several research directions that remain to

be investigated. One such direction is to further ana-

lyze systems with time-varying arrival rates and to

provide theoretical support for our observations in Sec-

tion 6.3. Another direction for future research is to

consider multiple customer classes and multiple cus-

tomer priorities. Those are often observed in real-life,

particularly in hospital emergency departments where

patients are often seen according to the severity of

their ailments. In that setting, it would be interesting

to study the effectiveness of the LES announcement

and to develop appropriate adjustments if need be. Yet

another setting that is interesting to consider is that of

queueing networks, which is also useful in represent-

ing service in a hospital context where patients sequen-

tially go through several units for treatment. One could

then think of other types of announcements that would

be more appropriate in that setting, given the addi-

tional information.

Endnotes
1
For a back-of-the-envelope example that violates this initial condi-

tion, consider a system where all servers are busy and QN (0) is a

constant that grows with N faster than

√
N , e.g., QN (0)� N3/4

. Then,

it is clear that our initial tightness condition does not hold.

2
Let {Xn , n ≥ 1} be a sequence of randomvariables, and let {an , n ≥ 1}

be a sequence of real numbers. We say that Xn � Op(an) if for every
ε > 0 there exists a finite M > 0 such that P(|Xn/an | >M)< ε for all n.
3
Let f and g be two functions defined on some subset of the real

numbers. Then, f (n)� o(g(n)) as n→∞ if for all ε > 0 there exists N
such that | f (n)| ≤ ε |g(n)| for all n ≥ N .

4
The assumptions on b( · ) and θ( · ) are only needed to guarantee the

existence and uniqueness of a fluid equilibrium. Thus, we could also

assume instead that such an equilibrium exists and is unique.

5
Let f and g be two functions defined on some subset of the real

numbers. Then, f (n) � O(g(n)) as n→∞ if there exists M > 0 and

N > 0 such that | f (n)| ≤M |g(n)| for n ≥ N .
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