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Motivation

e Many service systems involve multiple customer classes
and server types

Different servers have different skill sets

Tradeoff between benefit (load-balancing) and cost (more
expensive, inefficient) of resource flexibility

Want to know how to staff and schedule
Also consider random arrival rates
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Model

Queueing model with two customer classes
Poisson arrivals of random intensity A = (A1, A2)
Assume A; = p; A + A*Y;, where p; > 0, a; < 1 and
Y = (Y1,Y2) has zero mean and finite variance
Exponential service with rates p > urp

Exponential abandonment with rate 6 > 0

® 1, dedicated servers for class : and nr flexible servers

§ "
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Objective

Choose staffing levels nq, no and ny and scheduling policy
v to minimize the total staffing, holding and abandonment
cost

(n1,n2,np;v) :=c(n1 + n2) + cpnp
+ (h + af)E[Qx(00;n1, N2, np; V)]

E[@s(00;n1,n2,np; v)] = E[E[Qs (00 n1, n2, np; v) |A]]
Let IT* be the optimal cost
Assume ¢/u < cp/urp < h/0+a
Scheduling policy ¥ maps headcounts X; to assignments
Zz‘ji
v: (X1, Xo) = Z = (21,22, Zr1, ZF2)
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The low uncertainty setting (a; < 1/2)

Assume «a; < 1/2

Assume symmetry for tractability: A; = Ag,p; =1
e Haveni =ngo=n

Approach: derive optimal scheduling policy v* for any
(n,nr), then optimize over (n, ny) using diffusion
approximation for this fixed policy

e Use superscript ) for the Ath system, e.g. TN, n, n)y

e Let R* = \/u
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Optimal Scheduling Policy v

Dedicated servers have priority:

ZMt) = min{n*, X(t)} fori = 1,2;

2

Flexible servers prioritize the more congested class: if
XP(t) = X2(t),

Zpy (t) = min{ng, (X7 (t) —n*) "}
Zia(t) = min{ng — Zpy (¢), (X3(t) — n*)*}

Similar if X{\(t) < X3(¢).

Theorem
Suppose 0 < ur. For any Markovian scheduling policy 1,

E[QR(c0;n?, nps; )] > E[QR (005 n, n; v™)],

which implies that TI* (n*, np; 1) > TN A, nj; ).

Future Work
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Optimal Scheduling Policy v+
e Proof is by coupling
* 9 < upr means that flexible servers prioritizing the more
congested class is load-balancing

¢ Can define scheduling policy ¢ with reverse priority: if
X (t) < X3(t),

Zpy (t) = min{ng, (X7'(t) —n*)*}

Zppa(t) = min{ngy — Zpy (¢), (X3(t) — )"}

Theorem
Suppose 0 > 1 = up. For any deterministic Markovian

scheduling policy 1,
E[Q3(00; 0, npn; )] > E[Q§(00; 0™, np; 7)),

which implies that TIN(n*, n); 1) > TIN (A, nk; ™).
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Optimal Staffing

e}

Can focus on case where n* = R* + O(V/\) and n} = O(V\):
Lemma

We have I1™* = 2¢R* + O(V/X). Moreover, for (n™*,n}’"),
A% A ok A
9 J— n _ }%
—o00 < liminf —— < limsup ——— < ©
A—00 \/X o )\ﬁoop \/X
and
A,

lim sup —= < oo.

A—00 \/X
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Optimal Staffing

Let X2 () = XU X0 = (X, X3) and @ = .

§>,

Theorem

Suppose n* = R* + BV R + o(VR*) and

n} = BrVR> + o(VR)), where 8 € R, B > 0, and if§ = 0,
264+ Brur > 0. Then, if X*(0) = X (0) as A — oo,

X = X inD? as A — oo,
where X is a two-dimensional diffusion process. Moreover,

E[Q3:(00)] — E[(X1(00)™ + Xa(o0)* = Br/v/i)T] @ A — oo.
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Optimal Staffing

Get the approximate diffusion problem

(gl’gl;) Vo(B, Br) == 2¢8/ /i + crBr/ /i

+ (h+ ad)E [(ffl(oo;ﬁ, Br)" + Xa(oos 8, Br) " /”F/\/ﬁy]

Theorem A
For 6 < up < p, assuming arg ming 5.y V,,(3, Br) is finite, a
sequence of staffing policies (n*,n?.) is o(v/\)-optimal if and
only if the following two conditions hold:

1. n* = R* + BAVRY + o(VRY)

2. ny = BpV R+ o(VRY)
where (5, 61’}) € argming g, Vo(B, Br).
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Sensitivity

Figure: V,(8, Br) as a function of 3 and fr.
(b=1pp =0850=0,c=1,cp=14h=1)
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Sensitivity

Seth=c=1,u=1,0=0

cr ] 1 |12]14]16]18
5[ -02[02]05[09]09
BE| 19 [11]05] 0 | O

Table: Sensitivity of (5%, 55.) with respect to ¢ when up = 0.85

ur | 0.55 1 0.65 | 0.75 | 0.85 | 0.95
pg*| 08 | 08 | 07 | 05| 04
Br | O 01 | 02 | 05 | 0.6

Table: Sensitivity of (8*, 83.) with respect to ur when cp = 1.4
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Numerical lllustration

cr | (RM 7)) (n’\’*,n}’*) I  Gap
A=25

1 | @7,00) (26,11) 6591 0.17

1.2 | (28,7) (28,7) 67.76 0

1.4 | (29,5) (30,4) 69.12 0.05
A =100

1 1(103,20) (102,22) 230.94 0.08

1.2 | (106,15) (106,15) 234.79 O

1.4 | (108,11) (108,10) 237.27 0.19
A =400

1 | (406,40) (405,42) 861.42 0.16

12| (412,30) (413,27) 86871 0.25

1.4 | (416,22) (416,21) 873.85 0.01

Table: Performance of(
(n=1ur=0.8560=0,h

, 1) for systems with different scales, \'s.

=8,c=1)
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The high uncertainty setting (o; > 1/2)

Approach follows Harrison and Zeevi (2005)

The rate of customer abandonment can be expressed as

OE[Qx(c0; n1, no, np;v)].

By rate conservation, the rate of customer abandonment

can also be approximated by

E[((A1 —n1p)™ 4 (Ag — nop)™ —npprp)™]

This suggests the stochastic-fluid optimization problem:

ﬁlzo,fglg(l),ﬁonﬂ(nl’ ng, Np) = c(ny + ng) + cpip

+(h/0 + a)E [(A1 — 7ap) ™ + (A2 — Aop)™ — Appr) ]
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The stochastic-fluid optimization problem solution

e Letcp :=h/6+ aand let ¢; solve P(Y; > ¢;) = ¢

cpp’
° fP(Y1>qorYs>q) > o letry,rp €R,and rp > 0
solve:

C
|P(Y1 >ry, YT —r+ (Y2 — 7“2)+ > TF) = —,
cpp

CFr

CPUF

|P((Y1 - 7’1)+ + (Y2 — 7'2)+ > TF) =

Lemma

Suppose a1 = ay = a.

If[P(Yl > qp 0rYs > QQ) < CISZF’ ﬁ;k = (pl/\ + qi)\o‘)/u fori =1,2,
andny = 0.

IfP(Y1 > q orYs > q) > C}‘jﬂF, ne = (piA+riXY)/p fori=1,2,
and iy, = rpX*/pup.
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The scheduling policy ©

Given a realization of the arrival rate A = v := (y1,72), let
d(v) € [0,1] solve

(1 = map)™ + (v2 = nop)™ —nppr)*

= (m—mp-— onppp)t + (v2 —nop — (L= 0)npurp)™.
Under v, we allocate |§(y)nr| flexible servers to class 1
and the remaining [(1 — d(vy))nr] flexible servers to class 2
Choice of 6 minimizes total approximate abandonment rate
Dedicated servers are prioritized over the flexible servers.

Upon each realization of the arrival rates A = ~, the policy
v turns the M-model into two independent inverted-V
models that follow the fastest-server-first policy.
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Two other scheduling policies

® Up: same as v, but follow slowest-server-first policy for
each inverted-V model

e p;: same as v, but flexible servers now give priority to their
assigned class (instead of only serving that class)

e Have
II(n1,ne, np; vr) < H(ni,ne,np;v) < l(ni, ng,np; vR)
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Asymptotic Optimality

Lemma )
For any scheduling policy v, T1(ny,ne, np) < Il(ny,ng, ng;v).

Theorem
Assume oy > ag > 1/2. Forv* € {i?, o, i},

([, [Rg "], [ ];0Y) = IV 4+ O(A17e2),
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Sensitivity
Y1, Ys standard bivariate normal with correlation p, a3 = a9

0.5 3=

N ——c=12

N ””cF=1

N cF=1 4

At —C=12
P ----c=1 \
K F 0.5 |
c.=1.4
15 L L L 0 L L L
-1 05 0 0.5 1 -1 05 0 05 1

P

Figure: How ¢* and ¢j. vary with p when pyp = 1.2 and
crp € {1,1.2,1.4}
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Sensitivity
Y1, Ys standard bivariate normal with correlation p, a3 = a9
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Figure: How ¢* and ¢j. vary with p when c¢p = 1.2 and
pr € {0.8,0.9,1}
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Numerical lllustration

Approximate gap is AG = T1([7)"], [ay™], [Ay*]; 7*) — T

A=25 A =50 A =100 A =200

o) I AG | I AG | I AG h* AG

06| 784 9.6 | 143.0 122 | 2652 14.7 | 4989 18.6
0.8 | 1041 5.7 |1941 6.7 | 3639 72 | 6853 7.9
1 | 1529 4.4 | 3058 46 |611.7 45 | 1223.3 4.2

Table: Performance of ([7}*], [a57], |7 |; 7*) for systems with
different values of A and a.
(c=1l,cp,=12h=a=8,u=1,ur =0.9,0 =0.5, p = 0.5)
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Numerical lllustration

A=25 A =50
« I;] v I7R ﬂ] 1 I;R
06| 8.3 880 883 | 153.0 1552 1555
0.8 | 108.3 109.8 110.0 | 199.5 2008 201.0
1 156.2 1573 157.5 | 309.6 3104 310.6
A =100 A =200
(0% 17] v DR ﬁ[ v 173
0.6 | 276.8 2799 280.3 | 5136 5175 518.1
0.8 |369.2 3711 3714 | 691.2 6932 693.5
1 | 6143 616.2 616.4 | 1226.6 1227.5 1227.7

Table: The cost under scheduling policies v € {7, v, v} for different
valuesof A\and a. (c=1,cp, =12,h=a=8,u=1,ur = 0.9,
6 =0.5,p=0.5)
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Summary

Exactly optimal scheduling policy for symmetric M model
via coupling construction

Exactly optimal non-standard scheduling policy under high
abandonment rates via coupling construction and ‘dual
approach’

Diffusion limit of M model when there is only partial
resource pooling

Establish that sizing of flexible pool should match degree of
uncertainty

Establish near-optimality of stochastic-fluid approximation
for M model under random demand, and sufficiency of
simple scheduling policies
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Future Work

e Asymmetric systems under low demand uncertainty
¢ The intermediate o; = 1/2 case
* More general systems
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