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Motivation

• Many service and manufacturing systems involve multiple
customer classes and server types
• Different servers may serve different customer classes at

different rates, and may have a preferred or ‘primary’
customer class
• Hospital setting: inpatient wards grouped according to

specialty
• Patients have a ‘primary’ ward that they are best served in
• Patients may be placed in non-primary wards if necessary

(‘overflowed’), which may lead to service slowdown and
other costs
• Recent survey paper: J, J. Dong, and P. Shi. “A survey on

skills-based routing with applications to service operations
management,” Queueing Systems, Oct. 2020.
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Motivation

• Arrival rates in general not fixed, but are prone to sudden
surges, e.g. pandemic or seasonality
• Can often anticipate future arrival rates
• Want to make use of future arrival rate information, e.g. do

we prioritize a customer class now if its arrival rate is going
to increase but hasn’t yet?
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Stochastic Model

• Markovian N and X models
• Preferred pool i for each class i (of size Ni)
• Holding costs hi, overflow costs φij ≥ 0

• Arrival rates λi(t), service rates µij
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Stochastic Model

• Want to minimize

Eπ

∫ T

0

∑
i

hiXi(t) +
∑
i 6=j

φijZij(t)

 dt


for some ‘large’ T
• Headcounts Xi(t), Zij(t) class i customers in pool j

service
• Expectation depends on the scheduling policy π
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Fluid Model

Associated fluid control problem:

min
z

∫ T

0

∑
i

hixi(t) +
∑
i,j

φijzij(t)

 dt

s.t. x′i(t) = λi(t)−
∑
j

µijzij(t)

xi(t) ≥ 0

zij(t) ≥ 0∑
i

zij(t) ≤ Nj ,
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The Arrival Rate λ(t)

Assumption (Initial high arrival rate)
For i = 1, 2, there exists Ki ∈ [0,∞) such that λi(t) ≥ Niµii for
t < Ki and λi(t) < Niµii for t > Ki.

Assumption (Regularity)
λi(t) is piecewise monotone and

∫∞
0 (Niµii − λi(s)) ds =∞.

T is large enough that
∫ T
0 (Niµii − λi(s)) ds > Xi(0)

Definition
For each t ≥ 0, the function Gti : R+ → R+ is defined by∫ t+Gt

i(x)
t (Niµii − λi(s)) ds = x. It is a continuous strictly

increasing bijection with Gti(0) = 0. Note that if λi(t) ≡ λi is
constant, then Gti(x) =

x
Niµii−λi for all t ≥ 0.
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The ‘look-ahead’ function Gt
i

Definition
For each t ≥ 0, the function Gti : R+ → R+ is defined by

Gti(x) = inf

{
s ≥ (Ki − t)+ :

∫ t+s

t
(Niµii − λi(s)) ds ≥ x

}
.

• Gti(x) is how long it takes for the class i queue of length x
to be emptied using only the primary pool i, starting at time
t.
• If λi(t) ≡ λi is constant, then Gti(x) =

x
Niµii−λi for all t ≥ 0.

• Gti(x) can be large even if x is small
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N Model Optimal Control

Theorem
The following control is optimal for the fluid model:

I. When h1µ12 > h2µ22, pool 2 gives priority to class 1 when
queue 1 is large enough relative to queue 2. In particular,

a. If h1µ12G
t
1(x1(t))− φ12 > h2µ22G

t
2(x2(t)), z∗12(t) = N2 and

z∗22(t) = 0.
b. Otherwise, z∗12(t) = 0 and

z∗22(t) = N21{x2(t) > 0}+ λ2(t)
µ22

1{x2(t) = 0}.
II. When h1µ12 < h2µ22, pool 2 gives priority to class 2 and

will help queue 1 when x2(t) = 0 and x1(t) is large enough.
In particular,

a. If x2(t) = 0 and h1µ12G
t
1(x1(t))− φ12 > 0,

z∗12(t) = N2 − λ2(t)
µ22

and z∗22(t) =
λ2(t)
µ22

.
b. Otherwise, z∗12(t) = 0 and

z∗22(t) = N21{x2(t) > 0}+ λ2(t)
µ22

1{x2(t) = 0}.
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N Model Optimal Control
Example: h1 = 1.5, h2 = 1, φ12 = 1, µ11 = µ22 = .25, µ12 =
.18, x(0) = (0, 5), N = (3, 4), and λ2(t) ≡ 0.6 and λ1(t) = 1 for
0 ≤ t < 10, 2 for 10 ≤ t < 20, and 0.5 for t ≥ 20.
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Figure: The optimal control
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X Model Optimal Control
Assumption (‘Basic Inefficient Sharing Condition’ (Perry
and Whitt 2009))
µ11µ22 > µ12µ21

Theorem (The case h1µ12 > h2µ22 and h1µ11 > h2µ21)
The following policy is optimal for the fluid model. Pool 1
prioritizes class 1, and partially helps class 2 if Gt1(q1(t)) = 0
and Gt2(q2(t)) >

φ21
h2µ21

. Pool 2 prioritizes class 1 if the following
holds, and serves only its own class otherwise. Let
τi = Gti(qi(t)) be the remaining time to empty queue i = 1, 2,
and let τ = inf{s ≥ 0 : Gτ1+t+s2 (q2(τ1 + t+ s)) ≤ φ21

h2µ21
} be the

partial help duration after τ1. Then,

φ12 <h1µ12τ1 + h2
µ12µ21
µ11

τ

− h2µ22
(
τ21{τ = 0}+

(
τ1 + τ +

φ21
h2µ21

)
1{τ > 0}

)
.
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X Model Optimal Control

Consider the setting N = (3, 4), x = (4, 0), service rates
µii = 0.25, µij = 0.18 and arrival rates

λ1(t) =



1.5 t ∈ [0, 5)

1 t ∈ [5, 10)

1.5 t ∈ [10, 15)

2 t ∈ [15, 20)

0.5 t ∈ [20,∞)

λ2(t) =

{
1 t ∈ [0, 10)

0.6 t ∈ [10,∞)

Costs are h = (2, 1) and φ21 = 10φ12 = 1.
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X Model Optimal Control
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Figure: Fluid trajectory
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Tracking Policies

• The optimal fluid control can be defined by four constants
T1, T2, T3, T4

• In [0, T1), both pools fully help class 1, and any idle pool 2
servers (due to insufficient class 1 customers) serve class
2.
• In [T1, T2), both pools each serve their own class only, until

queue 1 is emptied at time T2.
• In [T2, T3), both pools each fully serve their own class, and

any idle pool 1 servers serve class 1.
• In [T3,∞), both pools each serve their own class only.

Queue 2 is emptied at time T4.
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X Model Optimal Control

Theorem (The case h1µ12 < h2µ22 and h2µ21 < h1µ11)
The following policy is optimal for the fluid model. Each pool i
prioritizes its own class i, and partially helps the other class
j 6= i if Gti(qi(t)) = 0 and Gtj(qj(t)) >

φji
hjµji

.
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Asymptotic Regime

• We consider sequences indexed by n→∞
• Let Xn(t) be the headcount process defined on t ∈ [0, nT ]

with arrival rate λn(t) := λ(t/n), t ∈ [0, nT ] and initial state
• A scheduling policy πn for the nth system is defined on

[0, nT ] so that Zn(t) = πnt (X
n(t)).

• We say that a sequence (Xn, Zn) is asymptotically optimal
if

lim
n→∞

1

n

∫ nT

0

∑
i

hi
n
Xn
i (t) +

∑
i 6=j

φijZ
n
ij(t)

 dt = V F (x),

where V F (x) is the optimal cost for the fluid problem with
initial state x.
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Tracking Policies

We define the policy σn by

Zn11(X; t) = N1 ∧X1

Zn21(X; t) =


0 t ∈ [0, nT2)

(N1 −X1)
+ ∧ (X2 − (N2 ∧X2)) t ∈ [nT2, nT3)

0 t ∈ [nT3,∞)

Zn22(X; t) =

{
N2 − (N2 ∧ (X1 −N1)

+) t ∈ [0, nT1)

N2 ∧X2 t ∈ [nT1,∞)

Zn12(X; t) =

{
N2 ∧ (X1 −N1)

+ t ∈ [0, nT1)

0 t ∈ [nT1,∞)
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Tracking Policies

Theorem
The tracking policy is asymptotically optimal.
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Tracking Policies
Previous example
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Figure: Fluid trajectory
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Tracking Policies
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Figure: Stochastic sample path (n = 10)
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Tracking Policies
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Figure: Stochastic sample path (n = 100)
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Tracking Policies
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Figure: Stochastic sample path (n = 1000)
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Ongoing Work

• Other adaptations of the fluid control policy to the pre-limit
setting
• More general parallel server systems
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