Model

The low uncertainty setting

The high uncertainty setting

Future Work

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Managing Resource Flexibility: Staffing and Scheduling

Jinsheng Chen Columbia University

Monday 29th March, 2021

Mode

The low uncertainty setting

The high uncertainty setting

Future Work

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Motivation

- Many service systems involve multiple customer classes and server types
- Different servers have different skill sets
- Tradeoff between benefit (load-balancing) and cost (more expensive, inefficient) of resource flexibility
- Want to know how to staff and schedule
- Also consider random arrival rates

The high uncertainty setting

Future Work

Model

- Queueing model with two customer classes
- Poisson arrivals of random intensity $\Lambda = (\Lambda_1, \Lambda_2)$
- Assume $\Lambda_i = p_i \lambda + \lambda^{\alpha_i} Y_i$, where $p_i > 0$, $\alpha_i \le 1$ and $Y = (Y_1, Y_2)$ has zero mean and finite variance
- Exponential service with rates $\mu \ge \mu_F$
- Exponential abandonment with rate $\theta > 0$
- n_i dedicated servers for class i and n_F flexible servers

• Choose staffing levels n_1, n_2 and n_F and scheduling policy ν to minimize the total staffing, holding and abandonment cost

$$\begin{split} \Pi(n_1,n_2,n_F;\nu) :=& c(n_1+n_2)+c_F n_F \\ &+ (h+a\theta) \mathbb{E}[Q_{\Sigma}(\infty;n_1,n_2,n_F;\nu)] \end{split}$$

- $\mathbb{E}[Q_{\Sigma}(\infty; n_1, n_2, n_F; \nu)] = \mathbb{E}[\mathbb{E}[Q_{\Sigma}(\infty; n_1, n_2, n_F; \nu)|\Lambda]]$
- Let Π^{*} be the optimal cost
- Assume $c/\mu < c_F/\mu_F < h/\theta + a$
- Scheduling policy ν maps headcounts X_i to assignments Z_{ij} :

$$\nu: (X_1, X_2) \mapsto Z = (Z_1, Z_2, Z_{F1}, Z_{F2})$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The high uncertainty setting

Future Work

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The low uncertainty setting ($\alpha_i < 1/2$)

- Assume $\alpha_i < 1/2$
- Assume symmetry for tractability: $\Lambda_1 = \Lambda_2, p_i = 1$
- Have $n_1 = n_2 = n$
- Approach: derive optimal scheduling policy ν^* for any (n, n_F) , then optimize over (n, n_F) using diffusion approximation for this fixed policy
- Use superscript λ for the λ th system, e.g. $\Pi^{\lambda,*}, n_i^{\lambda}, n_F^{\lambda}$

• Let
$$R^{\lambda} = \lambda/\mu$$

duction

The high uncertainty setting

Future Work

Optimal Scheduling Policy $\nu^{\lambda,*}$

Dedicated servers have priority:

$$Z_i^\lambda(t) = \min\{n^\lambda, X_i^\lambda(t)\}$$
 for $i = 1, 2;$

Flexible servers prioritize the more congested class: if $X_1^\lambda(t) \geq X_2^\lambda(t),$

$$Z_{F1}^{\lambda}(t) = \min\{n_F^{\lambda}, (X_1^{\lambda}(t) - n^{\lambda})^+\} Z_{F2}^{\lambda}(t) = \min\{n_F^{\lambda} - Z_{F1}^{\lambda}(t), (X_2^{\lambda}(t) - n^{\lambda})^+\}$$

Similar if $X_1^{\lambda}(t) < X_2^{\lambda}(t)$.

Theorem

Suppose $\theta \leq \mu_F$. For any Markovian scheduling policy ν^{λ} ,

$$\mathbb{E}[Q_{\Sigma}^{\lambda}(\infty; n^{\lambda}, n_{F}^{\lambda}; \nu^{\lambda})] \geq \mathbb{E}[Q_{\Sigma}^{\lambda}(\infty; n^{\lambda}, n_{F}^{\lambda}; \nu^{\lambda, *})],$$

which implies that $\Pi^{\lambda}(n^{\lambda}, n_{F}^{\lambda}; \nu^{\lambda}) \geq \Pi^{\lambda}(n^{\lambda}, n_{E}^{\lambda}; \nu^{\lambda,*}).$

The high uncertainty setting 00000000

Future Work

Optimal Scheduling Policy $\nu^{\lambda,*}$

- Proof is by coupling
- $\theta \leq \mu_F$ means that flexible servers prioritizing the more congested class is load-balancing
- Can define scheduling policy $\phi^{\lambda,*}$ with reverse priority: if $X_1^\lambda(t) \leq X_2^\lambda(t),$

$$Z_{F1}^{\lambda}(t) = \min\{n_{F}^{\lambda}, (X_{1}^{\lambda}(t) - n^{\lambda})^{+}\}\$$
$$Z_{F2}^{\lambda}(t) = \min\{n_{F}^{\lambda} - Z_{F1}^{\lambda}(t), (X_{2}^{\lambda}(t) - n^{\lambda})^{+}\}\$$

Theorem

wh

Suppose $\theta \ge \mu = \mu_F$. For any deterministic Markovian scheduling policy ν^{λ} ,

$$\mathbb{E}[Q_{\Sigma}^{\lambda}(\infty; n^{\lambda}, n_{F}^{\lambda}; \nu^{\lambda})] \geq \mathbb{E}[Q_{\Sigma}^{\lambda}(\infty; n^{\lambda}, n_{F}^{\lambda}; \phi^{\lambda,*})],$$

ich implies that $\Pi^{\lambda}(n^{\lambda}, n_{F}^{\lambda}; \nu^{\lambda}) \geq \Pi^{\lambda}(n^{\lambda}, n_{F}^{\lambda}; \phi^{\lambda,*}).$

Model

The low uncertainty setting

The high uncertainty setting

Future Work

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Optimal Staffing

Can focus on case where $n^{\lambda} = R^{\lambda} + O(\sqrt{\lambda})$ and $n_F^{\lambda} = O(\sqrt{\lambda})$: Lemma We have $\Pi^{\lambda,*} = 2cR^{\lambda} + O(\sqrt{\lambda})$. Moreover, for $(n^{\lambda,*}, n_F^{\lambda,*})$,

 $-\infty < \liminf_{\lambda \to \infty} \frac{n^{\lambda,*} - R^{\lambda}}{\sqrt{\lambda}} \le \limsup_{\lambda \to \infty} \frac{n^{\lambda,*} - R^{\lambda}}{\sqrt{\lambda}} < \infty$

and

$$\limsup_{\lambda \to \infty} \frac{n_F^{\lambda,*}}{\sqrt{\lambda}} < \infty.$$

Introduction

The low uncertainty setting

The high uncertainty setting

Future Work

Optimal Staffing

Let
$$\hat{X}_i^{\lambda}(\cdot) = \frac{X_i^{\lambda}(\cdot) - n^{\lambda}}{\sqrt{\lambda}}$$
, $\hat{X}^{\lambda} = (\hat{X}_1^{\lambda}, \hat{X}_2^{\lambda})$ and $\hat{Q}_{\Sigma}^{\lambda} = \frac{Q_{\Sigma}^{\lambda}}{\sqrt{\lambda}}$.

Theorem

Suppose $n^{\lambda} = R^{\lambda} + \beta \sqrt{R^{\lambda}} + o(\sqrt{R^{\lambda}})$ and $n_F^{\lambda} = \beta_F \sqrt{R^{\lambda}} + o(\sqrt{R^{\lambda}})$, where $\beta \in \mathbb{R}, \beta_F \ge 0$, and if $\theta = 0$, $2\beta\mu + \beta_F\mu_F > 0$. Then, if $\hat{X}^{\lambda}(0) \Rightarrow \hat{X}(0)$ as $\lambda \to \infty$,

$$\hat{X}^{\lambda} \Rightarrow \hat{X}$$
 in D^2 as $\lambda \to \infty$,

where \hat{X} is a two-dimensional diffusion process. Moreover,

 $\mathbb{E}[\hat{Q}_{\Sigma}^{\lambda}(\infty)] \to \mathbb{E}[(\hat{X}_{1}(\infty)^{+} + \hat{X}_{2}(\infty)^{+} - \beta_{F}/\sqrt{\mu})^{+}] \text{ as } \lambda \to \infty.$

・ロト・日本・日本・日本・日本・日本

Introductio

The low uncertainty setting

The high uncertainty setting

Future Work

Optimal Staffing

Get the approximate diffusion problem

$$\min_{\substack{(\beta,\beta_F)}} \hat{V}_p(\beta,\beta_F) := 2c\beta/\sqrt{\mu} + c_F\beta_F/\sqrt{\mu} \\ + (h+a\theta)\mathbb{E}\left[\left(\hat{X}_1(\infty;\beta,\beta_F)^+ + \hat{X}_2(\infty;\beta,\beta_F)^+ - \beta_F/\sqrt{\mu} \right)^+ \right]$$

Theorem

For $\theta \leq \mu_F \leq \mu$, assuming $\arg \min_{(\beta,\beta_F)} \hat{V}_p(\beta,\beta_F)$ is finite, a sequence of staffing policies $(n^{\lambda}, n_F^{\lambda})$ is $o(\sqrt{\lambda})$ -optimal if and only if the following two conditions hold:

1.
$$n^{\lambda} = R^{\lambda} + \beta^{\lambda} \sqrt{R^{\lambda}} + o(\sqrt{R^{\lambda}})$$

2. $n_{F}^{\lambda} = \beta_{F}^{\lambda} \sqrt{R^{\lambda}} + o(\sqrt{R^{\lambda}})$

where $(\beta^{\lambda}, \beta_{F}^{\lambda}) \in \arg \min_{(\beta, \beta_{F})} \hat{V}_{p}(\beta, \beta_{F}).$

Model

The low uncertainty setting

The high uncertainty setting

Future Work

Sensitivity

Figure: $\hat{V}_p(\beta, \beta_F)$ as a function of β and β_F . ($\mu = 1, \mu_F = 0.85, \theta = 0, c = 1, c_F = 1.4, h = 1$)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Model

The low uncertainty setting

The high uncertainty setting

Future Work

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Sensitivity

Set
$$h = c = 1, \mu = 1, \theta = 0$$

c_F	1	1.2	1.4	1.6	1.8
β^*	-0.2	0.2	0.5	0.9	0.9
β_F^*	1.9	1.1	0.5	0	0

Table: Sensitivity of (β^*, β_F^*) with respect to c_F when $\mu_F = 0.85$

μ_F	0.55	0.65	0.75	0.85	0.95
β^*	0.8	0.8	0.7	0.5	0.4
β_F^*	0	0.1	0.2	0.5	0.6

Table: Sensitivity of (β^*, β_F^*) with respect to μ_F when $c_F = 1.4$

Model

The low uncertainty setting

The high uncertainty setting

Future Work

Numerical Illustration

c_F	$(\hat{n}^{\lambda}, \hat{n}_{F}^{\lambda})$	$(n^{\lambda,*}, n_F^{\lambda,*})$	$\Pi^{\lambda,*}$	Gap				
	$\lambda = 25$							
1	(27,10)	(26,11)	65.91	0.17				
1.2	(28,7)	(28,7)	67.76	0				
1.4	(29,5)	(30,4)	69.12	0.05				
	$\lambda = 100$							
1	(103,20)	(102,22)	230.94	0.08				
1.2	(106,15)	(106,15)	234.79	0				
1.4	(108,11)	(108,10)	237.27	0.19				
	$\lambda = 400$							
1	(406,40)	(405,42)	861.42	0.16				
1.2	(412,30)	(413,27)	868.71	0.25				
1.4	(416,22)	(416,21)	873.85	0.01				

Table: Performance of $(\hat{n}^{\lambda}, \hat{n}_{F}^{\lambda})$ for systems with different scales, λ 's. $(\mu = 1, \mu_{F} = 0.85, \theta = 0, h = 8, c = 1)$

The high uncertainty setting

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The high uncertainty setting ($\alpha_i > 1/2$)

- Approach follows Harrison and Zeevi (2005)
- The rate of customer abandonment can be expressed as $\theta \mathbb{E}[Q_{\Sigma}(\infty; n_1, n_2, n_F; \nu)].$
- By rate conservation, the rate of customer abandonment can also be approximated by $\mathbb{E}\left[((\Lambda_1 n_1\mu)^+ + (\Lambda_2 n_2\mu)^+ n_F\mu_F)^+\right]$
- This suggests the stochastic-fluid optimization problem:

$$\min_{\tilde{n}_1 \ge 0, \tilde{n}_2 \ge 0, \tilde{n}_F \ge 0} \tilde{\Pi}(\tilde{n}_1, \tilde{n}_2, \tilde{n}_F) := c(\tilde{n}_1 + \tilde{n}_2) + c_F \tilde{n}_F$$
$$+ (h/\theta + a) \mathbb{E} \left[((\Lambda_1 - \tilde{n}_1 \mu)^+ + (\Lambda_2 - \tilde{n}_2 \mu)^+ - \tilde{n}_F \mu_F)^+ \right]$$

The stochastic-fluid optimization problem solution

- Let $c_P := h/\theta + a$ and let q_i solve $\mathbb{P}(Y_i > q_i) = \frac{c}{c_P \mu}$.
- If $\mathbb{P}(Y_1 > q_1 \text{ or } Y_2 > q_2) > \frac{c_F}{c_P \mu_F}$, let $r_1, r_2 \in \mathbb{R}$, and $r_F > 0$ solve:

$$\mathbb{P}(Y_1 > r_1, Y_1 - r_1 + (Y_2 - r_2)^+ > r_F) = \frac{c}{c_P \mu},$$
$$\mathbb{P}((Y_1 - r_1)^+ + (Y_2 - r_2)^+ > r_F) = \frac{c_F}{c_P \mu_F}.$$

Lemma

 $\begin{array}{l} \textit{Suppose } \alpha_1 = \alpha_2 = \alpha. \\ \textit{If } \mathbb{P}(Y_1 > q_1 \textit{ or } Y_2 > q_2) \leq \frac{c_F}{c_P \mu_F} \textit{, } \tilde{n}^*_i = (p_i \lambda + q_i \lambda^\alpha) / \mu \textit{ for } i = 1, 2, \\ \textit{and } \tilde{n}^*_F = 0. \\ \textit{If } \mathbb{P}(Y_1 > q_1 \textit{ or } Y_2 > q_2) > \frac{c_F}{c_P \mu_F} \textit{, } \tilde{n}^*_i = (p_i \lambda + r_i \lambda^\alpha) / \mu \textit{ for } i = 1, 2, \\ \textit{and } \tilde{n}^*_F = r_F \lambda^\alpha / \mu_F. \end{array}$

The low uncertainty setting

The high uncertainty setting

Future Work

The scheduling policy $\tilde{\nu}$

• Given a realization of the arrival rate $\Lambda = \gamma := (\gamma_1, \gamma_2)$, let $\delta(\gamma) \in [0, 1]$ solve

$$((\gamma_1 - n_1\mu)^+ + (\gamma_2 - n_2\mu)^+ - n_F\mu_F)^+ = (\gamma_1 - n_1\mu - \delta n_F\mu_F)^+ + (\gamma_2 - n_2\mu - (1 - \delta)n_F\mu_F)^+.$$

- Under $\tilde{\nu}$, we allocate $\lfloor \delta(\gamma)n_F \rfloor$ flexible servers to class 1 and the remaining $\lceil (1 - \delta(\gamma))n_F \rceil$ flexible servers to class 2
- Choice of δ minimizes total approximate abandonment rate
- Dedicated servers are prioritized over the flexible servers.
- Upon each realization of the arrival rates Λ = γ, the policy *ν* turns the M-model into two independent inverted-V models that follow the fastest-server-first policy.

The high uncertainty setting

Future Work

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Two other scheduling policies

Have

 $\Pi(n_1, n_2, n_F; \tilde{\nu}_I) \le \Pi(n_1, n_2, n_F; \tilde{\nu}) \le \Pi(n_1, n_2, n_F; \tilde{\nu}_R)$

Mode 00 The low uncertainty setting

The high uncertainty setting

Future Work

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Asymptotic Optimality

Lemma

For any scheduling policy ν , $\tilde{\Pi}(n_1, n_2, n_F) \leq \Pi(n_1, n_2, n_F; \nu)$.

Theorem

Assume $\alpha_1 \geq \alpha_2 > 1/2$. For $\nu^{\lambda} \in \{\tilde{\nu}^{\lambda}, \tilde{\nu}_R^{\lambda}, \tilde{\nu}_I^{\lambda}\}$,

$$\Pi(\lceil \tilde{n}_1^{\lambda,*}\rceil, \lceil \tilde{n}_2^{\lambda,*}\rceil, \lfloor \tilde{n}_F^{\lambda,*}\rfloor; \nu^{\lambda}) = \Pi^{\lambda,*} + O(\lambda^{1-\alpha_2}).$$

Model

The low uncertainty setting

The high uncertainty setting

Future Work

Sensitivity

 Y_1, Y_2 standard bivariate normal with correlation ρ , $\alpha_1 = \alpha_2$

Figure: How q^* and q_F^* vary with ρ when $\mu_F = 1.2$ and $c_F \in \{1, 1.2, 1.4\}$

Model

The low uncertainty setting

The high uncertainty setting

Future Work

Sensitivity

 Y_1, Y_2 standard bivariate normal with correlation ρ , $\alpha_1 = \alpha_2$

Figure: How q^* and q_F^* vary with ρ when $c_F=1.2$ and $\mu_F\in\{0.8,0.9,1\}$

Introduction

The low uncertainty setting

The high uncertainty setting

Future Work

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Numerical Illustration

Approximate gap is $AG = \Pi(\lceil \tilde{n}_1^{\lambda,*} \rceil, \lceil \tilde{n}_2^{\lambda,*} \rceil, \lfloor \tilde{n}_F^{\lambda,*} \rfloor; \tilde{\nu}^{\lambda}) - \tilde{\Pi}^{\lambda,*}$

	$\lambda = 25$		$\lambda = 50$		$\lambda = 100$		$\lambda = 200$	
α	$\tilde{\Pi}^{\lambda,*}$	AG	$\tilde{\Pi}^{\lambda,*}$	AG	$\tilde{\Pi}^{\lambda,*}$	AG	$\tilde{\Pi}^{\lambda,*}$	AG
0.6	78.4	9.6	143.0	12.2	265.2	14.7	498.9	18.6
0.8	104.1	5.7	194.1	6.7	363.9	7.2	685.3	7.9
1	152.9	4.4	305.8	4.6	611.7	4.5	1223.3	4.2

Table: Performance of $(\lceil \tilde{n}_1^{\lambda,*} \rceil, \lceil \tilde{n}_2^{\lambda,*} \rceil, \lfloor \tilde{n}_F^{\lambda,*} \rfloor; \tilde{\nu}^{\lambda})$ for systems with different values of λ and α .

$$(c = 1, c_F = 1.2, h = a = 8, \mu = 1, \mu_F = 0.9, \theta = 0.5, \rho = 0.5)$$

Mode

The low uncertainty setting

The high uncertainty setting

Future Work

Numerical Illustration

		$\lambda = 25$			$\lambda = 50$	
α	$\tilde{\nu}_I$	$\tilde{\nu}$	$\tilde{\nu}_R$	$\tilde{\nu}_I$	$\tilde{\nu}$	$\tilde{\nu}_R$
0.6	86.3	88.0	88.3	153.0	155.2	155.5
0.8	108.3	109.8	110.0	199.5	200.8	201.0
1	156.2	157.3	157.5	309.6	310.4	310.6
		$\lambda = 100$			$\lambda = 200$	
α	$\tilde{\nu}_I$	$\tilde{\nu}$	$\tilde{\nu}_R$	$\tilde{\nu}_I$	$\tilde{\nu}$	$\tilde{\nu}_R$
0.6	276.8	279.9	280.3	513.6	517.5	518.1
0.8	369.2	371.1	371.4	691.2	693.2	693.5
1	614.3	616.2	616.4	1226.6	1227.5	1227.7

Table: The cost under scheduling policies $\nu \in {\tilde{\nu}_I, \tilde{\nu}, \tilde{\nu}_R}$ for different values of λ and α . ($c = 1, c_F = 1.2, h = a = 8, \mu = 1, \mu_F = 0.9, \theta = 0.5, \rho = 0.5$)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

The low uncertainty setting

The high uncertainty setting

Future Work

Summary

- Exactly optimal scheduling policy for symmetric M model via coupling construction
- Exactly optimal non-standard scheduling policy under high abandonment rates via coupling construction and 'dual approach'
- Diffusion limit of M model when there is only partial resource pooling
- Establish that sizing of flexible pool should match degree of uncertainty
- Establish near-optimality of stochastic-fluid approximation for M model under random demand, and sufficiency of simple scheduling policies

The low uncertainty setting

The high uncertainty setting

Future Work

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Future Work

- Asymmetric systems under low demand uncertainty
- The intermediate $\alpha_i = 1/2$ case
- More general systems