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Despite their pervasive use in practice, the operational implications of offering free trials is not well under-

stood. Motivated by this, we consider a service firm that has the option of offering free trials to a new market

while catering to an existing market of price and delay sensitive customers with price and capacity optimized

prior to offering free trials. Then, we pose the following question: Under what conditions is offering free trials

beneficial and what is the extent of this benefit? This question is relevant because with free trials the firm

essentially gives up part of its capacity to potentially generate more revenue in the future by converting its

free trial customers into paying customers. Hence, it is not apriori clear if offering free trials is beneficial.

To answer this question, we pursue an asymptotic analysis that is relevant to large scale services. First, we

consider the price and capacity optimization of the firm without free trials. Then, we incorporate free trials,

and finally, we assume that the firm can adjust capacity as it offers free trials. Somewhat surprisingly, we

find that offering free trials is beneficial only for small free trial market sizes with correspondingly small

relative benefits that become negligible for large scale systems. On the other hand, offering free trials is

always beneficial when capacity can be adjusted at relatively low cost. Thus, service firms should opt to

simultaneously increase capacity to unlock the potential benefits of offering free trials, and otherwise not

offer free trials at all.

Key words : service systems, free trial promotions, operations-marketing interface, capacity sizing, pricing,

many-server queues, Halfin-Whitt (QED) regime.

1. Introduction
1.1. Motivation and Overview of Results

Free trials are pervasively used to promote high tech communication, information, and enter-

tainment services to consumers nowadays. Many free trial promotions allow consumers to access

and experience a specific service for a specific duration without charge. For example, the popu-

lar movie streaming service Netflix offers a 30-day free trial period to its customers while other

streaming services such as Hulu or Vudu have similar promotions. After the free trial period, a

portion of customers convert to paying regular customers. This portion is referred to as the trial-
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to-adoption conversion rate or simply conversion rate. Thus, offering a free trial provides a service

firm the opportunity to increase long term revenues by tapping into a new market of customers and

eventually converting part of them into paying customers. Although appealing from a marketing

perspective, the potential future benefits of free trials do not come for free and have a potential

drawback for a service firm: By offering free trials, a service firm essentially gives up part of its

capacity with the hope of generating future demand for long term benefits. Thus, the following

questions emerges: Is offering free trials really beneficial to a service provider when we also factor

in its operational implications?

In many ways, free trial promotions are the service equivalent of free sample promotions. Par-

ticularly, both free sample promotions and free trial promotions intend to generate new demand

by letting customers experience a good or a service, respectively. Thus, free trial promotions and

free sample promotions are similar from a marketing perspective. Despite this similarity, free trials

have a distinguishing feature as they pertain to congestion-prone services: In service systems, the

introduction of a free trial promotion requires that some of the capacity is used to serve demand

that does not generate revenue. Hence, when a service firm offers free trials, it essentially gives

away part of its capacity for free and operates at a lower effective capacity, which might decrease

the rate at which revenue is generated. Furthermore, the lower effective capacity along with the

increased demand might also increase the congestion in the system due to queueing effects. This,

in turn, might discourage regular customers from using the service. Moreover, free trial customers

who experience the same increased congestion might also be less likely to convert to paying cus-

tomers. As a result, offering free trials can become a double-edged sword and it is not a priori clear

if the service provider really benefits from offering free trials.

Motivated by this question, we consider a large scale congestion-prone service firm that considers

offering a free trial service to a new market of customers in addition to its current customers, and

we assume that the service firm has ex ante optimized its price and capacity. We aim to answer to

the following related research questions:

• What are the implications of offering free trials for a congestion-prone service firm? Specifi-

cally, under which conditions is offering free trials beneficial to a service provider, and what is the

extent of such a benefit? What is the effect of the conversion rate and free trial market size?

• Under what conditions does a service firm that maximizes capacity and price operate prior to

offering free trials?

• Under what conditions does a service firm operate with free trials assuming neither price nor

capacity can be changed? That is to say, what is an impact of free trials on the system?

• Can the firm be better off by leveraging some form of control such as capacity adjustment? If

yes, what are the prescriptions of the optimal controls?



Authors’ names blinded for peer review
Article submitted to ; manuscript no. (Please, provide the manuscript number!) 3

• Under what conditions does a firm operate when capacity is controlled? Specifically, is it be

possible to mitigate the impact of free trial services on congestion so that the system experiences a

congestion as if there is no free trial service?

It is worthwhile to note that there is limited research on free trials in the OR/OM literature

and the operational effect of offering free trials is not well understood. On the other hand, recent

studies in marketing literature focus on other aspects of free trials such as timing of free trials

(see, for example, Foubert and Gijsbrechts (2016)) or customer retention (see, for example, Datta

et al. (2015)). Our research methodology, which is driven from stochastic modeling and queueing

theory, allows us to glean new and important insights, and contribute to the synergistic interface

of marketing and operations management.

In order to answer the questions posed above, we first need to understand the operating condi-

tions of the service system where the capacity and price are jointly optimized prior to offering free

trials. Hence, we begin with an M/M/C multi-server queue, also known as the Erlang-C queue,

to model the system without free trials. We assume that the service system has a large capacity,

and that this capacity is initially used to serve demand from regular customers who have hetero-

geneous valuations for the service (i.e., valuations that differ within regular customers), and are

price and delay sensitive. We assume that that the system operates in equilibrium that results from

an intrinsic feedback between demand and delay and that the service provider sets its price and

capacity optimally to maximize her profit rate prior to offering free trials.

Next, we incorporate free trial customers on top of the regular customers as follows. Free trials

are offered on an ongoing basis for an arbitrarily long planning horizin, but only to a new market

of customers and for a given duration. Free trial customers are not familiar with the service (i.e.,

they either do not know their valuations and/or system characteristics such as the average delay).

As a result, free trial customers opt to pay for service only after experiencing the service. After the

free trial period, a certain portion of the free trial customers convert and become stochastically

identical to regular paying customers. We still assume that the system operates in equilibrium that

results from the intrinsic feedback between demand and delay.

We assume that the service firm cannot change its price (that was chosen optimally prior to

offering free trials) as free trials are offered and we consider two cases depending on the form of

control available: (a) No Control. The firm cannot change capacity and continues to operate

under the same price and capacity that is optimized prior to offering free trials. Since the system

manager has no control variable at her disposal, the no control case is essentially performance

analysis of an ex ante service system with the addition of free trials (b) Capacity Optimization.

The firm can only adjust its capacity as free trials are offered. Hence, the capacity optimization

case is essentially an optimal design problem where we initially set the capacity and price optimally
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and only capacity can be changed as free trials are offered. In both cases, our main goal is to

understand the effect of free trials on the revenue rate as well as the quality of service as measured

by the expected delay.

Before continuing to our results, we will elaborate on our solution methodology. We first note that

conducting an exact analysis of the system with free trials or without free trials is difficult. This is

because there exists no closed form expression for the equilibrium arrival rate for a given price and

capacity. Thus, we can only analyze performance or optimize over control variables numerically.

But, from such a direct numerical approach, we cannot glean much structural insights (with regards

to optimal profit/revenue rate). Hence, we pursue an asymptotic analysis that is relevant for larger

scale systems. It is this asymptotic approach that will allow us to derive structural insights (that

are otherwise not available), which, in turn, will help us understand the effect of offering free trials.

Our main result under ex ante joint price and capacity optimization is that the quality-efficiency-

driven (QED) regime arises as the optimal operating regime (see Theorem ??). To our knowledge,

this is the first result that establishes QED as the optimal regime in a joint pricing and capacity

optimization problem, under mild assumptions that are fairly common in the revenue management

and pricing literature. This approach allows us to shed light into the operating characteristics of

large systems. Furthermore, it allows us to derive closed form scaling relations for the optimal

price, capacity, and revenue rate as well as other performance measures of interest. Specifically, we

find that, both the price and revenue rate admit a two part decomposition, which includes a first

order term (which ignores the stochasticity) and a second order correction term (which accounts

for stochasticity). This structural insight follows from an analysis that parallels Maglaras and Zeevi

(2003).

Next, we consider the case of uncontrolled system with free trials. Our main result is that the

optimal system operates under the ED (efficiency-driven) heavy traffic regime when the regular and

free trial market size scale proportionally to the capacity. We derive fluid based scaling relationships

for the revenue rate that highlight the impact of offering free trials on the capacity and delay,

which also allows us to assess the benefit of free trials. Specifically, our results suggest that the

revenue rate as well as the delay increases towards a limit as free trials are offered and more and

more conversions occur. Somewhat controversially though, we find that offering free trials is as not

beneficial when compared to the ex ante optimized system without free trials: For smaller free trial

sizes, offering free trials offers relatively small benefit while larger free trial market sizes can yield

significant losses.

Our final result concerns the case when the service provider is willing to invest in increasing

her capacity. We establish that if the regular and free trial market sizes scale proportionally, then

capacity optimization with free trials leads to an optimal system operating under the QED heavy
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traffic regime. Therefore, the larger system experiences the smaller delays and higher utilization.

Moreover, we examine the optimal first order profit rate as a function of the free trial market size

and determine explicit conditions for offering free trials to be beneficial. Specifically, we observe

that offering free trials is beneficial when capacity costs are low enough, whose threshold depends

also on the valuation function.

Our key contributions are summarized in three-fold:

• Actionable Insights into the Benefit of Offering Free Trials. If an ex ante optimized

service system offers free trials without any further control, our analysis reveals offering free trials

is either not beneficial at all or it yields a small relative benefit. This relates to the aforementioned

double-edged sword effect. On the other hand, when the capacity can be changed at a relatively

low cost, it turns out that offering free trials is always beneficial. Hence, our analysis yields the

important managerial insight that a service firm should either not offer free trials at all (if capacity

cannot be changed at a low cost), otherwise the service firm should opt to increase its capacity

along with free trials. Another important insight that emerges from our analysis is that any effort

to increase conversion rates should be accompanied with an appropriate capacity investment. Oth-

erwise, a higher conversion rate will not have a significant effect on the long run benefit of offering

free trials. Conversely, it is not advisable to increase the free trial market size to the compensate

for a small conversion rate as it can be detrimental to the service firm. Effect of Offering Free trials:

Practical Implications

— The question is can we convert free trials to paying throughput.

— For a system with capacity and price optimized ex ante, the answer is only if the free trial

market size is of order of the square root of the capacity

— Even so, the benefit is of order of the square root of the capacity and thus limited

— Trying to increase the conversion rate wouldn’t improve the system much while increasing

the free trial market size to compensate for small conversion rates can be detrimental.

— Our solution is increasing capacity as you go.

• Optimal Design of Service Systems with and without Free Trials. There is a vast

literature on the design of optimal queueing systems (see, for example, Stidham (2009)). We con-

tribute to this literature by (1) modeling service systems without free trials and studying the joint

price and capacity optimization, and (2) modeling service systems with free trials and studying

the capacity optimization problem. Our asymptotic approach is relevant to large scale service sys-

tems, and allows us to provide explicit analytical expressions for the optimal price (or price and

capacity) and the optimal revenue rate (or profit rate) and derive insight that is not possible via

exact analysis.
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• Asymptotic Queueing Regimes for Large Scale Service Systems. Under ex ante joint

price and capacity optimization, we find that the optimal system operates under the QED heavy

traffic regime. To our knowledge, this is the first result that establishes that QED is the optimal

operating regime under joint price and capacity optimization. A practical implication of the QED

regime is, prior to offering free trials, the service system enjoys high utilization levels while offering

a good service quality in the form of negligible delays. When free trials are incorporated into this

system without further control, we find that the system moves into the ED heavy traffic regime

and that the now non-negligible delay is increasing in time. This degradation in quality-of-service

can in practice result in lower than assumed conversion rates and reduced the revenue rates. On

the other hand, when the service firm can adjust its capacity as free trials are offered, the system

moves back into the QED regime. Thus, capacity optimization plays a dual role in that it also

facilitates that the conversion process occurs as effectively as possible.

The remainder of our paper is organized as follows: We first review the relevant literature in

Section 1.2. Then, in Section 2, we describe our model in detail. In Section EC.1, we assume that

the system manager can only change the static per usage price, and study the revenue maximizing

policy. We first assume that the system operates in the QED heavy traffic regime and establish

scaling relations. Then, under our key elasticity assumption, we prove that the optimal system

indeed operates in the QED heavy traffic regime in Section ??. Next, we study the effect of offering

free trials in Section ?? assuming the aforementioned elasticity condition. In Section EC.1.2, we

consider what happens if the elasticity condition does not hold, and show that the optimal system

operates under the QD heavy traffic regime. In Section EC.2, we consider the joint price and

capacity optimization problem. We first construct an asymptotically optimal policy and show that

QED is the optimal operating regime in Section ??. Then, in Section ??, we study the effect

of offering free trials under joint optimization. In Section ??, we extend our model to include

heterogeneity across regular and free trial customer valuations. We make concluding remarks in

Section ??. All proofs are deferred to the Electronic Companion.

1.2. Literature Review

Our paper is related to four streams of literature which we elaborate on next.

Economics of queues: There is a large body of research that is pioneered by Naor (1969) and

studies pricing to manage congestion externalities in queueing systems. In terms of the demand

model assumed, our work belongs to the stream of literature that includes Mendelson (1985),

Stidham (1985), Mendelson and Whang (1990), and Van Mieghem (2000). The common assumption

in this stream of papers is that customers are price and delay sensitive but cannot observe the

queue length. Hence the arrival rate is determined through an equilibrium. We refer the reader to

Chapter 3 of Hassin and Haviv (2003) and Chapter 2 of Stidham (2009) for further details.
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Many-server queues: Following a seminal paper by Halfin and Whitt (1981), there is also a vast

literature of papers that study queueing systems with many servers. The standing assumption in

this stream of papers is the celebrated square-root staffing rule which stipulates that the number

of servers scales as n + β
√
n, where n is a proxy for system size. Such a scaling gives rise to

Halfin-Whitt or QED heavy traffic regime where utilization approaches one while expected delay

approaches zero. Thus, papers in this stream stipulate that the QED heavy traffic regime is the

rational choice and assume the aforementioned scaling. For further details on many server queues

and the QED heavy traffic regime, we refer the reader to the surveys by Gans et al. (2003), Dai

and He (2012), Ward (2012), and van Leeuwaarden et al. (2017).

Economically optimal operating regime of queues: There is also a more recent literature where

the QED Halfin-Whitt regime (for many servers), or conventional heavy traffic regime (for a fixed

number of servers) arises endogenously as the optimal operating regime (rather than assuming a

heavy traffic condition such as the square-root staffing rule). Related papers include Garnett et al.

(2002), Maglaras and Zeevi (2003), Whitt (2003), Armony and Maglaras (2004a,b), Maglaras and

Zeevi (2005), Plambeck and Ward (2006), Randhawa and Kumar (2008), Kumar and Randhawa

(2010), Nair et al. (2016), and Maglaras et al. (2017). Among these papers, Whitt (2003) considers

a model similar to ours where customers are sensitive to expected delay and shows that only the

ED heavy traffic regime arises as the limiting operating regime. Our model is built upon Maglaras

and Zeevi (2003) where it is shown that the QED regime is optimal under price optimization

provided that an elasticity condition holds. We also find that a service system with free trials

operates under QED when an analogous elasticity condition holds. Furthermore, we show that the

QD regime arises as the optimal regime when the said condition does not hold, and that QED is

the optimal regime under price and capacity optimization. In a recent paper, Maglaras et al. (2017)

study the incentive compatible pricing decision of a service firm facing price and delay sensitive

customers, and show that the QD and ED heavy traffic regimes arise endogenously as a result of

price discrimination and service differentiation. Specifically, the high priority class operates under

QD heavy traffic regime while the low priority class operates under the ED heavy traffic regime.

Free trials in service systems: The literature on free trials in service systems is rather new, and

hence scarce. In the marketing literature, Foubert and Gijsbrechts (2016) study a firm offering free

trials but focuses on the effect of evolving service quality. In our model, we consider a firm that

already offers a service with steady quality to its regular paying customers. To our knowledge only

two papers in the OR/OM literature study a similar problem, but via a non-asymptotic (single-

server) approach: Zhou et al. (2014) and Lian et al. (2016) consider a service firm, modeled as

an M/M/1 queue, which offers a service to a market of price and delay sensitive customers. Our

model is significantly different than the mentioned two papers in several important ways: First, we
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model the service system under consideration as a multi-server queue. This allows for a broader

range of modelling capabilities where multiple customers can be served simultaneously or where

capacity is shared amongst customer as in Maglaras and Zeevi (2003). In addition, our multi-

server framework allows the service system to achieve statistical economies of scale and gives rise

to an entirely different heavy traffic regime that is otherwise not possible (see also Section 3.3 in

Maglaras and Zeevi (2003) for further discussion). Zhou et al. (2014) and Lian et al. (2016) also

assume that all customers have the same valuation for service. Our model explicitly captures the

heterogeneity in valuations which has several important implications on our results. Specifically,

our elasticity assumption underpins the optimality of the QED regime asymptotically and allows

us to provide tractable closed form expressions that yield insight that is otherwise not possible.

Furthermore, we find that the elasticity and type of the demand distribution are also significant

factors in determining whether free trials are beneficial.

2. Model Description

In this section, we provide our queueing model dynamics along with a customer choice model in

order to establish equilibrium demand and customer’s expected delay. We also describe economic

objectives of the service provider.

2.1. Queueing Dynamics

Consider a service provider that operates under C units of capacity which corresponds to the

number of processing resources available. The service provider uses these resources to serve its

current customers, which we refer to as regular customers hereafter, and a new market of customers,

which we refer to as free trial customers hereafter. We assume the regular customers arrive according

to a Poisson process with rate Λ1 per day, and that their service requirements follow an i.i.d.

exponential distribution with mean 1/µ for µ∈ (0,∞).

Next, we describe the free trial process in detail. We assume each free trial cycle lasts for a fixed

duration of τ days and that the free trial service is offered on an ongoing basis for an arbitrarily long

planning horizon of T days. Each day, the system faces arrivals from two types of customers: paying

customers which is compromised of regular customers and free trial customers from previous cycles

who converted to be paying customers, and the current free trial customers who are experiencing

the service for free. Free trial customers have service requirements that are identical to regular

customers and arrive into the system according an independent Poisson processes with rate Λ2/τ

per day. We let δt denote the conversion rate of the customers who start their free trial at day t.

Hence, when the free trial of those customers expires at day t+ τ , a proportion δt of them converts

into paying customers. Then, we let σt :=
1

τ

t−τ∑
j=1

δj denote the cumulative portion of customers
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that converted up to time t, and we see that Λ1 and Λ2,t := Λ2σt represent market size (i.e., the

maximum potential arrival rate) of regular and converted free trial customers at day t, respectively.

We assume that paying customers make entry decisions based on the customer choice model which

is described next, and as a result, the effective arrival rate in equilibrium remains Poisson. Hence,

the queueing dynamics both prior and after offering free trials is that of M/M/C (Erlang-C) model

with an endogenous arrival rate to be made specific. Finally, to ensure stability of the system, we

assume that Λ2 <C and that within each day the system operates under its stationary distribution.

2.2. Customer Choice Model

We assume that customers are endowed with i.i.d. service valuations v (reservation price) for

service, that are also independent of the arrival processes and service requirements. We assume

that converted free trial customers have the same distribution as regular customers and that they

become identical to regular customers once they experience the system and are familiar with the

service offer. We let P denote the probability distribution of the valuation v and we assume that the

cumulative distribution function F is an increasing generalized failure rate1 (IGFR) distribution

that is strictly increasing on its support, and that it has a continuous density f and a finite mean.

Potential customers in free trial cycle t join the system only if their valuation is greater or equal

to the expected value of the full price of service, which we describe next.

The full price of service in free trial cycle t includes the per usage fee for the service and the

additive linear delay cost. The firm charges a fixed usage fee $pt > 0 for service. Current free

trial customers do not pay this fee during the free trial promotion. The paying customers are

also sensitive to delay and incur a cost $q > 0 per unit time of delay. However, customers are not

endowed with their actual delay at the time of arrival, and thus base their decision on average

delay. In other words, we assume that the system operates as an unobservable queue.

2.3. Equilibrium Demand and Equilibrium Expected Delay

We assume that the system operates in the equilibrium steady state every day. Then, the equilib-

rium arrival rate into the system for any fixed service price $p > 0 at day t≥ τ is

λt(p) :=

(
Λ1 +

Λ2

τ

t−τ∑
j=1

δj

)
P (v≥ p+ qE [Dt]) + Λ2 = (Λ1 + Λ2,t) F̄ (p+ qdt) + Λ2, (1)

where F̄ (·) := 1−F (·), and dt :=E [Dt] :=E [Dt(p)] is the equilibrium expected delay in free trial

cycle t. We interpret (1) as follows: Under the equilibrium expected delay E [Dt], the full price

1 We say that the user valuation v has increasing generalized failure rate (IGFR), or equivalently that the cumulative
valuation distribution F (x) is an IGFR distribution if the generalized failure rate g(x) := xh(x) is an increasing
function, where h(x) := f(x)

F̄ (x)
is the failure (hazard) rate. IGFR is a fairly common assumption in the revenue man-

agement/pricing literature and is satisfied by many distributions (see, for example, Lariviere (2006) and Ziya et al.
(2004)).
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of service becomes p + qE [Dt], and thus a customer joins the system with probability P (v ≥
p+ qE [Dt]). Those customers who join and pay for service are either regular customers or free

trial customers whose converted. Thus, the total arrival rate becomes that of paying customers,(
Λ1 +

Λ2

τ

t−τ∑
j=1

δj

)
P (v≥ p+ qE [Dt]), plus the current free trial customers, Λ2.

Implicit in the equilibrium notion of (1) is an intrinsic feedback between delay and demand.

Indeed, (1) implies that the equilibrium arrival rate and delay are consistent in the following way:

The average steady state delay that arises in an Erlang-C queue where the arrival rate is equal

to the equilibrium arrival rate, also yields the same equilibrium arrival rate under the assumed

customer choice model. Our first result, which we present next, states that for all free trial cycles,

the said equilibrium exists and is unique.

Proposition 1. (System Equilibrium) Given a capacity C > 0 and price p > 0, there exists

a unique equilibrium arrival rate and a corresponding eqilibrium expected delay for all t= 0, . . . , T .

2.4. Economic Objective of the Service Provider

We consider two related economic objectives in our paper: ex ante joint pricing and capacity

optimization and capacity optimization, where the former corresponds to the initial system opti-

mization prior to offering free trials. Our analysis has a dual purpose; in addition to determining

the optimal operating policy , it also enables us to study the effect of offering free trials.

Ex ante joint pricing and capacity optimization: We assume the service system has already

been optimized prior to offering free trials (i.e., at period t = 0). In other words, at t = 0, the

system is operating under the optimal price p?0 and the capacity C?
0 so as to maximize the profit

rate P0(p,C), which is defined as

P0(p,C) := pλ(p)−wµC = pΛ1F̄ (p+ qE[D0])−wµC, (2)

where w> 0 is the cost per capacity per day. Hence, the pair (p?0,C
?
0 ) is the solution of the following

optimization problem:

max
p>0,C>0

P0(p,C). (3)

Capacity optimization with free trials: We now assume the service provider offers free trials

and the price is held fixed at p?0, where p?0 is the solution of the initial joint pricing and capacity

optimization (5). Then, the sole decision variable at the disposal of the service provider is the

system capacity. The objective of the service provider is to maximize the expected total revenue

over the T days. Thus, we view the expected total profit rate as a function of the capacity vector

CT := [C1, . . . ,CT ] and express it as

PT (CT ) =
T∑
t=1

[p?0(λt(pt)−Λ2)−wµCt] =
T∑
t=1

[
(Λ1 + Λ2,t)p

?
0F̄ (p?0 + qE [Dt])−wµCt

]
, (4)
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and thus, the objective of the service provider is

max
CT∈RT+

PT (CT ). (5)

Note that the capacity decision at day t does not impact the profit rate in the later days. Then,

the objective function given in (4) decouples and the optimization problem in (5) becomes reduces

to separately solving the following optimization problem for all t= 1, . . . , T :

max
Ct>0

(Λ1 + Λ2,t)p
?
0F̄ (p?0 + qE [Dt])−wµCt. (6)

3. Model Analysis

We consider large scale systems in which their market sizes and capacities grow proportionally

large. We first consider an initial system prior to offering free trials, where capacity and price are

to be jointly optimized. Next, we add free trials on top but without any controls and examine how

the optimal system operates. Finally, we study the system with capacity sizing optimization and

delve into the same problem; how the system scales under optimal policy.

Motivation for Large Scale Analysis. Recall from Proposition 1 that there exists a unique

equilibrium for a fixed price p and capacity C. However there exists no closed form expression for

the equilibrium expected delay or arrival rate. Hence, the optimization problem in (3) can only

be solved numerically. While we use this approach to compute exact optimal quantities in our

numerical studies, it falls short of providing much insight into the operation of the system or the

effect of offering free trials. This motivates us to take an approximate asymptotic approach and

consider large scale systems. We describe our approach in the next section.

Scaling of Capacity and Market Sizes. Throughout our asymptotic analysis, we consider a

sequence of systems indexed by a generic variable n (to appear as a superscript) with the under-

standing that as n grows large so do the market size(s) and the capacity. Specifically, under initial

system optimization, we let the regular market size grow large with n. In this case, the optimal

capacity is a decision variable and grows large naturally while the free trial market size is irrel-

evant. Then, we incorporate free trials (but without any further control) by letting the capacity,

regular market size, and free trial market size grow large proportionally. Finally, under capacity

optimization with free trials, we let the regular market size and free trial market size grow large

proportionally (while the optimal capacity grows as the decision variable). We also note that the

mean service requirement 1/µ, the valuation cdf F (·), the delay cost q, and the conversion rate δt

do not scale with n and remain fixed throughout these sequences. As a result, individual customer

characteristics remain the same while the aggregate market size(s) grow large. For all cases, we

first present our asymptotic results, and then we translate these asymptotic results and interpret

them in the context of what they imply for the original system.
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3.1. Setting the Benchmark: Initial System Optimization (Optimality of the QED
regime)

We assume that the firm has ex ante optimized the capacity and the static per usage price before

offering a free trial service. That is, we first study the joint price and capacity optimization of a

service system without free trials. It turns out that, for large scale systems, the optimal price and

capacity are such that the optimal system operates under the so-called Quality-Efficiency-Driven

(QED) heavy traffic regime where small average delays are accompanied by high utilization levels.

Theorem 1. Suppose the regular market size scales proportionally to the scaling factor n. Then,

the optimal system operates in the QED regime and

λ?,n0 := λ(C?,n
0 , p?,n0 ) =C?,n

0 µ−β?
√
C?,n

0 µ+ o(
√
n) and p?,n0 = p̄0(C?,n

0 ) +
π?√
n

+ o(
1√
n

)

P ?,n
0 =C?,n

0 p̄(C?,n
0 )−

√
C?,n

0 µ (p̄(C?,n
0 )β?−π?)−C?,n

0 µw.

where p̄0 := p̄(C?
0 ) is such that Λ1F̄ (p̄0) = C?

0µ. Here, π? and β? := β(π?) are the optimal second

order price/capacity corrections defined as

π? := arg min
π∈R

{p̄β (π)−π}, (7)

and for fixed π ∈R, β(π) is the unique solution of

1

q

(
F̄ (p̄)

f (p̄)
β−π

)
=

φ (β)

β (βΦ(β) +φ (β))
, (8)

where φ(·) and Φ(·) denote the standard normal probability density function and cumulative distri-

bution function, respectively. The optimal profit scales as

Note that the QED heavy traffic regime emerges as the optimal regime (as opposed to being

assumed). Consequently, we are able to derive insights with regards to the operations of optimally

designed large scale service systems. Since we take such a system as our benchmark, this will also

help us understand the effect of offering free trials. To do so, we have to first “translate” the

asymptotic results in 1 and interpret them in the context of a a finite size system.

Practical Implications for Finite Size Systems. Theorem 1 allows us to shed light on the

operation of optimally designed large scale service systems as follows: First, we see that large

scale service systems operate under the QED heavy traffic regime and thus enjoy high utilization

levels (high efficiency) accompanied by delays that are negligible, i.e., the equilibrium delay is a

second order effect (high quality of service). Second, because delay is a second order effect, the

optimal arrival rate, optimal price, and the optimal profit rate admit a two-part representation

including a first order term (that ignores stochasticity) and a second order term (that accounts
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for stochasticity). Then, we can interpret the asymptotic results in Theorem 1 in the context of a

finite size system. Specifically, when the optimal capacity is C?
0 , the optimal arrival rate scales as

λ?0 ≈C?
0µ−β?

√
C?

0µ (9)

while the the optimal price scales as

p?0 (C)≈ p̄0(C?
0 ) +

π?0(C?
0 )√

C?
0

. (10)

Furthermore, the optimal profit rate scales as

P ?
0 ≈C?

0 p̄(C
?
0 )−

√
C?

0µ (p̄(C?
0 )β?−π?)−C?

0µw. (11)

Remark 1. (An Asymptotically Optimal Capacity Control)

Based on Theorem 1, we can also construct an asymptotically optimal control by setting the

capacity equal to

Ĉ0 := arg max
C>0

(Cµ−Λ2) p̄ (C)−wµC, (12)

and the price equal to

p̂0 := ˆ̄p0 + π̂0/

√
Ĉ0, (13)

where ˆ̄p0 := p̄0(Ĉ0) and π̂0 is the minimizer of the second order profit correction term in square

brackets in (7). Then, it follows from Theorem 1 and Theorem 3 in Maglaras and Zeevi (2003)

that the pair (Ĉ0, p̂0) is asymptotically optimal. Moreover, p̄0(C?,n
0 )→ ˆ̄p0 as n→∞. Hence, the

optimal price p?,n0 also converges to ˆ̄p0 which only depends on the valuation distribution and the

linear staffing cost.

3.2. Uncontrolled System (Emergence of the ED regime)

We assume that once the firm starts to offer free trial promotions, the firm cannot change neither

capacity nor price (no control), or it can change the capacity at the beginning of each free trial

cycle to maximize the total profit (capacity optimization). In this section, we examine the former

situation.

We start our asymptotic analysis by considering a sequence of systems where the capacity, regular

market size, and free trial market size grow large proportionally. Specifically, we assume that the

capacity, the regular market size, and the free trial market size increase proportionally according

to

Cn := n,

Λn
1 := κ1µn, and Λn

2 := κ2µn,
(14)
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respectively, for κ1 := Λ1
C?0µ

> 0 and 0≤ κ2 := Λ2
C?0µ

< 1. Then, we see that the market size of converted

free trial customers scales as

Λn
2,t := Λn

2

t−1∑
j=1

δj = σtκ2µn, (15)

for all t≥ 1. Note that the original system is indeed embedded in this sequence and can be recovered

by setting n=C?
0 . Again, we only scale the regular and free trial market sizes along with capacity,

but not the individual customer characteristics. Then, p̄t, the price that matches the capacity to

demand in the absence of delay, is constant throughout this sequence for fixed t and given by

(Λn
1 + Λn

2σt) F̄ (p̄t) + Λn
2 =Cnµ, (16)

or equivalently via

p̄t = F̄−1

(
Cnµ−Λn

2

Λn
1 + Λn

2σt

)
= F̄−1

(
Cµ−Λ2

Λ1 + Λ2σt

)
= F̄−1

(
1−κ2

κ1 +κ2σt

)
. (17)

Similarly, we let p̄0 be defined analogously for the system prior to offering free trials, i.e., for a

system with Λ2 = 0 as

p̄0 = F̄−1

(
Cnµ

Λn
1

)
= F̄−1

(
Cµ

Λ1

)
= F̄−1

(
κ−1

1

)
. (18)

Using the definition in (17), we see that p̄t is increasing in Λ1 and Λ2, and that p̄t > p̄0 for all t≥ 1.

The constant price p̄t will indeed play a pivotal role in our asymptotic analysis in what follows.

Particularly, the fact that p̄t > p̄0 suggests that it is desirable for the system manager to increase

the price in response to the increased demand due to the addition of free trials. However, the price

cannot be changed and must remain fixed at p?0, the optimal price that is set prior to offering free

trials. Consequently, the desired increase in the full price of service can only be achieved with an

increase in the expected delay. Our main result of this section formalizes this intuition.

Theorem 2. (Emergence of ED with Free Trials) Suppose regular market size and free

trial market scale proportionally to the ex ante optimal capacity. Then, with free trials the system

moves into the Efficiency-Driven (ED) heavy traffic regime:

dnt = d̄t +
1

(Λn
1 + Λn

2σt)d̄tf(p̄t + qd̄t)
+ o(1/n)

where d̄t := p̄t−p̄0
q

. Furthermore, optimal revenue scales as

Rn
t (C?,n

0 , p?,n0 ) = p?,n0

[
(C?,n

0 µ−Λn
2 )− 1/d̄t

]
+ o(1).

Remark 2. (Intuition and Relation to Earlier Literature) The intuition behind The-

orem...
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Practical Implications for Finite Size Systems. Once free trials are incorporated, we see

from Theorem 2 that the system operates under the Efficiency-Driven heavy traffic regime where

the delay is no longer negligible. For large systems, we can approximate the delay in day t by

the first order delay as dnt ≈ d̄t. Similarly, can approximate the revenue in day t by the first order

revenue as Rt(C
?
0 , p

?
0)≈ p?0

[
(C?

0µ−Λ2)− 1/d̄t
]
. Moreover, we expect the delay to increase in time

and converge to an upper bound since the first order delay d̄t is increasing in t. On the other hand,

we expect the revenue to increase in time and converge to an upper bound. To verify these insights

we plot the exact revenue against the first order fluid approximation in Figure 1.

Figure 1 % Effect of Offering Free Trials under Free Trial Market Rates

In Figure 1, we assume that the valuations follow a uniform distribution with v∼U [0,4]. We also

set the initially optimized capacity at C?
0 = 400, the regular customer market size at Λ1 = 825 per

day, and the free trial market size at Λ2 = 20 per day. Furthermore, we assume that the free trial

duration is τ = 30 days and that δt = 1 (i.e., all free trial customers convert to regular customers)

and we let µ= q = 1. We make two important observations from Figure 1: First, we see that the

first order approximation performs remarkably well and closely captures the behavior of the exact

revenue, thanks to the o(1) optimality established in Theorem 2. Second, we see that revenue rate

increases towards an upper bound also as suggested by the first order fluid approximation.

Effect of Offering Free Trials (What to Expect). Having verified the performance of the first

order approximation, we now turn to the focal point of this section, namely the effect of offering

free trials. To do so, we use the ex ante optimized system as our benchmark and assess the benefit

of offering free trials by comparing the revenue rate of after offering free trials to that of the ex
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ante optimized system. To start, we recall from the analysis in Section 3.1 that the revenue rate

prior to offering free trials can be expresses as

R?
0 ≈ p?0

[
C?

0µ−β?
√
C?

0µ
]
. (19)

Note that the term in the parentheses on the right-hand-side of (19) is the equilibrium arrival rate

which is the rate revenue is generated. This rate is smaller than the system capacity C?
0µ by a

term that is proportional to the square root of system capacity
√
C?

0µ which is due to the inherent

stochasticity of the system. After incorporating free trials, the revenue rate in day t becomes

Rt(C
?
0 , p

?
0)≈ p?0

[
(C?

0µ−Λ2)− 1/d̄t
]
. (20)

From (19), we see that the primary effect of incorporating free trials to an ex ante optimized system

is decrease in the effective capacity by a magnitude that is equal to the free trial market size Λ2.

Furthermore, we see that there is a secondary effect due to the now non-negligible delay that fades

away in time as free trials are offered.

The next step in understanding the effect of offering free trials is to compare the revenue rate

with free trials given in (20) to the benchmark revenue rate in (19). Consequently, we see that

the relevant trade-off is between the decrease in effective capacity and the gain in additional

throughput, which, in turn, depends on the relative magnitude of the free trial market size and the

square root of the ex ante optimal capacity as follows:

Case 1 Small Free Trial Market Sizes: When magnitude of the free trial market size Λ2 is small

compared to the
√
C?

0 , the square root of the ex ante optimal capacity, offering free trials can

indeed yield a benefit. However, it follows from (19) that the alluded benefit can be at most be of

order of
√
C?

0 . Consequently, the relative benefit of offering free trials will be of order of
√
C?

0 , and

thus negligible in larger systems.

Case 2 Large Free Trial Market Sizes: When the magnitude of the free trial market size Λ2 is

larger than the
√
C?

0 , offering free trials will in fact decrease the revenue rate thereby hurting the

company. This is because the loss in revenue due to the decrease in the effective capacity dominates

the gain from the increased market size.

In summary, we find that it is the relative magnitude of the free trial market size that determines

whether the firm is better off offering a free trial service. This happens when the magnitude of free

trial market size is small compared to the square root of the ex ante optimal capacity in which

case the relative benefit of offering free trials will be small. Hence, we conclude that a service firm

cannot expect to incur substantial benefits without further action. It is also interesting to note

that the conversion rate does not play a significant role in this which is counter to the emphasis on
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improving conversion rates in the marketing literature (see, for example, Foubert and Gijsbrechts

(2016))

Effect of Offering Free Trials (What Really Happens). In this section we numerically verify

that our asymptotic intuition for the benefit of free trials is indeed accurate for large systems of

finite size. To do so, we plot percentage change in exact revenue rate (with respect to the revenue

rate in our benchmark system without free trials) as a function of time by varying free trial market

sizes in Figure 3.2 and by varying conversion rates in Figure 3.2. We set all other parameters as in

Figure 1 and also start plotting revenue rates once conversions start to happen at t= τ .

In Figure 3.2, we plot the exact percentage change in exact revenue for three different free trial

market sizes: Λ2 = 20, Λ2 = 25, and Λ2 = 30, respectively. Recall that the ex ante optimal capacity

which is kept fixed is C?
0 = 400 . Then, our insights based on asymptotic analysis suggest that

offering free trials should be beneficial only for small free trial market sizes that are of order of

Λ2 =
√

400 = 20. Indeed, it is only the case with Λ2 = 20 among the three that yields some long-run

benefit; but as expected, the relative benefit is not substantial (around 0.5%). For the two other

free trial market sizes that are only slightly higher, the service firm is in fact worse off offering free

trials. Interestingly, and in line with our asymptotic results, we see that a smaller free trial market

size is preferable.

Figure 2 % Effect of Offering Free Trials under Free Trial Market Rates

Next, we examine the effect of conversion rates on the benefit of offering free trials in Figure

3.2, where we plot the exact percentage change in exact revenue for three different conversion

rates: δt = 0.50, δt = 0.75, and δt = 1.00, respectively. Our asymptotic analysis suggests that the

conversion rate does not play a significant role in determining the long run benefit of offering free
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trials. Figure 3.2 corroborates this insight: We see that the long run revenue rate is converging

towards the same rate. On the other hand, a higher conversion rate is still preferable in the short

run as it yields a higher the revenue rate.

Figure 3 % Effect of Offering Free Trials under Free Trial Market Rates

Discussion Our analytical and numerical results shed light onto the operational effect of offering

free trials and yield the following new and important insights: We find that a service firm that ex

ante optimizes its capacity and price and offers free trials without any further control will not be

able to enjoy the expected benefits of free trials. Specifically the firm will be either worse off offering

free trials; or, when the firms is better off, the associated benefits will be small and thus negligible

in larger systems. This also suggests, all else being the same, that a service firm will prefer a smaller

free trial market size which sharply contradicts the marketing intuition that a larger market size

can make up for smaller conversion rates (see, for example, Kumar (2014)). Another surprising

result we get is that larger conversion rates do not have a significant impact on the revenues in the

long run. This suggests that the emphasis on achieving higher conversion rates in the marketing

literature (see, for example, Foubert and Gijsbrechts (2016)) is not necessarily warranted and that

the service firm should opt for a different solution to unlock the expected benefits of free trials.

This is the focus of our next section.

4. Capacity Optimization with Free Trials: Unlocking the Benefits of
Free Trials

The major takeaway from the analysis in Section is that free trials cannot be converted into

throughput which is the primary reason why the expected benefits of an increased market size are

not realized. Another potential issue is that the quality of service as measured by the expected

delay deteriorates as free trials are offered. Hence, it might be desirable to mitigate this effect. One
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potential solution to is increasing the system capacity on the go as free trials are offered. This leads

us to consider the capacity optimization problem with free trials where the firm can optimally set

the capacity at the beginning of each day (while keeping the price fixed), to maximize the log run

average profit per day (recall from Section that the problem decouples and that maximizing the

average profit per day is equivalent to maximizing profit for a given planning horizon).

We devise an asymptotically optimal capacity sizing policy which shows that offering free trials

is always beneficial for large scale systems provided that the linear capacity cost is below a certain

threshold; see the condition (22) below.

Our first step is to solve for the first-order approximation of the optimal profit given by

max
C≥0

P̂ (C) := (Cµ−Λ2) p̄ (C)−wµC,

and let Ĉ be the corresponding maximizer. Also, set the first order price term ˆ̄p := p̄(Ĉ). This is

justified because ˆ̄p := p̄(Ĉ)≈ p̄(C?), and we can show the system still operates under QED with

capacity Ĉ.

Indexing. Our first and main result of this section establishes that increasing the capacity opti-

mally puts the optimally designed system back into the QED heavy traffic regime.

Theorem 3. (Optimality of QED) Suppose the regular and free market sizes scale propor-

tionally. Then, the first order optimal capacity Ĉn is asymptotically optimal, i.e,

P n(Ĉn, p?,n0 )

P n(C?,n, p?,n0 )
→ 1 as n→∞,

and, under the exact optimal capacity C?,n, the expected delay is negligible for large scale systems,

i.e.,

d?,nt → 0 as n→∞.

Furthermore, the QED heavy traffic regime is optimal in the sense that the optimal expected delay

d?,nt scales as

√
nd?,nt → d?t ∈ (0,∞) as n→∞.

Note that Theorem 3 is important on its own as it shows that the optimal system operates in the

QED regime. As a consequence we see that expected delays are negligible gain, and that the impact

of offering free trials on the QoS is mitigated. On the other hand, Theorem 3 does not provide an

explicit expression for the optimal profit or capacity. This is important because we would like to

understand the effect of offering free trials when capacity is optimized. To do so, we will first derive

an asymptotically optimal capacity which will lead to an approximate yet tractable expression for
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the optimal profit in large systems. Then, we will use the aforementioned expression to shed light

onto the effect of offering free trials.

Our approach to devise an asymptotically optimal capacity is as follows: First we optimize the

first order approximation of the optimal profit under joint capacity and price optimization with

free trials. Specifically, we solve

max
Cnt ≥0

P̂t(C
n
t ) := (Cn

t µ−Λ2) p̄t (C
n)−wµCn

t = (Λn
1 + Λn

2 )
[
p̄t (C

n) F̄ (p̄t (C
n))−w

(
F̄ (p̄t (C

n))−κ2

)]
,

and let Ĉ be the corresponding maximizer. We also set the first order price term ˆ̄p := p̄t(Ĉt), which

only depends on the valuation distribution F and capacity cost w.

Proposition 2. (Characterization of the Optimal First Order Price and Capac-

ity) There exists a unique Ĉt that solves (EC.26) and a corresponding ˆ̄pt := p̄t(Ĉt) which can be

further characterized as follows:

(i) If vmin− F̄ (vmin)

f(vmin)
<w, then ˆ̄pt ∈ (vmin, vmax) and solves the first order condition given in (EC.28)

or equivalently in (EC.29).

(ii) If vmin− F̄ (vmin)

f(vmin)
≥w, then ˆ̄pt = vmin .

It follows that the sequence of optimal capacity and price pairs yields a scaled limiting profit

of ˆ̄pF̄ (ˆ̄p) − w(F̄ (ˆ̄p) + κ2), which is identical to that of the proposed capacity Ĉ along with an

appropriately set price is asymptotically optimal for the joint problem as it achieves the same

limiting profit as the exact optimal policy.

Then, the question is if the proposed capacity Ĉ can achieve the same limiting scaled profit under

capacity optimization where the price is set to p?,n0 . Since the optimal profit under capacity opti-

mization is bounded by the optimal profit under joint capacity and price optimization, this would

imply that the proposed capacity Ĉ is also asymptotically optimal under capacity optimization. It

turns out this is indeed the case and that

P n
t (Ĉn

t , p
?,n
0 )

Λn
1 +σtΛn

2

→ ˆ̄pF̄ (ˆ̄p)−w(F̄ (ˆ̄p) +κ2),

which leads us to our next result.

Proposition 3. Suppose the regular and free market sizes scale proportionally. Then, the first

order optimal capacity Ĉn is asymptotically optimal, i.e,

P n(Ĉn
t , p

?,n
0 )

P n(C?,n
t , p?,n0 )

→ 1 as n→∞,

It follows from Proposition 3 that

P n
t (C?,n

t , p?,n0 )

Λn
1 +σtΛn

2

→ ˆ̄pF̄ (ˆ̄p)−w(F̄ (ˆ̄p) +κ2). (21)
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The importance of (21) is that it enables us to approximate the optimal profit which in turn

provides a condition under which a large scale service firm is better off by offering the free trials.

We present the said approximation along with the condition it yields next.

Proposition 4. Suppose the regular and free market sizes scale proportionally. Then,

P (C?)≈ P (Ĉ) = Λ1

[
ˆ̄pF̄
(
ˆ̄p
)
−w

]
+ Λ2

[
(ˆ̄p−w)σtF̄

(
ˆ̄p
)
−w

]
Therefore, for large scale systems, offering free trials is beneficial in day t if and only if

w< (ˆ̄p−w)σtF̄
(
ˆ̄p
)
. (22)

It is worthwhile to note that whether offering free trials is beneficial in day t depends only the model

parameters F , σt, and w. It is also clear that once condition (22) holds in day t, it continues to hold

since σt is increasing in t. Hence, it is the valuation distribution, capacity cost, and conversion rates

that determine when free trials start to become beneficial and remains so thereafter. Furthermore,

the condition (22) can be explicitly determined. For example, we can assume a free trial period

of 30 days and set σt = 1 to determine the condition for free trials to be beneficial 2 months into

offering free trials (recall the first 30 days will not generate any revenue yet). Then under U [0, θ]

valuations, we require w< θ/(3 + 2
√

2) with σt = 1. It is also interesting to notice that the earned

benefit is (approximately) linear in t if δt is constant, i.e., when the conversion rate does not change

from day to day.

Numerical Example. Next, we illustrate our asymptotic insights for a finite size system numeri-

cally. We let the regular market size Λ1 = 900 and assume that customer valuations follow a uniform

distribution where v ∼ U [0,4]. The service rate µ, customer delay cost q, and conversion rate δt

is set to 1. Given these parameters, initial system optimization yields and optimal capacity of

C?
0 = 400 when the capacity cost is w = 0.34, which will be the fixed capacity that we assume for

this study. Then, our insights based on asymptotic analysis suggest that offering free trials should

not be beneficial for free trial market sizes that are significantly larger than Λ2 =
√

400 = 20. Hence,

we plot the percentage change in revenue rate with respect to the benchmark case Λ2 = 0 as a

function of time for three different Λ2 values in Figure 3.2. Figure 4 illustrates the said point.

Discussion of Some Key Modelling Choices. We end this section with a discussion of our

modelling choices and possible extensions.

• Quality of Service Dependent Conversion Rates: It is reasonable that customers make their

conversion decisions based on the quality of service as measured by the expected delay experienced

during the free trial. Particularly, it is possible that the conversion rate of a customer starting her

free trial in period t is in fact a function that depends on all the expected delays experienced in an
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Figure 4 % Effect of Offering Free Trials under Free Trial Market Rates

arbitrary way and given by δt(dt), where dt := [dt, dt+1, · · · , dt+τ ]. It is also reasonable that δ(·) is

a decreasing function of its arguments. While a thorough analysis of this extension is cumbersome,

we believe that the essence of our results extend to this setting. To see why, first notice that

our analysis thus far correspond to the ideal case with a conversion rate of δt(0). However, we

know that in reality the system with free trials but no control operates in the ED heavy traffic

regime with non-negligible delays. This implies that the conversion rates are even lower and thus

the benefit of offering free trials is even further limited. On the other hand, when capacity is

optimized as free trials are offered, the systems moves back to the QED heavy traffic regime where

delays are negligible and conversions are close to the assumed ideal level. Thus, optimizing capacity

plays a dual role with QoS dependent conversions: It relaxes the constraint on the capacity while

simultaneous making sure that delays are kept at bay so that conversions are occurring as effectively

as possible.

• Heterogeneous Valuation Distributions: It is also plausible that free trial customers have a

different valuation distribution. Specifically, the free trial customers might have a valuation dis-

tribution that is stochastically smaller than the regular customers. Again, we believe that such

an extension does not change the main takeaway of our paper. In the case of free trials with no

control, we would expect a lower arrival rate from converted free trial customers resulting an even

smaller gain from offering free trials.

• Stationarity: We have assumed that the service company is able to attract the same free trial

market size from which a certain percentage converts. It is also possible that the free trial market

size is time-dependent. As long as the service firm can dynamically adjust capacity, our main results

continue to hold.
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5. Conclusions

Despite the pervasive practice of free trial services in high tech information, retail, and entertain-

ment services, there is limited research as to its operational impact on improving firms’ profits.

This paper offers a stochastic model and examines whether offering free trials is really beneficial

to the service providers. Our analysis reveals the following intriguing structural and actionable

insights that are relevant to large scale service systems:

1. Prior to offering free trials service, when the service provider ex ante optimizes its price and

capacity, it is always optimal to choose the capacity and price such that the system operates in the

QED heavy traffic regime. This implies the initial optimized system experiences small expected

delays while enjoys a high utilization with ample capacity of order of square root of service demand.

2. When the regular market size and free trial market size scale proportionally, free trials decrease

the revenue rate and are not beneficial. On the other hand, when the free trial market scales as

the order of square root of the regular market size, free trials do increase the revenue rate and are

beneficial. However, it can only be beneficial up to the square root order of the ex ante optimal

capacity and as such the benefit is relatively limited in large scale systems.

3. The aforementioned benefit will even be further limited if conversion rates are QoS (quality

of service) dependent, and we see that increasing conversion rates doesn’t benefit the system much.

Therefore, it is advisable that the service firm should opt to increase capacity to turn the converted

customers into throughput and to fully unlock the benefits of free trials.

There are several interesting directions for future research. First, we would like to point out that

we assumed that the parameters of our problem are fully known to the service provider. Thus,

an interesting extension is to model the Bayesian learning problem where the service provider

either learns consumer characteristics as in Afèche and Ata (2013) or the market size as in Araman

and Caldentey (2009). Second, under our model, both paying customers and current free trial

customers receive the same level of service. To optimally design the system so as to attain maximum

profit rate, the system manager could consider differentiating service levels such that the paying

customers receive a higher service level as in Maglaras and Zeevi (2005). Note also that we only

consider the case where customers pay a price each time they use the service (i.e., pay-as-you-go),

but not the case where customers pay a membership or subscription fee independent of their actual

usage. Hence, an interesting future research topic is to take an approach similar to Randhawa and

Kumar (2008) and to refine our asymptotic analysis by incorporating the subscription and the

pay-as-you-go pricing schemes in the face of free trial markets, and to compare their operational

benefits. Finally, we note that there is an emerging business model that is similar to free trials: In

the so-called freemium business model, customers can access a basic version of a service for free

and indefinitely while a premium version of the service with enhanced features can be accessed
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by paying a fee (see, for example, Mishra et al. (2018)). A possible future research direction is to

compare the operational benefits of free trials and freemium services, and to determine conditions

under which one is preferred over the other.

6. Appendix: Proofs of Main Results

In what follows, the notation fn = O(gn) means that lim sup
n→∞

fn/gn <∞ and the notation fn =

o(gn) means that lim
n→∞

fn/gn = 0.

Proof of Proposition 1: In this proof only, we let the superscript e denote an equilibrium quantity

for a given price. Given ξ > 0, we also let E [D(ξ)] denote the expected delay in an M/M/C queue

facing the arrival rate λ(p+ qξ). Then, the equilibrium delay and equilibrium arrival rate satisfy

λ (p+ qξe) = (Λ1 + Λ2)P (v > p+ qξe) + Λ2 and ξe =E [D(ξe)] .

Define h (ξ) := ξ−E [D(ξ)] and observe that h (0)< 0 and h (∞)> 0. Also, note that E [D] is a

continuously differentiable function of the arrival rate λ and the arrival rate λ (·) is a continuously

differentiable function of ξ. Furthermore, λ (·) is a decreasing function of ξ and expected delay E [D]

is an increasing function of the arrival rate λ. Thus, it follows from the chain rule that E [D(ξ)] is

continuously differentiable and that

h′ (ξ) = 1− ∂

∂ξ
E [D(ξ)]> 0.

Hence, h (ξ) = 0 has a unique solution 0< ξe <∞, which is the equilibrium expected delay. The

equilibrium arrival rate is λe (p) = (Λ1 + Λ2)P (v > p+ qξe) + Λ2, and since ξe is finite, the equilib-

rium traffic intensity satisfies ρe = λe(p)

Cµ
< 1. �

Proof of Theorem 1: We first show that the optimal system operates under the QED heavy

traffic regime. It follows from the analysis in Section EC.1.1 that this is equivalent to showing

that the elasticity condition in Condition 1 holds under the sequence of optimal capacities C?,n for

large enough n. Suppose this is not the case. Then, there must exist a subsequence along which

the elasticity assumption does not hold. With an abuse of notation we let C?,n also denote this

subsequence. Then, Theorem EC.3 implies that the system operates under the QD heavy traffic

regime along this subsequence and the optimal revenue rate is given by

R?,n = (Λn
1 + Λn

2 )p̃F̄ (p̃) + o(n).

Now we define C̃n := (Λn
1 + Λn

2 )F̄ (p̃) + Λn
2 and note that p̄(C̃n) = p̃. We differentiate between two

cases: ε(vmin)≤ 1 and ε(vmin)> 1. We start with the former, and assume ε(vmin)≤ 1 first. Then,
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since we know that the elasticity condition does not hold, it must be true that C?,n ≥ C̃n for all n

along this subsequence. Hence, the optimal profit rate satisfies

P ?,n ≤ (Λn
1 + Λn

2 )p̃F̄ (p̃)−wC̃nµ+ o(n), (23)

for all n along this subsequence. Note also that p̄(C̃n) = p̃ is a feasible solution to (EC.26), and since

ε(vmin)≤ 1, we have that ε(p̃) = 1. However, it follows from Proposition 2 that there is the unique

ˆ̄p := p̄(Ĉn) that satisfies the first order condition (EC.29), and thus ε(ˆ̄p)> 1. Hence, p̄(C̃n) = p̃ is a

strictly suboptimal solution to (EC.26), which implies that

(C̃nµ−Λn
2 )p̃−wC̃nµ< (Ĉnµ−Λn

2 )ˆ̄p−wĈnµ,

or equivalently that

(Λn
1 + Λn

2 )p̃F̄ (p̃)−wC̃nµ< (Λn
1 + Λn

2 )ˆ̄pF̄ (ˆ̄p)−wĈnµ. (24)

Next, we recall from Proposition 2 that Ĉn satisfies the elasticity assumption. Thus, it follows from

the analysis in Section EC.1.1 that

P̂ n = (Λn
1 + Λn

2 )ˆ̄pF̄ (ˆ̄p)−wĈµ+ o(n). (25)

Then, combining (23) and (25) with (24) yields that

limsup
n→∞

P̂ n

P ?,n
=

P n
(
Ĉn, p̂n

)
P n (C?,n, p?,n)

> 1, (26)

and contradicts the optimality of the subsequence of capacities C?,n. Hence, we conclude that such

a subsequence cannot exist when ε(vmin)≤ 1.

Next, we assume ε(vmin)> 1. Then, p̃= vmin, and since the elasticity assumption does not hold,

we see that C?,n < C̃n and that

P ?,n < (Λn
1 + Λn

2 )p̃F̄ (p̃)−wC̃µ+ o(n).

Again, it follows from Proposition 2 and the analysis in Section EC.1.1 that

P̂ n = (Λn
1 + Λn

2 )ˆ̄pF̄ (ˆ̄p)−wĈµ+ o(n).

Essentially the same arguments as before also yield that

(Λn
1 + Λn

2 )p̃F̄ (p̃)−wC̃nµ≤ (Λn
1 + Λn

2 )ˆ̄pF̄ (ˆ̄p)−wĈnµ,

where the equality applies only if ˆ̄p= vmin. In either case, we arrive at (26), which leads to the same

contradiction, and shows that there cannot exist a subsequence of optimal system capacities that
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do not satisfy the elasticity assumption. Thus, we conclude that elasticity assumption is satisfied

for large enough n.

Now, we prove the asymptotic optimality of the proposed policy. Recall that Λn
1 and Λn

2 grow

large proportionally according to (EC.30) and define the constant η :=
Λn2

Λn1 +Λn2
= η2

η1+η2
. We also let

κ̂ :=
Ĉnµ−Λn2
Λn1 +Λn2

so that F̄ (ˆ̄p) = κ̂. Then, since Ĉn satisfies the elasticity assumption, it follows from

the analysis in Section EC.1.1 that

P̂ n

Λn
1 + Λn

2

=
P n
(
Ĉn, p̂n

)
Λn

1 + Λn
2

→ κ̂ ˆ̄p−w(κ̂+ η). (27)

Next, we let κ?,n :=
C?,n−Λn2
Λn1 +Λn2

and suppose that κ?,n → κ? ∈ [0,1] as n→∞. Since the elasticity

assumption holds for large n, it also follows from the analysis in Section EC.1.1 that the profit rate

scales as P ?,n = (C?,nµ−Λn
2 )p̄(C?,n) +O(

√
C?,n), and thus

P ?,n

Λn
1 + Λn

2

=
P n (C?,n, p?,n)

Λn
1 + Λn

2

→ κ?p̄(κ?)−w(κ? + η), (28)

where p̄(κ?) := F̄−1(κ?). Note that the limit on the right-hand-side of (28) is the scaled asymptotic

profit rate of a sequence of optimal policies, and so κ?p̄(κ?)−w(κ? +κ2)≥ κ̂ ˆ̄p−w(κ̂+κ2). On the

other hand, Ĉn is the unique maximizer of (EC.26) for all n, which implies κ?p̄(κ?)−w(κ? +κ2)≤

κ̂ ˆ̄p−w(κ̂+κ2). This shows that κ? = κ̂, and completes the proof. �

Proof of Theorem 2: We first prove that the system with no control operates under the Efficiency

Driven (ED) heavy traffic regime, and then we establish the scaling relationships.

Fix t, and suppose that ρnt → ρt < 1, possibly along a subsequence. Then it follows from the

Erlang-C delay formula dnt = ρα
λ(1−ρ) that dnt → 0. Then, applying a Taylor expansion we get

ρnt =
(Λn

1 + Λn
2σt)F̄ (p̄0) + Λn

2 + o(n)

C?,0µ
→ ρt > 1,

which yields a contradiction. Hence, it must be that ρnt → 1 and

ρnt → 1 and dnt → d̄t,

where

d̄t :=
p̄t− p̄0

q

and p̄t is the first order price that sets the capacity equal to demand in period t, i.e.,

(Λn
1 + Λn

2σt)F̄ (p̄t) + Λn
2 =Cµ.
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Next, we let dnt := d̄t + δnt and we observe from the Erlang-C delay formula that

d̄t + δnt =
αnt

Cµ−λnt
,

and after applying a Taylor’s expansion we get

d̄t + δnt =
αnt

(Λn
1 + Λn

2σt)f(p̄t + qd̄t) + o(nδnt )
,

which along with the fact that αnt yields that

δnt =
1

(Λn
1 + Λn

2σt)d̄tf(p̄t + qd̄t)
+ o(1/n).

Hence, it follows that the exact delay scales as

dnt = d̄t +
1

(Λn
1 + Λn

2σt)d̄tf(p̄t + qd̄t)
+ o(1/n)

Finally, we recall that the revenue is given by Rn
t = p?,n0 (Λn

1 + Λn
2σt)F̄ (p?,n0 + qdnt ) and applying a

Taylor expansion we get

Rn
t = p?,n0 (Λn

1 + Λn
2σt)F̄ (p̄0 + d̄t)− p?,n0 (Λn

1 + Λn
2σt)f(p̄0 + d̄t)δ

n
t + o(nδnt )

= p?,n0

[
(Cµ−Λ2)− 1/d̄t

]
+ o(1)

�

Proof of Theorem 3: Let C?,n
t denote the optimal capacity in period t. Similarly, let us suppose

that capacity and price can be jointly optimized along and let Copt,n
t and popt,nt denote the optimal

capacity and price under joint capacity and price optimization. Recall that the system manager

sets the initial price at

popt,n0 = p̄0(Copt,n
0 ) +

πopt0 (Copt,n
0 )√
n

+ o(
1√
n

),

Note also it follows [CITE HERE] that popt,n0 → ˆ̄p. Our claim is that

popt,n0 = ˆ̄p+
π̂0√
n

+ o(
1√
n

).

where ˆ̄p is as defined in [CITE HERE]. To prove our claim, it suffices to show that Copt,n
0 ≤

Ĉn
0 +O(

√
n), which, in turn, will follow if we show that the optimal second order revenue term

√
CΠ?(C) is decreasing in capacity C where Π?(C) := (p̄(C)β(π?)−π?)

Proposition 5. Copt,n
0 ≤ Ĉn

0 +O(
√
n), i.e.,

C
opt,n
0 −Ĉn0√

n
→M for some constant M ≥ 0.
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To prove the proposition [CITE HERE], we show that the second order revenue loss is a decreas-

ing function of the capacity C. Recall Copt,n
0 maximizes profit and Ĉn

0 maximizes the first order

profit (and disregards the second order profit loss due to delay) for given n. Then, the second order

revenue loss of former must be smaller, and thus, it must be that Copt,n
0 ≥ Ĉn

0 for large n. Finally,

noting that the second order revenue loss is O(
√
n) proves that the optimal capacity cannot be

more than O(
√
n) larger, and establishes the result.

Recall that the second order revenue term for a fixed capacity is given by
√
CΠ?(C) where

Π?(C) :=
√
Cµ(p̄(C)β(π?(C))−π?(C)) for π? := arg max p̄(C)β(π)−π

To show that
√
CΠ?(C) is decreasing in C, we first differentiate it to get

d

dC

[√
CΠ?(C)

]
=
√
C
d

dC
[Π?(C)] +

1

2
√
C

Π?(C).

Then, we observe that it suffices to show that d
dC

[Π?(C)]< 0. To show this, we first fix C and recall

that, given the fixed C, the optimal π? satisfies the first order condition

dΠ(π)

dπ
= p̄(C)

dβ(π)

dπ
− 1 = 0.

Hence, it follows that dβ(π)

dπ

∣∣∣
π=π?

= 1
p̄(C)

. Finally, we differentiate Π?(C) to get

dΠ?(C)

dC
=
dp̄(C)

dC
β(π?(C)) + p̄(C)

dβ

dπ

∣∣∣
π=π?

dπ?(C)

dC
− dπ

?(C)

dC

=
dp̄(C)

dC
β(π?(C))> 0,

which establishes the desired result.

Recall from Theorem [CITE HERE] that under joint price and capacity optimization the optimal

capacity and price pair (Copt,n
t , popt,nt ) will satisfy

P n(Copt,n
t , popt,nt )

Λn
1 + Λn

2

→ ˆ̄pF̄ (ˆ̄p)−w(F̄ (ˆ̄p) +κ2).

Next, recalling that

popt,n0 = ˆ̄p+
π̂0√
n

+ o(
1√
n

),

we see that the profit under (Ĉn
t , p

opt,n
0 ) will also satisfy

P n(Ĉn
t , p

opt,n
0 )

Λn
1 + Λn

2

→ ˆ̄pF̄ (ˆ̄p)−w(F̄ (ˆ̄p) +κ2), (29)

which implies that under the optimal capacity C?,n
t capacity optimization it must also be the case

that

P n(C?,n
t , popt,n0 )

Λn
1 + Λn

2

→ ˆ̄pF̄ (ˆ̄p)−w(F̄ (ˆ̄p) +κ2). (30)
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Hence, we see from (29) and (30) that Ĉn
t is indeed asymptotically optimal. Next, we prove that

the optimal capacity C?,n
t along with the initially optimized price popt,n0 indeed yields the QED

heavy traffic regime.

To this end, we first let C?,n
t = Ĉn

t + βnt . In what follows, we will establish that βnt = O(
√
n),

which will allow us to establish that the optimal system operates under QED. First, we see that βnt

cannot be of higher order than n, otherwise the scaled cost will not converge as in (30). Similarly,

it is also not possible to have βnt > 0 and βnt = O(n) since this would increase the limiting cost

without increasing the limiting revenue.

Next, we show that βnt < 0 and βnt =O(n) is not possible either. Suppose first that βnt < 0 and

βnt =O(n). Then, the limiting cost will be smaller than the right side of (30), which requires that

the limiting revenue is also smaller. This, in turn, requires that the expected delay converges to a

nonzero constant, i.e., d?,nt → d?t so that

ˆ̄pF̄ (ˆ̄p) = ˆ̄pF̄ (ˆ̄p+ qd?)−wβµ, (31)

where β := limn→∞
βn

Λn1 +Λn2
. However, this implies that

ρ?,n =
λ?,n

C?,nµ
=

(Λn
1 + Λn

2 )F̄ (ˆ̄p+ qd?) + Λn
2 + o(n)

Ĉn +βn

=
(Λn

1 + Λn
2 )F̄ (ˆ̄p+ qd?) + Λn

2 + o(n)

(Λn
1 + Λn

2 )F̄ (ˆ̄p) + Λn
2 +βn

→ F̄ (ˆ̄p+ qd?) +κ2

F̄ (ˆ̄p) +wβµ+κ2

> 1,

which is not possible. Therefore, we conclude that βn = o(n). It follows that d?,n→ 0 and ρ?,n→ 1

In the last step of the proof, we show that the o(n) term βn is in fact at most of order O(
√
n)

which will establish that QED is indeed optimal. To see this, let us assume that βn is indeed at

most of order O(
√
n). Then, we note that the optimal arrival rate scales as

λ?,n = (Λn
1 + Λn

2 )F̄ (ˆ̄p) + Λn
2 − (Λn

1 + Λn
2 )f(ˆ̄p)(

π̂√
n

+ qd?,n) + o(n(
π̂√
n

+ qd?,n))

= Ĉnµ− (Λn
1 + Λn

2 )f(ˆ̄p)(
π̂√
n

+ qd?,n) + o(n(
π̂√
n

+ qd?,n)) (32)

First, let us suppose
√
nd?,n→ 0, which implies that

√
n(1− ρ?,n)→∞. However, since βn is at

most of order O(
√
n), it follows from (32) that

√
n(1− ρ?,n)→ 0 and yields a contradiction.

Next, suppose that
√
nd?,n→∞. However, the optimal delay must satisfy

d?,n =
α?,n

C?,nµ−λ?,n
=

α?,n

βnµ+ (Λn
1 + Λn

2 )f(ˆ̄p)( π̂√
n

+ qd?,n) + o(n( π̂√
n

+ qd?,n))
, (33)

which is not possible, since α?,n→ 1 when
√
nd?,n→∞.
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The optimal profit under capacity optimization satisfies

P n(C?,n) = p?,n0 (Λn
1 + Λn

2 )F̄ (p?,n0 + qd?,n)−C?,nµ

= (ˆ̄p+
π̂√
n

+ o(
1√
n

))(Λn
1 + Λn

2 )

[
F̄ (ˆ̄p)− f(ˆ̄p)(

π̂√
n

+ qd?,n) + o(
π̂√
n

+ qd?,n)

]
− (Ĉnµ+βnµ)w

= ˆ̄p(Λn
1 + Λn

2 )F̄ (ˆ̄p)− ˆ̄p(Λn
1 + Λn

2 )f(ˆ̄p)(
π̂√
n

+ qd?,n) +
π̂√
n

(Λn
1 + Λn

2 )F̄ (ˆ̄p)

− (Ĉnµ+βnµ)w+ o(n(
π̂√
n

+ qd?,n))

= ˆ̄p(Λn
1 + Λn

2 )F̄ (ˆ̄p)−w((Λn
1 + Λn

2 )F̄ (ˆ̄p) + Λn
2 )

−
[
ˆ̄p(Λn

1 + Λn
2 )f(ˆ̄p)qd?,n +wβnµ

]
(34)

− ˆ̄p(Λn
1 + Λn

2 )f(ˆ̄p)
π̂√
n

+
π̂√
n

(Λn
1 + Λn

2 )F̄ (ˆ̄p) + o(n(
π̂√
n

+ qd?,n))

Note first that the trade-off is between all the terms that include d?,n and βn since all else is

independent of the capacity sizing decision. Hence, the question is if we can argue if βn is of order

of or of smaller order than
√
n.

First, let us suppose that βn√
n
→∞. Clearly, this case cannot be optimal. Next, suppose that

βn√
n
→−∞. Recall that C?,nµ= Ĉnµ+βnµ and from (32) that

λ?,n = Ĉnµ− (Λn
1 + Λn

2 )f(ˆ̄p)(
π̂√
n

+ qd?,n) + o(n(
π̂√
n

+ qd?,n)).

Since it is necessary for stability that λ?,n <C?,nµ, it follows that

(Λn
1 + Λn

2 )f(ˆ̄p)(
π̂√
n

+ qd?,n) +βn > 0, (35)

for large n, which implies that nβn is at least of order of O(βn). Therefore, it must also be that
√
nd?,n →∞ which implies that α?,n → 1 and that

√
n(1− ρ?,n)→ 0 (i.e., the ED heavy traffic

regime). Then, from the latter we get that

βnµ+ (Λn
1 + Λn

2 )f(ˆ̄p)(
π̂√
n

+ qd?,n) + o(n(
π̂√
n

+ qd?,n)) = o(
√
n). (36)

However, for (36) to hold, it must be true that lim
n→∞

(Λn
1 + Λn

2 )f(ˆ̄p)qd?,n

−βnµ
= 1. Now, recall that ˆ̄p >w

by assumption. Then, it follows that lim
n→∞

ˆ̄p(Λn
1 + Λn

2 )f(ˆ̄p)qd?,n

−wβnµ
> 1, and thus

ˆ̄p(Λn
1 + Λn

2 )f(ˆ̄p)qd?,n +wβnµ√
n

→∞ (37)

i.e., the second order profit loss in (34) is of larger order than
√
n. Since this term is only of order

of
√
n under the QED regime (i.e., when −∞ < lim

n→∞

βn√
n
<∞ ), we conclude that it cannot be

optimal to have βn√
n
→−∞, which shows that QED is indeed the optimal operating regime. �

Edited up to here.
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Electronic Companion to “Operational Perils and Benefits of
Free Trials in Large Scale Service Systems”

In this electronic companion we provide supporting results and their proofs. In Section EC.1, we

provide supporting results that were used in the proof of Theorem 1.

EC.1. Price Optimization in Large Scale Systems

In this section, we assume that the service provider can only change the per usage price charged

while offering free trials. Our objective is to determine a pricing policy that is near optimal for large

scale systems. Thus, we follow the same asymptotic approach and consider a sequence of systems

where the capacity, regular market size, and free trial market size grow large. Then, we study two

separate cases depending on whether the Elasticity condition given in 1 holds or not. Specifically, in

Section EC.1.1, we assume the said condition holds, and we show that under pricing optimization

the optimal system indeed operates in the QED heavy traffic regime. In Section EC.1.2, we consider

the case where the elasticity condition is not satisfied, and show that the QD heavy traffic regime

arises as the optimal operating regime. Next, we present the alluded elasticity condition which can

equivalently be interpreted as a resource scarceness assumption.

Condition 1. (Elasticity Condition) Define the demand function Λt(p) := (Λ1 +σtΛ2)F̄ (p).

We assume that the first order price p̄t is well-defined and that Λt(p) is elastic2 for all p≥ p̄t, or

equivalently the optimization problem (that disregards the effects of congestion)

max
p≥0

(Λ1 +σtΛ2)pF̄ (p)

s.t. (Λ1 +σtΛ2)F̄ (p) + Λ2 ≤Cµ

is maximized at p̄t > p̃ := arg maxpF̄ (p).

Remark EC.1. (Relation to earlier literature) We note that, when t= 0, the elasticity

condition in Condition 1 is equivalent to Assumption 1 in Maglaras and Zeevi (2003). Furthermore,

when the elasticity condition holds for t= 0, it also holds for any t > 0.

EC.1.1. A System where the Elasticity Condition Holds: Optimality of QED

In this section, we study the pricing problem of the service firm when the customer valuation dis-

tribution or equivalently the demand function satisfies the elasticity condition, which we introduce

next. As in the statement of the elasticity condition in Condition 1, we prove our results for an arbi-

trary t≥ 0 for theoretical completeness. We also remind the reader that we we consider sequences

of systems indexed by n that appears in the superscript and that we refer to optimal quantities

(under price optimization now) along this sequence with an additional ? in the superscript. Our

2 λ(p) is elastic at price p if ε(p)> 1 where ε(p) := − dλ(p)
dp

p
λ(p)
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first result, which is also the main result in this section, and establishes that the QED regime is

indeed the optimal regime under pricing optimization provided that the demand function satisfies

the elasticity condition (and extends Maglaras and Zeevi (2003) to include free trial demand).

Theorem EC.1. (Optimality of QED) Suppose that elasticity condition in Condition 1

holds and that the regular market size and the free trial market size scale with capacity according to

(14). Then, under the optimal pricing policy, the system operates in the QED heavy traffic regime.

Furthermore, the optimal price scales as

p?,nt = p̄t +
π?t√
n

+ o

(
1√
n

)
, (EC.1)

where p̄t is the first order price defined as in (17) and π?t is the optimal second order price correction

defined as

π?t := arg min
π∈R

{p̄tβ (π)−π(1−κ2)}. (EC.2)

To prove Theorem EC.1, we need to auxiliary results which we present and prove next. First, we

show that, ρ?,nt , the optimal utilization (that corresponds to the optimal price) in a system with

size n, approaches unity.

Proposition EC.1. Suppose that elasticity condition in Condition 1 holds and that the regular

market size and the free trial market size scale with capacity according to (14). Then, the utilization

under the optimal pricing policy approaches unity, i.e.,

ρ?,nt → 1 as n→∞.

Proof of Proposition EC.1: We prove the result by contradiction. First, note that it follows

from Proposition 1 that ρ?,n = λ?,n

nµ
< 1, and so

limsup
n→∞

ρ?,n ≤ 1.

Now, let us suppose that lim inf
n→∞

ρ?,n ≤ (1−δ) for some δ ∈ (0,1). Then, since E [D?,n] = ρ?,nα?,n

λ?,n(1−ρ?,n)
≤

(1−δ)
nδ

, it follows that lim inf
n→∞

E [D?,n] = 0. Then, there exists a subsequence where the liminf is

attained as a limit and, with an abuse of notation, we also index this subsequence by n. Next, we

apply a Taylor’s expansion along this sequence to get

ρ?,n =
(Λn

1 + Λn
2 ) F̄−1 (p?,n + qE [D?,n]) + Λn

2

nµ

= (κ1 +κ2) F̄−1 (p?,n + qE [D?,n]) +κ2

= (κ1 +κ2) F̄−1 (p?,n)− (κ1 +κ2)f(p?,n)qE [D?,n] + o (E [D?,n]) +κ2.

(EC.3)
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Consequently, it follows from (EC.3) that

lim inf
n→∞

F̄−1 (p?,n)≤ 1−κ2− δ
(κ1 +κ2)

= F̄−1 (p̄)− δ

(κ1 +κ2)
< F̄−1 (p̄) . (EC.4)

Next, we define the price sequence be defined as p̄n := p̄, and let d̄n denote the associated expected

delay. Recall from Theorem EC.2 that dn → 0. Then, it follows from the elasticity condition in

Assumption 1 and (EC.4) that

limsup
n→∞

Rn (p̄n)

Rn (p?,n)
≥ (1 + δ′) ,

which contradicts the optimality of the sequence p?,n. Thus, we conclude that lim inf
n→∞

ρ?,n ≤ (1− δ)
for all δ ∈ (0,1), which implies that lim inf

n→∞
ρ?,n = 1 and this completes the proof. �

Note that Proposition EC.1 does not directly imply Theorem EC.1 since the utilization might

also approach unity in other heavy traffic regimes. Thus, we need to show that the utilization

converges to one in a specific way that corresponds to the QED heavy traffic regime, which, in

turn, requires characterizing the scaling relationships of the QED regime. We establish this in the

next result.

Theorem EC.2. (QED Scaling Relationships) Assume that the regular market size and

the free trial market size scale with capacity according to (14) for some fixed κ1 > 0 and 0≤ κ2 < 1

and let αnt (ρn,Cn) denote the Erlang-C delay probability in free trial cycle t along this sequence.

Then,

αnt (ρn,Cn)→ αt ∈ (0,1) as n→∞ if and only if (EC.5)

(i) equilibrium arrival rate scales as

λnt = nµ−βt
√
nµ+ o(

√
n), (EC.6)

or equivalently, the equilibrium traffic intensity scales as

ρnt = 1− βt√
n

+ o

(
1√
n

)
, (EC.7)

where βt ∈ (0,∞) is uniquely defined via αt;

(ii) The expected delay scales as

dnt :=E [Dn
t ] =

dt√
n

+ o

(
1√
n

)
, (EC.8)

where dt ∈ (0,∞) is a function of βt;

(iii) The price pnt scales as

pn = p̄t +
πt√
n

+ o

(
1√
n

)
, (EC.9)

where p̄t is as defined in (17), and πt ∈ (−∞,∞) is a function of βt.
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Proof of Theorem EC.2: To prove part (i), we observe that, for a given price, the system is an

M/M/C queue with an arrival rate that corresponds to the equilibrium arrival rate determined by

(1). Then, we can apply Proposition 1 in Halfin and Whitt (1981) to the sequence of systems that

scale according to (14). Specifically, it follows from Proposition 1 in Halfin and Whitt (1981) that

lim
n→∞

αn(ρn,Cn) = α∈ (0,1) if and only if lim
n→∞

√
n (1− ρn) = β ∈ (0,∞),

which is equivalent to

λn = nµ−β
√
nµ+ o(

√
n).

It also follows from Proposition 1 in Halfin and Whitt (1981) that α ∈ (0,1) and β > 0 uniquely

determine each other via

α := α(β) =
φ (β)

βΦ(β) +φ (β)
, (EC.10)

where φ(·) and Φ(·) denote the standard normal probability density function and cumulative dis-

tribution function, respectively.

For part (ii), recall that the expected delay is given by

dn :=E [Dn] =
ρnαn(ρn,Cn)

λn (1− ρn)
.

Recall also from part (i) that
√
n (1− ρn)→ β, and that ρn→ 1 as n→∞. Hence, it follows that

√
nE [Dn] =

√
ndn→ d(β) :=

α(β)

β
=

φ (β)

β [βΦ(β) +φ (β)]
.

For part (iii), observe that part (ii) implies that dn = d/
√
n+o(1/

√
n). Then, applying a Taylor’s

expansion around pn we get

λ (p) = (Λn
1 + Λn

2 ) F̄ (pn + qE [Dn]) + Λn
2

= (Λn
1 + Λn

2 ) F̄ (pn)− (Λn
1 + Λn

2 )f(pn)q
d√
n

+ o
(√
n
)

+ Λn
2

= nµ−β
√
nµ+ o

(√
n
)
,

where the last equality follows from part (ii). Then, it follows that

(Λn
1 + Λn

2 ) F̄ (pn) + Λn
2 = nµ+ δ

√
nµ+ o

(√
n
)
,

for some constant δ. Recall that F̄ (p̄) =
nµ−Λn

2

Λn
1 + Λn

2

. Hence, the equality above implies that

pn = p̄+
π√
n

+ o

(
1√
n

)
,

which establishes part (iii) and completes the proof. �

In the analysis that follows, we will find it more convenient to view the second order arrival rate

correction βt (also known as the service grade) as a function of the second order price correction

term πt. Our next result establishes this connection.
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Proposition EC.2. Suppose the assumption in Theorem EC.2 holds. Then, for fixed πt ∈

(−∞,∞), βt(πt) is the unique solution of

1

qt

(
F̄ (p̄t)

f (p̄t) (1−κ2)
βt−πt

)
=

φ (βt)

βt (βtΦ(βt) +φ (βt))
, (EC.11)

where φ(·) and Φ(·) denote the standard normal probability density function and cumulative distri-

bution function, respectively.

Proof of Proposition EC.2: Recall from the proof of Theorem EC.2 that

√
nE [Dn] =

√
ndn→ d(β) :=

α(β)

β
=

φ (β)

β [βΦ(β) +φ (β)]
. (EC.12)

Recall also from Theorem EC.2 that the arrival rate λn scales as

λn = nµ−β
√
nµ+ o(

√
n). (EC.13)

Then, we can invoke (EC.8) and (EC.9) and apply a Taylor’s expansion in (1) to get

λn = (Λn
1 + Λn

2 ) F̄ (pn + qE [Dn]) + Λn
2

= (Λn
1 + Λn

2 ) F̄ (p̄)− (Λn
1 + Λn

2 )
f(p̄)√
n

(π+ qd) + o
(√
n
)

+ Λn
2 . (EC.14)

Noting that F̄ (p̄) =
nµ−Λn2
Λn1 +Λn2

and combining (EC.13) and (EC.14) we get

β = (π+ qd (β))f (p̄) (1−κ2)/F̄ (p̄) . (EC.15)

Finally, we use the definition of d(β) given in (EC.12) and rearrange (EC.15) to get

1

q

(
F̄ (p̄)

f (p̄) (1−κ2)
β−π

)
=

φ (β)

β (βΦ(β) +φ (β))
. (EC.16)

It remains to show that β(π) defined through (EC.16) is unique. To see this, we first rearrange

(EC.16) to get

h(β) :=
F̄ (p̄)

qf (p̄) (1−κ2)
β− φ (β)

β (βΦ(β) +φ (β))
=
π

q
.

Next, we observe that h(β) is a continuous increasing function for β > 0. Furthermore,

limβ→0 h(β) = −∞ and limβ→∞ h(β) =∞. Hence, it follows that h(β) = π
q

has a unique solution

establishing the desired result. �

Now, we are in a position to prove Theorem EC.1.

Proof of Theorem EC.1: Let {p?,n} denote a revenue maximizing price sequence. Also, let d?,n :=
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ρ?,nα?,n

λ?,n(1−ρ?,n)
denote the optimal expected delay, where α?,n := α?,n (ρ?,n, n) is the optimal Erlang-C

delay probability. Recall that ρ?,n→ 1 as n→∞. Now, suppose that lim inf
n→∞

n (1− ρ?,n) ≤M for

some positive constant M >q/p̄. Then, lim inf
n→∞

√
n (1− ρ?,n) = 0, and it follows from Proposition 1

in Halfin and Whitt (1981) that α?,n→ 1 and so limsup
n→∞

d?,n ≥ 1/M . Also, note that

ρ?,n =
λ?,n

nµ
=

(Λn
1 + Λn

2 ) F̄ (p?,n + qd?,n) + Λn
2

nµ
→ 1,

which yields that p?,n + qd?,n→ p̄. Since limsup
n→∞

d?,n ≥ 1/M , it follows that

lim inf
n→∞

p?,n ≤ p̄− q

M
,

which in turn implies

lim inf
n→∞

Rn (p?,n)

Rn (p̄)
≤ 1− q

p̄M
< 1,

and contradicts the optimality of p?,n. Hence, we conclude that lim inf
n→∞

n (1− ρ?,n) ≥M for any

positive constant. Noting that M is arbitrary, it follows that n (1− ρ?,n)→∞. Thus, d?,n = o (1)

and p?,n→ p̄.

Next, we let β?,n := 1− ρ?,n and π?,n := p?,n− p̄. Then, we apply a Taylor’s expansion to get

λ?,n = nµ−nµf(p̄) (κ1 +κ2) (π?,n + qd?,n) +O
(
n (π?,n + qd?,n)

2
)
.

We can also express the revenue rate as

R (p?,n, n) = λ?,np?,n = (nµ−Λn
2 ) p̄−nµ [p̄β?,n−π?,n (1−κ2)]︸ ︷︷ ︸

ψ(β?,n)

+O (nβ?,nπ?,n) ,

where the last term is of lower order since β?,n→ 0 and π?,n→ 0 as n→∞. Next, we take a closer

look at ψ(β?,n) which captures the second-order effects of stochasticity:

ψ(β?,n) = nµ (p̄β?,n−π?,n (1−κ2))

= nµ

(
p̄β?,n− (1−κ2)

f(p̄) (κ1 +κ2)
β?,n + qd?,n(1−κ2)

)
=
√
nµ

(√
nβ?,n

(
p̄− F̄ (p̄)

f(p̄)

)
+ q
√
nd?,n(1−κ2)

)
. (EC.17)

Now, let us suppose
√
nβ?,n = o (1). Then, it follows from Proposition 1 in Halfin and Whitt

(1981) that α?,n→ 1. Consequently,
√
nd?,n→∞ as n→∞. Hence, ψ(β?,n)√

n
→∞. Next, suppose

√
nβ?,n→∞. Then, it follows from Proposition 1 in Halfin and Whitt (1981) that limsup

n→∞

√
nd?,n <

∞. Furthermore, from the elasticity condition in Assumption 1, we get

ε(p) =−d (Λn
1 + Λn

2 ) F̄ (p)

dp

p

(Λn
1 + Λn

2 ) F̄ (p)
= f(p)

p

F̄ (p)
> 1,
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or equivalently that F̄ (p) < pf (p). Thus, we see that ψ(β?,n)√
n
→∞, again. Finally, suppose that

√
nβ?,n→ β > 0. Then, it follows from Theorem 1 that ψ(β?,n)√

n
→ ψ <∞ and we conclude that the

lost revenue due to the second order effect of stochasticty is minimized.

To complete the proof, we first observe from Theorem 1 that the optimal price should scale as

p?,n = p̄+
π?√
n

+ o

(
1√
n

)
. (EC.18)

So, we let

π? := arg min
π∈<

{p̄β (π)−π
(
nµ−Λn

2

Λn
2

)
}, (EC.19)

which minimizes the second-order effects, and optimally balances lost revenues with delay costs.

�

Note that we eventually would like to understand the behavior of the optimal revenue rate.

Hence, it is important to observe that Theorem EC.2 and Theorem EC.1 taken together imply

that the optimal arrival rate λ?,n scales as

λ?,nt = nµ−β(π?t )
√
nµ+ o(

√
n), (EC.20)

where β(π) and π?t are as defined in (EC.11) and (EC.2), respectively. This, in turn, paves the way

for a two-part representation for the optimal revenue rate. Specifically, we can combine (EC.1)

with (EC.20) and write the optimal revenue rate in a system of size n as

R?,n
t = p?,nt (λ?,nt (pt)−Λn

2 ) = (nµ−Λn
2 ) p̄t−

√
nµ [p̄tβ (π?t )− (1−κ2)π?t ] + o(

√
n). (EC.21)

Hence, we see that the optimal revenue rate also admits a two-part decomposition similar to

(EC.1). Finally, we observe that the optimal delay d?,n scales analogously, i.e., we have

d?,nt :=E [D?,n
t ] =

dt (β(π?t ))√
n

+ o

(
1√
n

)
. (EC.22)

EC.1.2. A System where the Elasticity Condition doesn’t Hold: Optimality of QD

In this section we consider the case where the elasticity condition in Condition 1 does not hold.

Then, the system is over-capacitated and either p̃t ≥ p̄t for p̃t, or p̄t is not well-defined since Cµ−Λ2
Λ1+Λ2,t

>

1. Again, we pursue an asymptotic analysis by letting the capacity and the regular and free trials

market sizes grow large proportionally according to (14). Noting that the elasticity condition that

underpins the QED regime implies a capacity constrained system, it is intuitive to think that the

optimal operating regime when this condition does not hold should be the quality-driven (QD)

heavy traffic regime where the Erlang-C delay probability approaches zero. Our next result proves

that this intuition is indeed correct.
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Theorem EC.3. (Optimality of QD) Suppose the elasticity condition in Assumption 1 does

not hold and that capacity scales proportionally to demand according to (14) for some fixed κ1 > 0

and 0≤ κ2 < 1. Then, under the optimal pricing policy, the system operates in the QD heavy traffic

regime. Furthermore, the optimal price satisfies

p?,nt → p̃t as n→∞, (EC.23)

where p̃t := arg maxpF̄ (p).

Proof of Theorem EC.3: Recall that the elasticity assumption does not hold if ε(vmin)≤ 1 and

p̄ ≤ p̃ or if p̄ is undefined. We start with the case ε(vmin) ≤ 1 and consider the case p̄ = p̃ first.

Observe that Proposition EC.1 continues to hold in this case. Hence, ρ?,n→ 1 and we observe that

the proof of Theorem EC.1 also holds up to the arguments leading to (EC.17). Thus, p?,n→ p̄= p̃.

Next, from (EC.17), we see that p̄− F̄ (p̄)

f(p̄)
= 0 since ε(p̄) = ε(p̃) = 1. Hence, the first term in the

parenthesis in (EC.17) is zero for all n. Then, to minimize the second order revenue loss, the

optimal policy must be such that
√
nβ?,n→∞, which proves that the system operates in QD.

Next, we consider the case p̄ < p̃. The idea of the proof is as follows: For a sequence of prices

such that p̃n→ p̃ as n→∞, we establish that the associated expected delay d̃n→ 0 as n→∞. This

allows us to show that such a policy achieves a first order revenue rate of (Λn
1 + Λn

2 )p̃F̄ (p̃), which

also shows that p?,n→ p̃ as n→∞.

Define d̃n :=E[D̃n] as the expected delay along a sequence of systems with corresponding prices

such that pn→ p̃ as n→∞. Also, let d̄n be the expected delay along a sequence of systems with

pricing policy p̄n = p̄ for all n. Since pn→ p̃ > p̄, it must be true that pn > p̄ for all n large enough.

Then, it also follows that d̃n < d̄n for n large enough. To see this, we define hp(ξ) as in the proof of

Proposition 1 and we make the dependence on the fixed priced p explicit. For ξ = d̄n, hp̄n(d̄n) = 0,

and since pn > p̄= p̄n, we see that hpn(ξ)> 0 for all n large enough. Noting that hpn(d̃n) = 0 and

that hpn(ξ) is increasing, we conclude that d̃n < d̄n for all n large enough. Finally, from Theorem

EC.2, we know that d̄n→ 0 as n→∞ since p̄n = p̄. Thus, it also follows that d̃n→ 0 since d̃n is

positive and d̃n < d̄n for all n large enough.

When p̄ is not well-defined (i.e., when the system is over-capacitated), the result follows similarly

by comparing the system to one where p̄ is well-defined. Since the latter has less capacity and delay

converges to zero, it must also converge to zero in the former case.

Next, we let R̃n denote corresponding revenue rate in the sequence of systems where pn→ p̃ as

n→∞. Noting that d̃n→ 0, we apply a Taylor expansion to get the first order revenue rate as

R̃n = (Λn
1 + Λn

2 )pnF̄ (pn + qdn) = (Λn
1 + Λn

2 )p̃F̄ (p̃) + o(n),
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which yields

limsup
n→∞

R̃n

R?,n
= limsup

n→∞

(Λn
1 + Λn

2 )pnF̄ (pn + qdn)

(Λn
1 + Λn

2 )p?,nF̄ (p?,n + qd?,n)

= limsup
n→∞

p̃F̄ (p̃)

p?,nF̄ (p?,n + qd?,n)
≥ 1,

since p̃ := arg maxp pF̄ (p). Hence, for p?,n to be optimal, it must also be that p?,n→ p̃.

It remains to show that the delay probability converges to zero in order to show that the system

operates in the QD heavy traffic regime. We do so by showing that ρ?,n→ ρ < 1, and the result

follows from Proposition 1 in Halfin and Whitt (1981). Since p?,n→ p̃ and d?,n→ 0, it follows that

lim
n→∞

ρ?,n = lim
n→∞

(Λn
1 + Λn

2 )F̄ (p?,n + qd?,n) + Λn
2

Cnµ

= lim
n→∞

(Λn
1 + Λn

2 )F̄ (p̃) + o(n) + Λn
2

Cnµ
= ρ< 1,

and completes the proof. �

EC.2. Proofs of Other Results

Now we consider the joint problem where the system manager can choose both the capacity and

price to maximize the long run average profit rate. In addition to the model parameters described

in Section 2, we also assume a linear capacity cost given as $wµ> 0 per unit of capacity per unit

time. Then, the objective of the system manager is

max
pt,Ct>0

Pt(pt,Ct) :=
T∑
t=1

Rt(pt,Ct)−wµCt. (EC.24)

We let p?t and C?
t be the associated maximizers of (EC.24) and define the maximum profit rate as

P ?
t := Pt(p

?
t ,C

?
t ). Observe that one might compute p?t and C?

t , by first optimizing Pt(pt,Ct) over pt

for fixed Ct, and then optimizing over Ct. However, this approach does not yield any analytically

tractable expressions for p?t and C?
t and thus does not offer any insight. Hence, we build upon the

results in Section EC.1, and consider approximate solutions that are appropriate for large scale

systems. Next, we describe the intuition behind our approach.

Recall from Section EC.1 that, under the elasticity assumption, the revenue rate of a large scale

system for a given price and capacity is given by

Rt(pt,Ct)≈ (Ctµ−Λ2) p̄t (Ct)−
√
Cµ [p̄t (C)β (πt)−πt (1−κ2)] .

The above equation suggest that, optimal profit rate of the joint profit maximization problem in

(EC.24) can be approximated by the second order approximation as

P ?
t ≈ max

Ct>0,πt∈<
[(Ctµ−Λ2) p̄t (Ct)−wµCt]−

√
Ctµ [p̄t (Ct)β (πt)−πt (1−κ2)] . (EC.25)
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Note that for large enough capacities the effect of the second order square-root term in (EC.25) will

be negligible, and thus, the capacity sizing and pricing problems decouple for large scale systems.

Hence, we propose the following approximate solution:

Step 1 Capacity Sizing: Optimize the first-order approximation for optimal profit rate given by

max
Ct>0

P̂t(Ct) := (Ctµ−Λ2) p̄t (Ct)−wµCt, (EC.26)

and set the capacity to Ĉt, the corresponding maximizer. Also, define the corresponding first order

price ˆ̄pt := p̄t(Ĉt) and the optimal first order profit rate P̂ ?
t := P̂t(Ĉt).

Step 2 Pricing: Given Ĉt and ˆ̄pt, minimize the second order profit correction term in square

brackets in (EC.25) over πt. Let π̂t be the corresponding maximizer. Set the price to p̂t := ˆ̄pt +

π̂t/
√
Ĉt.

In order to get a better understanding of the optimal Ĉt that solves (EC.26), we first recall that

p̄t (Ct) := F̄−1
(
Ctµ−Λ2
Λ1+Λ2,t

)
and differentiate (EC.26) with respect to Ct which yields the first order

condition (FOC)

µF̄−1

(
Ctµ−Λ2

Λ1 + Λ2,t

)
+ (Ctµ−Λ2)

1

−f
(
F̄−1

(
Ctµ−Λ2
Λ1+Λ2,t

)) ( µ

Λ1 + Λ2

)
−wµ= 0. (EC.27)

We can also express the FOC in terms of p̄t(Ct) as

p̄t (Ct)−
F̄ (p̄t (Ct))

f (p̄t (Ct))
=w, (EC.28)

or equivalently as

p̄t
ε (p̄t)− 1

ε (p̄t)
=w. (EC.29)

It turns out that the problem (EC.26) indeed has a unique solution which follows from our IGFR

assumption on the valuation distribution. To see this, recall that the IGFR assumption is equiv-

alent to increasing price elasticity, which implies that the left-hand-side of (EC.29) is increasing.

Following this observation, we can explicitly characterize the solution of (EC.26) as follows.

Remark EC.2. It follows from Proposition 2 that the first order optimal price ˆ̄pt := p̄t(Ĉt) is

independent of the regular market size Λ1 and the free trial market size Λ2 (and only depends on

the valuation distribution and w). Since F̄ (ˆ̄pt) = Ĉtµ−Λ2
Λ1+Λ2,t

, the ratio Ĉtµ−Λ2
Λ1+Λ2,t

is also independent of

the free trial market size Λ2, and consequently, the first order optimal capacity Ĉt increases as the

free trial market size Λ2 increases.
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It remains to justify (EC.25) and to establish the theoretical performance of our proposed approx-

imate solution for large scale systems. To do this, we again consider a sequence of systems indexed

by n; but since the capacity is now a decision variable, we only scale the arrival rates, and let Λn
1

and Λn
2 increase according to

Λn
1 := η1n, and Λn

2 := η2n, (EC.30)

where η1 := Λ1
Λ1+Λ2

and η2 := Λ2
Λ1+Λ2

. Note that the original system is still embedded in this sequence

and can be recovered by setting n = Λ1 + Λ2. Again, we do not scale the individual customer

characteristics and let the mean service requirement 1/µ, the valuation cdf F (·), and the delay cost

q remain fixed throughout the sequence. Let P̂ n
t := P n

t (Ĉn
t , p̂

n
t ) and P ?,n

t := P n
t (C?,n

t , p?,nt ) denote

the profit rate under our proposed solution and the optimal profit rate for a system with size n,

respectively. The following result establishes that our proposed policy achieves the performance

of an optimal policy asymptotically, and that the optimal system operates under the QED heavy

traffic regime. It is worthwhile to point out that the elasticity condition in Assumption 1 is no

longer assumed, rather it is shown that condition is to be satisfied by optimal systems that are

large in scale.

Theorem EC.4. (Optimality of QED under Joint Optimization) Suppose that the reg-

ular and free trial market sizes scale according to (EC.30). Then, under joint price and capacity

optimization, the optimal system operates under the quality-efficiency driven (QED) heavy traffic

regime and the capacity and price pair
(
Ĉn
t , p̂

n
t

)
is asymptotically optimal, i.e.,

P̂ n
t

P ?,n
t

=
P n
t (Ĉn

t , p̂
n
t )

P n
t (C?,n

t , p?,nt )
→ 1 as n→∞. (EC.31)

Remark EC.3. (Relation to the Value of Offering Free Trials) Note that Theorem

EC.4 also implies that QED is the optimal regime for a large service system without free trials, i.e.,

when Λ2 = 0. As a result, Theorem 4 also yields an important insight for service firms that set the

initial price and capacity optimally, and then, have the option of offering free trials without the

ability to change the capacity further: Since the optimal capacity is chosen such that the system

operates in QED, it is the analysis of Section EC.1.1 that is relevant, and the benefit of offering free

trials is indeed limited. Equivalently, we expect a service firm to benefit significantly from offering

free trials as observed in Section EC.1.2 only when the initial capacity is not chosen optimally.

Proof of Proposition 2: Let P̂ ′(p̄) := P̂ ′(p̄(C)) denote the derivative of P̂ (C) with respect to C
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expressed as a function of p̄. Since F is IGFR, ε(p̄) is an increasing function of p̄. Then, it follows

that

P̂ ′(p̄) = p̄
ε (p̄)− 1

ε (p̄)
−w

is also increasing in p̄, or equivalently P̂ ′(C) is decreasing in C. Hence, there exists a unique Ĉ and

a corresponding p̄(C) that solves (EC.26).

Next, suppose that vmin− F̄ (vmin)

f(vmin)
<w. If vmax =∞, it follows from Theorem 2 in Lariviere (2006)

that limp̄→∞ ε(p̄)> 1, and so

P̂ ′(p̄) = p̄
ε (p̄)− 1

ε (p̄)
−w→∞ as p̄→∞.

If vmax <∞, it follows that lim supp̄→vmax
f(p̄)

F̄ (p̄)
=∞, and so limp̄→vmax ε(p̄) =∞. Then, we have

lim
p̄→vmax

P̂ ′(p̄) = lim
p̄→vmax

p̄
ε (p̄)− 1

ε (p̄)
−w= vmax−w> 0.

Finally, at p̄= vmin,

P̂ ′(vmin) = vmin−
F̄ (vmin)

f(vmin)
−w< 0.

Thus, P̂ ′(p̄) changes sign and the monotonicity of P̂ ′ shows that there exists a unique ˆ̄p ∈

(vmin, vmax) such that P̂ ′(ˆ̄p) = 0 and corresponding Ĉ.

To prove part (ii), we suppose vmin− F̄ (vmin)

f(vmin)
≥w. Then, P̂ ′(vmin) = vmin− F̄ (vmin)

f(vmin)
−w ≥ 0 and

the monotonicity of P̂ ′ implies that

P̂ ′(p̄) = p̄− F̄ (p̄)

f(p̄)
−w> 0,

for all p̄ > vmin. Thus, P̂ ′(C) is increasing in C, and consequently ˆ̄p= vmin. �


