Staffing and Scheduling to Differentiate Service in Multiclass Time-Varying Service Systems

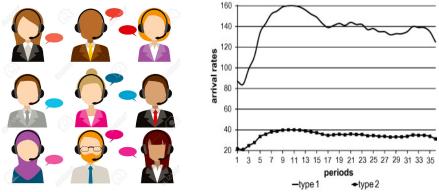
Xu Sun

joint work with advisor Ward Whitt, Yunan Liu (NCSU) and Kyle Hovey (NCSU)

Department of Industrial Engineering & Operations Research

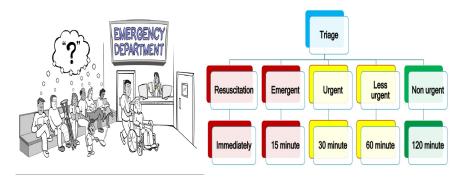
September 22, 2018

Motivating Example 1 - Call Center



- 80% of type 1 calls need to be answered within 20 seconds ("80-20 rule")
- 50% of type 2 calls need to be answered within 60 seconds
- How many servers are needed over the course of day?
- How to assign a newly idle agents to one of these queues?

Example 2 - Canadian Triage and Acuity Scale (CTAS)



According to CTAS guideline Ding et al. (2018), "CTAS level *i* patients need to be seen by a physician within w_i minutes $100\alpha_i$ % of the time", with

$$(w_1, w_2, w_3, w_4, w_5) = (0, 15, 30, 60, 120),$$

 $(\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5) = (0.98, 0.95, 0.9, 0.85, 0.8)$

Other Examples of Multi-class Settings

Xu Sun (Columbia IEOR)

Service Differentiation in TV Queues

Modeling Real Service Systems

Model with these features are difficult to analyze:

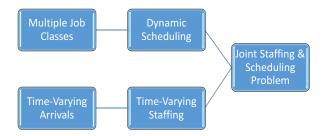
- Time-varying arrivals
- Customer abandonment
- Non-exponential service and abandonment distributions
- Multiple customer classes

Goals:

- Break through fundamental barriers holding back the community;
- Bring more practical models within range of tractability;
- Provide performance analysis and decision support tools.

Objective of Study and Approach

- Goal: achieve acceptable service level for different classes
- Method:
 - Effective planning of service capacity to cope with time-varying demand (staffing);
 - Timely allocation of service resources to every customer class (scheduling).



Existing Works and Contributions

Literature review

Service differentiation

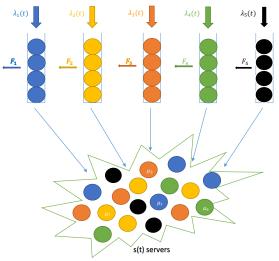
Gurvich, Armony & Mandelbaum (08); Gurvich & Whitt (10); Soh & Gurvich (16); Kim, Randhawa & Ward (2017) All assume a critical-loading system and the demand to be stationary

 Performance stabilization of time-varying queues Jennings et al. (96); Feldman et al. (08); Pender & Massey (17); Liu & Whitt (12,14); Liu (18) All consider single-class models

• Our contribution:

studying service differentiation with time-varying demand and class-dependent services, focusing on overloaded systems.

A Multi-Class V Model



- Class-dependent arrival rate λ_i(t) (non-homogeneous Poisson)
- Class-dependent abandonment-time distribution *F_i*
- A large time-varying number of servers *s*(*t*)
- Exponential service times with class-dependent service rate μ_i
- First-Come First-Served within each class

Problem Statement

Model parameters

$$\mathcal{P} \equiv (\underbrace{\lambda_i(t), F_i, \mu_i}_{\text{customer behavior service level}}, 1 \le i \le K, 0 \le t \le T)$$

• Obtain convenient staffing and scheduling rules (in terms of \mathcal{P}), such that the *tail probability of delay* (TPoD)

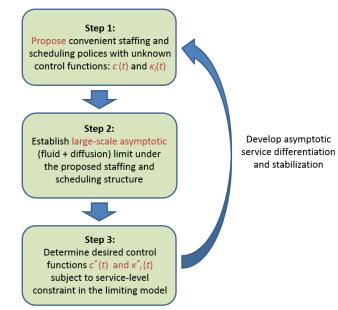
$$\begin{split} \mathbb{P}\left(W_i(t) > w_i\right) &\leq \alpha_i, \qquad 1 \leq i \leq K, \quad 0 \leq t \leq T, \\ \text{or} \quad \mathbb{P}\left(W_i(t) > w_i\right) \approx \alpha_i \end{split}$$

for any

- ▶ w_i > 0 (delay target).
- $\alpha_i \in (0,1)$ (probability target: fraction of excessive delay).

 $W_i(t)$: potential waiting time of class *i* at time *t*, i.e., offered delay to a class-*i* arrival at *t* assuming infinitely patient.

Main Steps of Our Approach



Step I: Proposed Staffing Formula

Use offered-load (OL) to determine the nominal service capacity

▶ No. of busy servers B(t) in $M_t/GI/\infty \sim$ Poisson r.v. with mean

$$m(t) \equiv \mathbb{E}[B(t)] = \int_0^t \lambda(t-s)G^c(s)\mathrm{d}s.$$

▶ Here, for the *i*th class, the OL is

$$m_i(t) = \int_0^t \underbrace{F_i^c(w_i)\lambda_i(u-w_i)}_{\text{effective arr. rate}} \underbrace{e^{-\mu_i(t-u)}}_{\text{exp. service dist.}} \mathrm{d}u$$

OL: mean No. of busy servers needed to serve all customers who are willing to wait (excluding an acceptable faction of abandonment).

A time-varying square-root staffing (TV-SRS) rule

$$s(t) = \underbrace{m(t)}_{\text{first order}} + \underbrace{\sqrt{\lambda^{\star}c(t)}}_{\text{second order}}$$

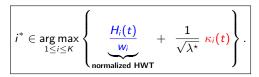
for
$$m(t) \equiv m_1(t) + \cdots + m_K(t)$$

where c(t) is a control function (TBD), and λ^* is the system's scale, i.e.,

$$\lambda^{\star} \equiv rac{1}{T} \int_{0}^{T} \lambda(t) \mathrm{d}t, \qquad ext{with} \qquad \lambda(t) \equiv \lambda_{1}(t) + \cdots + \lambda_{\mathcal{K}}(t).$$

Step I: Proposed Control Structure

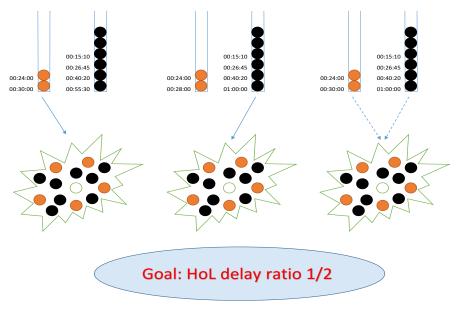
- Use real-time class-*i* head-of-line waiting time (HWT) H_i(t) to devise a dynamic control policy;
- A time-varying dynamic prioritization scheduling (TV-DPS) rule: Assigns the next available server to the HoL customer from class *i** satisfying



where $\kappa_i(t)$ is a control function (TBD).

- Main ideas of TV-DPS:
 - $\tilde{H}_i(t) \equiv H_i(t)/w_i$ focuses on the delay target w_i ;
 - $\kappa_i(t)$ helps accomplish the class-dependent probability target α_i ;
 - TV-DPS is both time-dependent (accounting for time variability) and state-dependent (capturing stochasticity).

An Illustration of How TV-DP Rule Works



Step II: Large-Scale Asymptotic Analysis

- Exact analysis is difficult; hence do asymptotic analysis as scale grows (realistic for large-scale systems).
- Use *n* in place of λ^* and consider a sequence of models indexed by *n*.
- In the *n*th model:
 - Arrival rate $\lambda_i^n(t) \equiv n\lambda_i(t)$;
 - Staffing level:

$$s^n(t) = nm(t) + \sqrt{nc(t)}.$$

Scheduling rule:

$$i^* \in \operatorname*{arg\,max}_{1 \leq i \leq K} \left\{ rac{H_i^n(t)}{w_i} + rac{1}{\sqrt{n}} rac{\kappa_i(t)}{\kappa_i(t)}
ight\}.$$

- Service rates and abandonment distributions are fixed.
- Scaled HWT and PWT processes:

$$\widehat{H}_i^n(t)\equiv n^{1/2}\left(H_i^n(t)-w_i
ight) \hspace{0.2cm} ext{and} \hspace{0.2cm} \widehat{W}_i^n(t)\equiv n^{1/2}\left(W_i^n(t)-w_i
ight).$$

Limit of Waiting Times and State-Space Collapse

Under the TV-SRS and TV-DPS policy, the CLT-scaled waiting time processes

$$\left(\widehat{H}_1^n,\ldots,\widehat{H}_K^n,\widehat{W}_1^n\ldots,\widehat{W}_K^n\right) \Rightarrow \left(\widehat{H}_1,\ldots,\widehat{H}_K,\widehat{W}_1\ldots,\widehat{W}_K\right) \quad \text{in} \quad \mathcal{D}^{2K} \quad \text{as} \quad n \to \infty,$$

with all HWT and PWT limits in terms of a one-dimensional process $\widehat{H}(\cdot)$, where

$$\widehat{H}_i(t) \equiv w_i(\widehat{H}(t) - \kappa_i(t)), \qquad \widehat{W}_i(t) = w_i(\widehat{H}(t+w_i) - \kappa_i(t+w_i))$$

The process \hat{H} uniquely solves the following *stochastic Volterra equation* (SVE)

$$\widehat{H}(t) = \int_0^t L(t,s)\widehat{H}(s)ds + \int_0^t J(t,s)d\mathcal{W}(s) + K(t),$$

where $\ensuremath{\mathcal{W}}$ is a standard Brownian motion,

$$\begin{split} L(t,s) &\equiv \frac{\sum_{i=1}^{K} \eta_i(s) e^{\mu_i(s-t)} \left(\mu_i - h_{F_i}(w_i)\right)}{\eta(t)}, \quad J(t,s) \equiv \frac{\sqrt{\sum_{i=1}^{K} e^{2\mu_i(s-t)} \left(F_i^c(w_i)\lambda_i(s-w_i) + \mu_i m_i(s)\right)}}{\eta(t)}, \\ \mathcal{K}(t) &\equiv \frac{\sum_{i=1}^{K} \left(\eta_i(t)\kappa_i(t) - \int_0^t \eta_i(s) e^{\mu_i(s-t)} \left(\mu_i - h_{F_i}(w_i)\right)\kappa_i(s)ds\right) - c(t)}{\sum_{i=1}^{K} \eta_i(t)}. \end{split}$$

for $\eta_i(t) \equiv w_i \lambda_i (t - w_i) F_i^c(w_i)$.

Limit of Waiting Times and State-Space Collapse

State-space collapse:

All limiting HWT and PWT processes degenerates to a one-dimensional process $\widehat{H}.$

② The SVE admits a unique solution which is a Gaussian process

- If $\mu_i \neq \mu$
 - ★ SVE has NO analytic solution;
 - ★ We gave effective algorithms (geometrically fast) to compute $m_{\hat{H}}(t) \equiv \mathbb{E}[\hat{H}(t)]$ and variance $C_{\hat{H}}(t,s) \equiv \text{Cov}(\hat{H}(t),\hat{H}(s))$.

• If $\mu_i = \mu$, SVE has an closed-form solution (so do $m_{\widehat{H}}(t)$ and $C_{\widehat{H}}(t,s)$).

$$\widehat{H}(t) = \frac{1}{R(t)} \left(\int_0^t \widetilde{J}(u) d\mathcal{W}(u) + \int_0^t \widetilde{R}(u) d\mathcal{K}(u) + \int_0^t \widetilde{K}(u) dR(u) \right).$$

Solution Variance $\sigma_{\hat{H}}^2(t) = \operatorname{Var}(\hat{H}(t))$ relies only on model parameters (independent with control functions).

• Control functions $c(\cdot)$ and $\kappa_i(\cdot)$ appear in the term $K(\cdot)$ only.

Step III: Solve $c^*(t)$ and $\kappa_i^*(t)$ subject to Service-Level Constraints

• Main ideas: when n is large, at each time $t \in [0, T]$, we hope

$$egin{aligned} lpha_i &\equiv \mathbb{P}(H_i^n(t) > w_i) = \mathbb{P}(\widehat{H}_i^n(t) > 0) \ &pprox \mathbb{P}(\widehat{H}_i(t) > 0) = \mathbb{P}(w_i(\widehat{H}(t) - \kappa_i(t)) > 0) \ &= \mathbb{P}\left(\mathcal{N}\left(m_{\widehat{H}}(t), \sigma_{\widehat{H}}^2(t)\right) > \kappa_i(t)\right) = \mathbb{P}\left(\mathcal{N}(0, 1) > rac{\kappa_i(t) - m_{\widehat{H}}(t)}{\sigma_{\widehat{H}}(t)}
ight) \end{aligned}$$

Recall that $m_{\widehat{H}}(t)$ is a function of $\kappa_i(t)$ and $c_i(t)$.

• Obtain the asymptotically "optimal" control functions:

$$\begin{aligned} \boldsymbol{c}(t) &= \sum_{i=1}^{K} \left(\eta_i(t) \kappa_i(t) - \int_0^t \eta_i(s) e^{\mu_i(s-t)} \left(\mu_i - h_{F_i}(w_i) \right) \kappa_i(s) ds \right), \\ \kappa_i(t) &= z_{\alpha_i} \sigma_{\widehat{H}}(t), \qquad 1 \leq i \leq K, \quad 0 \leq t \leq T. \end{aligned}$$

where $z_{\alpha} = \Phi^{-1}(1-\alpha)$, $\eta_i(t) \equiv w_i \lambda_i (t-w_i) F_i^c(w_i)$.

Step III: Solve $c^*(t)$ and $\kappa_i^*(t)$ subject to Service-Level Constraints

The asymptotically "optimal" control functions:

$$c(t) = \sum_{i=1}^{K} \left(\eta_i(t) \kappa_i(t) - \int_0^t \eta_i(s) e^{\mu_i(s-t)} \left(\mu_i - h_{F_i}(w_i) \right) \kappa_i(s) ds \right), \quad (1)$$

$$\kappa_i(t) = z_{\alpha_i} \sigma_{\widehat{H}}(t), \quad 1 \le i \le K, \quad 0 \le t \le T. \quad (2)$$

Theorem (Asymptotic service differentiation)

Under our staffing and scheduling rule with $c_i(\cdot)$ and $\kappa_i(\cdot)$ in (1) and (2),

(i) Mean PWT and HWT are both asymptotically differentiated and stabilized:

 $\mathbb{E}[W_i^n(t)] \to w_i \quad \text{and} \quad \mathbb{E}[H_i^n(t)] \to w_i \qquad \text{as} \quad n \to \infty, \qquad \text{for} \quad 0 < t \leq T, \ 1 \leq i \leq K.$

(ii) TPoDs for PWT and HWT are both asymptotically differentiated and stabilized:

 $\mathbb{P}(W_i^n(t) > w_i) \to \alpha_i$ and $\mathbb{P}(H_i^n(t) > w_i) \to \alpha_i$ as $n \to \infty$

for $0 < t \leq T$, $1 \leq i \leq K$.

Constant arrival rates

- When $\lambda_i(t) = \lambda_i$
 - Staffing

$$m_i(t) \sim m_i \equiv rac{\lambda_i F_i^c(w_i)}{\mu}, \qquad c(t) \sim c \equiv \sum_{i=1}^K rac{w_i \lambda_i f_i(w_i)}{\mu} \kappa_i,$$

Scheduling

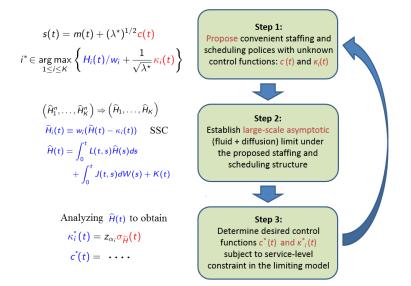
$$\kappa_i(t) \sim \kappa_i \equiv z_{\alpha_i} \cdot \underbrace{\sqrt{\frac{\sum_{j=1}^{K} \lambda_j F_j^c(w_i)}{\left(\sum_{j=1}^{K} \lambda_j f_j(w_j) w_j\right) \left(\sum_{j=1}^{K} \lambda_j F_j^c(w_j) w_j\right)}}_{\text{independent with } \alpha_i}.$$

These formulas can be used to estimate

- the required average number of servers and scheduling threshold;
- the marginal price of staffing and scheduling (MPSS):

To improve the service to the next level $(w_i \rightarrow w_i - \Delta w_i \text{ or } \alpha_i \rightarrow \alpha_i - \Delta \alpha_i)$, how many extra servers are need and how much should the scheduling thresholds be adjusted?

Review of the Approach



Numerical Examples

Base Case - A Two-Class V Model

- Model parameters
 - Sinusoidal arrival rates $\lambda_i(t) = n\bar{\lambda}_i (1 + r_i \sin(\gamma_i t + \phi_i))$ $\bar{\lambda}_1 = 1, \bar{\lambda}_2 = 1.5, r_1 = 0.2, r_2 = 0.3, \gamma_1 = \gamma_2 = 1, \phi_1 = 0, \phi_2 = -1$
 - Service rates $\mu_1 = \mu_2 = 1$ (later extend to class-dependent case)
 - Exponential abandonment times with rates $\theta_1 = 0.6, \theta_2 = 0.3$.
 - System scale: n = 50
- QoS parameters
 - Delay targets $w_1 = 0.5, w_2 = 1;$
 - Probability targets $\alpha_1 = 0.2, \alpha_2 = 0.8$.

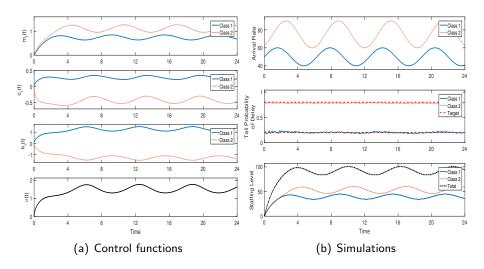
Hope to achieve:

 $\mathbb{P}(W_1(t)>0.5)pprox 20\%, \quad \mathbb{P}(W_2(t)>1)pprox 80\%.$

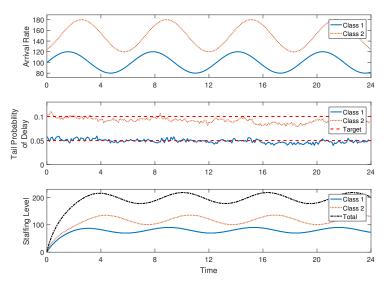
Class-1 more important!

• Monte Carlo simulation with 5000 independent runs.

Base Case

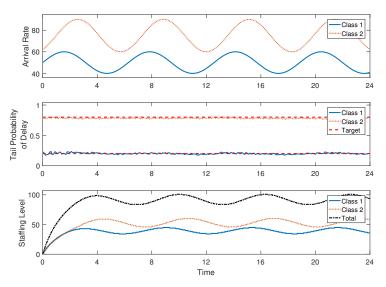


High Quality of Service ($\alpha_1 = 0.05, \alpha_2 = 0.1$)



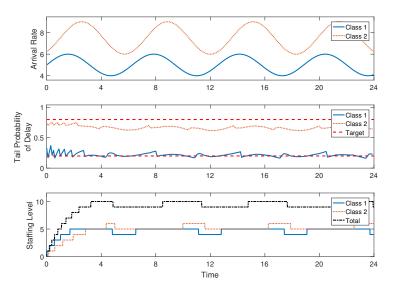
Good performance when $\alpha_i \approx 0$.

Very High Quality of Service ($w_1 = 0.05, w_2 = 0.1$)



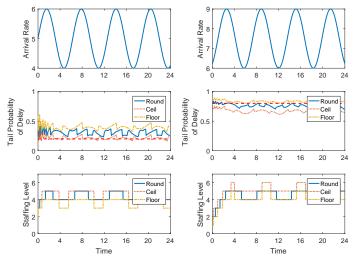
If $w_i \approx 0$, TPoD degenerates to probability of delay (PoD) $\mathbb{P}(W_i(t) > 0)$.

A Small System (n = 5)



It is ok to apply $n \to \infty$ results to a system with a very small n.

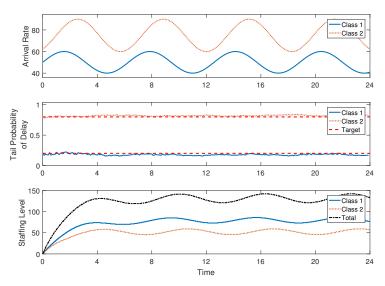
A Small System (n = 5)



• When *n* is small, adding/removing a server causes bigger bumps;

• Error is attributed to discretization of staffing levels.

Class-Dependent Service Rates ($\mu_1 = 0.5, \mu_2 = 1$)



When $\mu_1 \neq \mu_2$, $\sigma_{\widehat{H}}^2(t)$ is numerically computed using our algorithm.

A Five-Class V Model: Parameters and QoS Targets

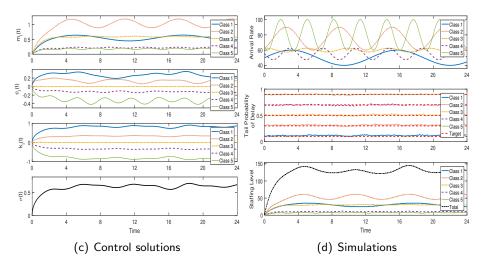
• Sinusoidal arrival rates $\lambda_i(t) = n\bar{\lambda}_i (1 + r_i \sin(\gamma_i t + \phi_i));$

- Exponential service times;
- Exponential abandonment times;
- Scale *n* = 50.

	A	rrival Para	meters		Abandonment rates	Service rates	Service levels	
Class	$\bar{\lambda}_i$	ri	γ_i	ϕ_i	θ_i	μ_i	Wi	α_i
1	1.0	0.20	1	0	0.6	1	0.2	0.1
2	1.5	0.30	1	-1	0.3	1	0.4	0.3
3	1.2	0.05	1	1	0.5	1	0.6	0.5
4	1.1	0.15	1	-2	1.0	1	0.8	0.7
5	1.6	0.40	1	2	1.2	1	1.0	0.9

The priority decreases in *i*, $1 \le i \le 5$.

Five-Class Example



Conclusions

Summary

- Propose a time-varying staffing and dynamic scheduling policy for a multi-class V-model;
- Prove asymptotic stability for

 $\mathbb{E}[W_i(t)] \approx w_i, \qquad \mathbb{P}(W_i(t) > w_i) \approx \alpha_i, \qquad 0 < t \le T, \ 1 \le i \le K.$

• Engineering confirmation via simulations.

Future works

• Differentiate PoD $\mathbb{P}(W_i(t) > 0) \approx \alpha_i$ (QED). Our scheduling rule

$$i^* \in \underset{1 \leq i \leq K}{\arg \max} \left\{ \frac{H_i^n(t)}{w_i} + \frac{1}{\sqrt{n}} \kappa_i(t) \right\}$$
 breaks down when $w_i = 0!$

- Scheduling policies based on other states (e.g., queue length).
- Nonexponential service distributions.
- Multiple service pools.

References

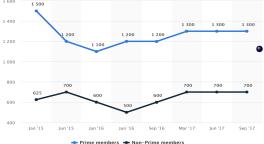
- Liu, Y. (2018). Staffing to stabilize the tail probability of delay in service systems with time-varying demand. Operations Research, 66(2), 514–534.
- Hovey, K., Liu, Y., & Sun, X. (2018). Staffing and Scheduling to Differentiate Service in Multiclass Time-Varying Service Systems. Submitted to Operations Research.
- Ding, Y., Park, E., Nagarajan, M., & Grafstein, E. (2018) Patient Prioritization in Emergency Department Triage Systems: An Empirical Study of Canadian Triage and Acuity Scale (CTAS). Manufacturing & Service Operations Management.
 - Eick, S. G., Massey, W. A., & Whitt, W. (1993). The physics of the $M_t/G/\infty$ queue. Operations Research, 41(4), 731–742.
 - Feldman, Z., Mandelbaum, A., Massey, W. A., & Whitt, W. (2008). Staffing of time-varying queues to achieve time-stable performance. Management Science, 54(2), 324–338.
 - Gurvich, I., Armony, M., & Mandelbaum, A. (2008). Service-level differentiation in call centers with fully flexible servers. Management Science, 54(2), 279–294.

References

- Gurvich, I., & Whitt, W. (2010). Service-level differentiation in many-server service systems via queue-ratio routing. Operations research, 58(2), 316–328.
- Kim, J., Randhawa, R., Ward, A. R. (2018). Dynamic Scheduling in a Many-Server Multi-Class System: the Role of Customer Impatience in Large Systems. Manufacturing & Service Operations Management, 20(2), 285–301.
- Liu, Y., & Whitt, W. (2012). Stabilizing customer abandonment in many-server queues with time-varying arrivals. Operations research, 60(6), 1551–1564.
- Liu, Y., & Whitt, W. (2014). Many-server heavy-traffic limit for queues with time-varying parameters. The Annals of Applied Probability, 24(1), 378–421.
- Pender, J., & Massey, W. A. (2017). Approximating and stabilizing dynamic rate Jackson networks with abandonment. Probability in the Engineering and Informational Sciences, 31(1), 1–42.
- Soh, S. B., & Gurvich, I. (2016). Call center staffing: Service-level constraints and index priorities. Operations Research, 65(2), 537–555.

THANK YOU!

Another Motivating Example - Electronic Commerce



• Delivery guarantee

- Prime member: within 24 hours
- Regular member: within 4 days

• Non-stationary demand

- How to determine the fleet size?
- -How to schedule shipment date?

Full Description of the Main Theorem

Suppose the system operates under the TV-SRS staffing and TV-DP scheduling rule. Then there is a joint convergence for the CLT-scaled processes:

$$\begin{aligned} & \left(\widehat{H}_{1}^{n},\ldots,\widehat{H}_{K}^{n},\widehat{V}_{1}^{n}\ldots,\widehat{V}_{K}^{n},\hat{X}_{1}^{n},\ldots,\widehat{X}_{K}^{n},\hat{Q}_{1}^{n},\ldots,\hat{Q}_{K}^{n}\right) \\ \Rightarrow & \left(\widehat{H}_{1},\ldots,\widehat{H}_{K},\widehat{V}_{1}\ldots,\widehat{V}_{K},\hat{X}_{1},\ldots,\hat{X}_{K},\hat{Q}_{1},\ldots,\hat{Q}_{K}\right) \quad \text{in} \quad \mathcal{D}^{4K} \quad \text{as} \quad n \to \infty \end{aligned}$$

where all limiting waiting-time processes can be expressed in terms of a one-dimensional process $\widehat{H}(\cdot)$:

$$\widehat{H}_i(t) \equiv w_i(\widehat{H}(t) - \kappa_i(t)), \qquad \widehat{V}_i(t) = w_i(\widehat{H}(t+w_i) - \kappa_i(t+w_i));$$

the process \hat{H} uniquely solves the following stochastic Volterra equation

$$\widehat{H}(t) = \int_0^t L(t,s)\widehat{H}(s)ds + \int_0^t J(t,s)dW(s) + K(t),$$

where W is a standard Brownian motion,

$$\begin{split} L(t,s) &\equiv \frac{\sum_{i=1}^{K} \eta_i(s) e^{\mu_i(s-t)} \left(\mu_i - h_{F_i}(w_i)\right)}{\eta(t)}, \quad J(t,s) \equiv \frac{\sqrt{\sum_{i=1}^{K} e^{2\mu_i(s-t)} \left(F_i^c(w_i)\lambda_i(s-w_i) + \mu_i m_i(s)\right)}}{\eta(t)}, \\ K(t) &\equiv \frac{\sum_{i=1}^{K} \left(\eta_i(t)\kappa_i(t) - \int_0^t \eta_i(s) e^{\mu_i(s-t)} \left(\mu_i - h_{F_i}(w_i)\right)\kappa_i(s)ds\right) - c(t)}{\eta(t)} \end{split}$$

for $\eta_i(t) \equiv w_i \lambda_i(t - w_i) F_i^c(w_i)$ and $\eta(t) \equiv \sum_{i \in \mathcal{I}} \eta_i(t)$.

Functional Weak Law of Large Numbers

The limit for each queue-length process can be decomposed into three terms:

$$\begin{split} \hat{Q}_{i}(t) &\equiv \hat{Q}_{i,1}(t) + \hat{Q}_{i,2}(t) + \hat{Q}_{i,3}(t) \\ \hat{Q}_{i,1}(t) &\equiv \int_{t-w_{i}}^{t} F_{i}^{c}(t-u) \sqrt{\lambda_{i}(u)} \mathrm{d}W_{\lambda_{i}}(u), \\ \hat{Q}_{i,2}(t) &\equiv \int_{t-w_{i}}^{t} \sqrt{F_{i}^{c}(t-u)F_{i}(t-u)\lambda_{i}(u)} \mathrm{d}W_{\theta_{i}}(s), \\ \hat{Q}_{i,3}(t) &\equiv \lambda_{i}(t-w_{i})F_{i}^{c}(w_{i})\widehat{H}_{i}(t), \end{split}$$

for W_{λ_i} , W_{θ_i} , W_{μ_i} being independent standard Brownian motions. Finally, the limits for number in system is given by $\hat{X}_i(t) = \hat{B}_i(t) + \hat{Q}_i(t)$.

As an immediate consequence of the FCLT result, we have

$$\begin{aligned} & \left(\bar{B}_1^n, \dots, \bar{B}_K^n, \bar{Q}_1^n, \dots, \bar{Q}_K^n, \bar{X}_1^n, \dots, \bar{X}_K^n, H_1^n, \dots, H_K^n, V_1^n, \dots, V_K^n\right) \\ \Rightarrow & \left(m_1, \dots, m_K, q_1, \dots, q_K, x_1, \dots, x_K, w_1 \mathfrak{e}, \dots, w_K \mathfrak{e}, w_1 \mathfrak{e}, \dots, w_K \mathfrak{e}\right) \quad \text{in} \quad \mathcal{D}^{5K} \end{aligned}$$

as $n \to \infty$ where \mathfrak{e} denotes constant function of one.

Computing C(t, s)

Algorithm:

- (i) Pick an initial candidate $C^{(0)}(\cdot, \cdot)$;
- (ii) In the k^{th} iteration, let $C^{(k+1)} = \Theta\left(C^{(i)}\right)$ with Θ given by

$$\Theta(C_{\widehat{H}})(t,s) = -\int_0^t \int_0^s L(t,u)L(s,v)C_{\widehat{H}}(u,v)dvdu + \int_0^t L(t,u)C_{\widehat{H}}(u,s)du + \int_0^s L(s,v)C_{\widehat{H}}(t,v)dv + \int_0^{s\wedge t} J(t,u)J(s,u)du.$$

Here $\Theta(\cdot)$ is a contraction operator.

(iii) If $||C^{(k+1)} - C^{(k)}||_T < \epsilon$, stop; otherwise, k = k + 1 and go back to step (ii). According to the Banach contraction theorem, this algorithm should converge exponentially fast. Finally, we take $Var(\hat{H}(t)) = C(t, t)$, for $0 \le t \le T$.

Part I - Single Class Model

$M_t/M/s_t + GI$

- Nonhomogenous Process arrivals (easily extendable)
- I.I.D. exponential service times with rate μ (great difficulty arises when extended to general services)
- Time-varying staffing level (TBD)
- I.I.D. abandonment times $\sim F(x) \equiv \mathbb{P}(A \leq x)$ (the +GI)
- First-Come First-Served
- Unlimited waiting capacity

Performance functions

- Q(t) and B(t): number in queue and in service at time t
- $X(t) \equiv Q(t) + B(t)$: total number in system at time t
- V(t): potential waiting time at time t

Staffing to Reduce Excessive Delay

- Objective: $\mathbb{P}(V(t) > w) \approx \alpha \in (0, 1)$
- Key idea: V(t) is approximately normal for λ and s large (L&W14)
- Propose staffing:

$$s(t) = \lceil m(t) + \tilde{c}(t) \rceil$$
(3)

• Detailed Formula:

$$m(t) = F^{c}(w) \int_{0}^{t} e^{-\mu(t-u)} \lambda(u-w) du \quad \text{(offered-load process)}$$
(4)

$$c(t) = z_{\alpha} e^{-\mu t} \left(Z(t) - (\mu - h_F(w)) \int_0^t Z(s) ds \right)$$
(5)

for
$$Z(t) \equiv e^{(\mu - h_F(w))t} \sqrt{\int_0^t e^{2h_F(w)} (F^c(w)\lambda(u - w) + \mu m(u))},$$
 (6)

 $z_{\alpha} = \Phi^{-1}(1 - \alpha)$ and $h_F(x) \equiv f(x)/F^c(x)$.

• Formula (4) was derived by L&W12 and (5) - (6) came from L18.

Heuristic Derivation of $m(\cdot)$

• Consider an $M_t/GI/\infty$ model with arrival from time zero. Then number in system $Q(t) \sim$ Poisson r.v. with mean (EMW93)

$$m(t) \equiv \mathbb{E}[Q(t)] = \int_0^t \lambda(u) G^c(t-u) \mathrm{d}u = \int_0^t \lambda(t-s) G^c(s) \mathrm{d}s.$$

With exponential services we have $G^{c}(x) = e^{-\mu x}$, and so

$$m(t) = \int_0^t \lambda(u) e^{-\mu(t-u)} \mathrm{d}u. \tag{7}$$

- If the mean waiting time is stabilized at the target w, then on average a customer (if not abandon) will wait w time units before entering service.
- Some the "effective arrival" rate $\tilde{\lambda}(t) \equiv \lambda(t-w)F^{c}(w)$. Replacing $\lambda(t)$ in (7) with $\tilde{\lambda}(t)$ yields (4), as desired!
- In summary, the offered load m(t) is the mean number of busy servers needed to serve all customers who are willing to wait (hence excluding an acceptable faction of customer abandoned).

A Five-Class V Model: Parameters and QoS Targets

• Sinusoidal arrival rates $\lambda_i(t) = n\bar{\lambda}_i (1 + r_i \sin(\gamma_i t + \phi_i));$

- Exponential service times;
- Exponential abandonment times;
- Scale n = 50.

	A	rrival Para	meters		Abandonment rates	Service rates	Service levels	
Class	$\bar{\lambda}_i$	ri	γ_i	ϕ_i	θ_i	μ_i	Wi	α_i
1	1.0	0.20	1	0	0.6	1	0.2	0.1
2	1.5	0.30	1	-1	0.3	1	0.4	0.3
3	1.2	0.05	1	1	0.5	1	0.6	0.5
4	1.1	0.15	1	-2	1.0	1	0.8	0.7
5	1.6	0.40	1	2	1.2	1	1.0	0.9

The priority decreases in *i*, $1 \le i \le 5$.

Five-Class Example

- Goal: Stabilizing mean waiting time $\mathbb{E}[W_i(t)] = w_i$, $(w_1, w_2, w_3, w_4, w_5) = (0.2, 0.4, 0.6, 0.8, 1)$.
- Apply our staffing and scheduling rule with $\alpha_i = 1/2$, $1 \le i \le 5$.

