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Motivating Example 1 - Call Center

80% of type 1 calls need to be answered within 20 seconds (“80-20
rule”)

50% of type 2 calls need to be answered within 60 seconds

How many servers are needed over the course of day?

How to assign a newly idle agents to one of these queues?
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Example 2 - Canadian Triage and Acuity Scale (CTAS)

According to CTAS guideline Ding et al. (2018), “CTAS level i patients
need to be seen by a physician within wi minutes 100αi% of the time”,
with

(w1,w2,w3,w4,w5) = (0, 15, 30, 60, 120),

(α1, α2, α3, α4, α5) = (0.98, 0.95, 0.9, 0.85, 0.8).
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Other Examples of Multi-class Settings
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Modeling Real Service Systems

Model with these features are difficult to analyze:

Time-varying arrivals

Customer abandonment

Non-exponential service and abandonment distributions

Multiple customer classes

Goals:

Break through fundamental barriers holding back the community;

Bring more practical models within range of tractability;

Provide performance analysis and decision support tools.
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Objective of Study and Approach

Goal: achieve acceptable service level for different classes

Method:
I Effective planning of service capacity to cope with time-varying

demand (staffing);
I Timely allocation of service resources to every customer class

(scheduling).

	

Joint	Staffing	&	
Scheduling	
Problem

Dynamic	
Scheduling

Multiple	Job	
Classes

Time-Varying	
Staffing

Time-Varying	
Arrivals
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Existing Works and Contributions

Literature review

I Service differentiation
Gurvich, Armony & Mandelbaum (08); Gurvich & Whitt (10); Soh &

Gurvich (16); Kim, Randhawa & Ward (2017)

All assume a critical-loading system and the demand to be stationary

I Performance stabilization of time-varying queues
Jennings et al. (96); Feldman et al. (08); Pender & Massey (17); Liu &

Whitt (12,14); Liu (18)

All consider single-class models

Our contribution:
studying service differentiation with time-varying demand and
class-dependent services, focusing on overloaded systems.
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A Multi-Class V Model
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s(t)	servers	

Class-dependent arrival rate
λi (t)
(non-homogeneous Poisson)

Class-dependent
abandonment-time distribution
Fi

A large time-varying number of
servers s(t)

Exponential service times with
class-dependent service rate µi

First-Come First-Served within
each class

Xu Sun (Columbia IEOR) Service Differentiation in TV Queues September 22, 2018 8 / 44



Problem Statement

Model parameters

P ≡ ( λi (t),Fi , µi ,︸ ︷︷ ︸
customer behavior

wi , αi ,︸ ︷︷ ︸
service level

1 ≤ i ≤ K , 0 ≤ t ≤ T )

Obtain convenient staffing and scheduling rules (in terms of P), such
that the tail probability of delay (TPoD)

P (Wi (t) > wi ) ≤ αi , 1 ≤ i ≤ K , 0 ≤ t ≤ T ,

or P (Wi (t) > wi ) ≈ αi

for any
I wi > 0 (delay target).
I αi ∈ (0, 1) (probability target: fraction of excessive delay).

Wi (t): potential waiting time of class i at time t, i.e., offered delay to
a class-i arrival at t assuming infinitely patient.
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Main Steps of Our Approach
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Step I: Proposed Staffing Formula
1 Use offered-load (OL) to determine the nominal service capacity

I No. of busy servers B(t) in Mt/GI/∞ ∼ Poisson r.v. with mean

m(t) ≡ E[B(t)] =

∫ t

0

λ(t − s)G c(s)ds.

I Here, for the i th class, the OL is

mi (t) =

∫ t

0

F c
i (wi )λi (u − wi )︸ ︷︷ ︸
effective arr. rate

e−µi (t−u)︸ ︷︷ ︸
exp. service dist.

du.

OL: mean No. of busy servers needed to serve all customers who are willing

to wait (excluding an acceptable faction of abandonment).

2 A time-varying square-root staffing (TV-SRS) rule

s(t) = m(t)︸ ︷︷ ︸
first order

+
√
λ?c(t)︸ ︷︷ ︸

second order

for m(t) ≡ m1(t) + · · ·+ mK (t)

where c(t) is a control function (TBD), and λ? is the system’s scale, i.e.,

λ? ≡
1

T

∫ T

0
λ(t)dt, with λ(t) ≡ λ1(t) + · · ·+ λK (t).
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Step I: Proposed Control Structure

Use real-time class-i head-of-line waiting time (HWT) Hi (t) to devise a dynamic
control policy;

A time-varying dynamic prioritization scheduling (TV-DPS) rule:
Assigns the next available server to the HoL customer from class i∗ satisfying

i∗ ∈ arg max
1≤i≤K


Hi (t)

wi︸ ︷︷ ︸
normalized HWT

+
1√
λ?

κi (t)

 .

where κi (t) is a control function (TBD).

Main ideas of TV-DPS:

I H̃i (t) ≡ Hi (t)/wi focuses on the delay target wi ;

I κi (t) helps accomplish the class-dependent probability target αi ;

I TV-DPS is both time-dependent (accounting for time variability) and
state-dependent (capturing stochasticity).
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An Illustration of How TV-DP Rule Works
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Step II: Large-Scale Asymptotic Analysis

Exact analysis is difficult; hence do asymptotic analysis as scale grows
(realistic for large-scale systems).

Use n in place of λ? and consider a sequence of models indexed by n.

In the nth model:

I Arrival rate λni (t) ≡ nλi (t);
I Staffing level:

sn(t) = nm(t) +
√
nc(t).

I Scheduling rule:

i∗ ∈ arg max
1≤i≤K

{
Hn

i (t)

wi
+

1√
n
κi (t)

}
.

I Service rates and abandonment distributions are fixed.

Scaled HWT and PWT processes:

Ĥn
i (t) ≡ n1/2 (Hn

i (t)− wi ) and Ŵ n
i (t) ≡ n1/2 (W n

i (t)− wi ) .
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Limit of Waiting Times and State-Space Collapse

Under the TV-SRS and TV-DPS policy, the CLT-scaled waiting time processes(
Ĥn

1 , . . . , Ĥ
n
K , Ŵ

n
1 . . . , Ŵ

n
K

)
⇒
(
Ĥ1, . . . , ĤK , Ŵ1 . . . , ŴK

)
in D2K as n→∞,

with all HWT and PWT limits in terms of a one-dimensional process Ĥ(·), where

Ĥi (t) ≡ wi (Ĥ(t)− κi (t)), Ŵi (t) = wi (Ĥ(t + wi )− κi (t + wi )).

The process Ĥ uniquely solves the following stochastic Volterra equation (SVE)

Ĥ(t) =

∫ t

0
L(t, s)Ĥ(s)ds +

∫ t

0
J(t, s)dW(s) + K(t),

where W is a standard Brownian motion,

L(t, s) ≡

∑K
i=1 ηi (s)eµi (s−t)

(
µi − hFi

(wi )
)

η(t)
, J(t, s) ≡

√∑K
i=1 e2µi (s−t)(F c

i (wi )λi (s − wi ) + µimi (s)
)

η(t)
,

K(t) ≡

∑K
i=1

(
ηi (t)κi (t)−

∫ t
0 ηi (s)eµi (s−t)

(
µi − hFi

(wi )
)
κi (s)ds

)
− c(t)∑K

i=1 ηi (t)
.

for ηi (t) ≡ wiλi (t − wi )F
c
i (wi ).
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Limit of Waiting Times and State-Space Collapse

1 State-space collapse:
All limiting HWT and PWT processes degenerates to a one-dimensional
process Ĥ.

2 The SVE admits a unique solution which is a Gaussian process

I If µi 6= µ
F SVE has NO analytic solution;
F We gave effective algorithms (geometrically fast) to compute

mĤ(t) ≡ E[Ĥ(t)] and variance CĤ(t, s) ≡ Cov(Ĥ(t), Ĥ(s)).

I If µi = µ, SVE has an closed-form solution (so do mĤ(t) and CĤ(t, s)).

Ĥ(t) =
1

R(t)

(∫ t

0
J̃(u)dW(u) +

∫ t

0
R̃(u)dK(u) +

∫ t

0
K̃(u)dR(u)

)
.

3 Variance σ2
Ĥ

(t) = Var(Ĥ(t)) relies only on model parameters (independent

with control functions).

4 Control functions c(·) and κi (·) appear in the term K (·) only.
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Step III: Solve c∗(t) and κ∗i (t) subject to Service-Level Constraints

Main ideas: when n is large, at each time t ∈ [0,T ], we hope

αi ≡ P(Hn
i (t) > wi ) = P(Ĥn

i (t) > 0)

≈ P(Ĥi (t) > 0) = P(wi (Ĥ(t)− κi (t)) > 0)

= P
(
N
(
mĤ(t), σ2

Ĥ
(t)
)
> κi (t)

)
= P

(
N (0, 1) >

κi (t)−mĤ(t)

σĤ(t)

)
Recall that mĤ(t) is a function of κi (t) and ci (t).

Obtain the asymptotically “optimal” control functions:

c(t) =
K∑
i=1

(
ηi (t)κi (t)−

∫ t

0

ηi (s)eµi (s−t) (µi − hFi (wi ))κi (s)ds

)
,

κi (t) = zαiσĤ(t), 1 ≤ i ≤ K , 0 ≤ t ≤ T .

where zα = Φ−1(1− α), ηi (t) ≡ wiλi (t − wi )F
c
i (wi ).
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Step III: Solve c∗(t) and κ∗i (t) subject to Service-Level Constraints

The asymptotically “optimal” control functions:

c(t) =
K∑
i=1

(
ηi (t)κi (t)−

∫ t

0

ηi (s)eµi (s−t) (µi − hFi (wi ))κi (s)ds

)
, (1)

κi (t) = zαiσĤ(t), 1 ≤ i ≤ K , 0 ≤ t ≤ T . (2)

Theorem (Asymptotic service differentiation)

Under our staffing and scheduling rule with ci (·) and κi (·) in (1) and (2),

(i) Mean PWT and HWT are both asymptotically differentiated and stabilized:

E[W n
i (t)]→ wi and E[Hn

i (t)]→ wi as n→∞, for 0 < t ≤ T , 1 ≤ i ≤ K .

(ii) TPoDs for PWT and HWT are both asymptotically differentiated and stabilized:

P(W n
i (t) > wi )→ αi and P(Hn

i (t) > wi )→ αi as n→∞

for 0 < t ≤ T, 1 ≤ i ≤ K.
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Constant arrival rates

When λi (t) = λi

Staffing

mi (t) ∼ mi ≡
λiF

c
i (wi )

µ
, c(t) ∼ c ≡

K∑
i=1

wiλi fi (wi )

µ
κi ,

Scheduling

κi (t) ∼ κi ≡ zαi ·

√√√√√ ∑K
j=1 λjF

c
j (wi )(∑K

j=1 λj fj(wj)wj

)(∑K
j=1 λjF

c
j (wj)wj

)
︸ ︷︷ ︸

independent with αi

.

These formulas can be used to estimate

the required average number of servers and scheduling threshold;

the marginal price of staffing and scheduling (MPSS):

To improve the service to the next level (wi → wi −∆wi or αi → αi −∆αi ), how many

extra servers are need and how much should the scheduling thresholds be adjusted?
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Review of the Approach
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Numerical Examples
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Base Case - A Two-Class V Model

Model parameters

I Sinusoidal arrival rates λi (t) = nλ̄i (1 + ri sin(γi t + φi ))
λ̄1 = 1, λ̄2 = 1.5, r1 = 0.2, r2 = 0.3, γ1 = γ2 = 1, φ1 = 0, φ2 = −1

I Service rates µ1 = µ2 = 1 (later extend to class-dependent case)

I Exponential abandonment times with rates θ1 = 0.6, θ2 = 0.3.

I System scale: n = 50

QoS parameters

I Delay targets w1 = 0.5,w2 = 1;
I Probability targets α1 = 0.2, α2 = 0.8.

Hope to achieve:

P(W1(t) > 0.5) ≈ 20%, P(W2(t) > 1) ≈ 80%. Class-1 more important!

Monte Carlo simulation with 5000 independent runs.
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Base Case
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(b) Simulations
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High Quality of Service (α1 = 0.05, α2 = 0.1)
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Good performance when αi ≈ 0.
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Very High Quality of Service (w1 = 0.05,w2 = 0.1)
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If wi ≈ 0, TPoD degenerates to probability of delay (PoD) P(Wi (t) > 0).
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A Small System (n = 5)
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It is ok to apply n→∞ results to a system with a very small n.
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A Small System (n = 5)
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When n is small, adding/removing a server causes bigger bumps;

Error is attributed to discretization of staffing levels.
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Class-Dependent Service Rates (µ1 = 0.5, µ2 = 1)
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When µ1 6= µ2, σ2
Ĥ

(t) is numerically computed using our algorithm.
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A Five-Class V Model: Parameters and QoS Targets

Sinusoidal arrival rates λi (t) = nλ̄i (1 + ri sin(γi t + φi ));

Exponential service times;

Exponential abandonment times;

Scale n = 50.

Arrival Parameters
Abandonment

rates
Service
rates

Service
levels

Class λ̄i ri γi φi θi µi wi αi

1 1.0 0.20 1 0 0.6 1 0.2 0.1
2 1.5 0.30 1 -1 0.3 1 0.4 0.3
3 1.2 0.05 1 1 0.5 1 0.6 0.5
4 1.1 0.15 1 -2 1.0 1 0.8 0.7
5 1.6 0.40 1 2 1.2 1 1.0 0.9

The priority decreases in i , 1 ≤ i ≤ 5.
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Five-Class Example
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(d) Simulations
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Conclusions
Summary

Propose a time-varying staffing and dynamic scheduling policy for a
multi-class V-model;

Prove asymptotic stability for

E[Wi (t)] ≈ wi , P(Wi (t) > wi ) ≈ αi , 0 < t ≤ T , 1 ≤ i ≤ K .

Engineering confirmation via simulations.

Future works

Differentiate PoD P(Wi (t) > 0) ≈ αi (QED). Our scheduling rule

i∗ ∈ arg max
1≤i≤K

{
Hn

i (t)

wi
+

1√
n
κi (t)

}
breaks down when wi = 0!

Scheduling policies based on other states (e.g., queue length).

Nonexponential service distributions.

Multiple service pools.
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THANK YOU!
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Another Motivating Example - Electronic Commerce

Delivery guarantee

- Prime member: within 24 hours

- Regular member: within 4 days

Non-stationary demand

- How to determine the fleet size?

-How to schedule shipment date?
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Full Description of the Main Theorem
Suppose the system operates under the TV-SRS staffing and TV-DP scheduling rule. Then
there is a joint convergence for the CLT-scaled processes:(

Ĥn
1 , . . . , Ĥ

n
K , V̂

n
1 . . . , V̂

n
K , X̂

n
1 , . . . , X̂

n
K , Q̂

n
1 , . . . , Q̂

n
K

)
⇒
(
Ĥ1, . . . , ĤK , V̂1 . . . , V̂K , X̂1, . . . , X̂K , Q̂1, . . . , Q̂K

)
in D4K as n→∞,

where all limiting waiting-time processes can be expressed in terms of a one-dimensional process
Ĥ(·):

Ĥi (t) ≡ wi (Ĥ(t)− κi (t)), V̂i (t) = wi (Ĥ(t + wi )− κi (t + wi ));

the process Ĥ uniquely solves the following stochastic Volterra equation

Ĥ(t) =

∫ t

0
L(t, s)Ĥ(s)ds +

∫ t

0
J(t, s)dW (s) + K(t),

where W is a standard Brownian motion,

L(t, s) ≡

∑K
i=1 ηi (s)eµi (s−t)

(
µi − hFi

(wi )
)

η(t)
, J(t, s) ≡

√∑K
i=1 e2µi (s−t)(F c

i (wi )λi (s − wi ) + µimi (s)
)

η(t)
,

K(t) ≡

∑K
i=1

(
ηi (t)κi (t)−

∫ t
0 ηi (s)eµi (s−t)

(
µi − hFi

(wi )
)
κi (s)ds

)
− c(t)

η(t)

for ηi (t) ≡ wiλi (t − wi )F
c
i (wi ) and η(t) ≡

∑
i∈I ηi (t).
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Functional Weak Law of Large Numbers

The limit for each queue-length process can be decomposed into three terms:

Q̂i (t) ≡ Q̂i,1(t) + Q̂i,2(t) + Q̂i,3(t)

Q̂i,1(t) ≡
∫ t

t−wi

F c
i (t − u)

√
λi (u)dWλi

(u),

Q̂i,2(t) ≡
∫ t

t−wi

√
F c
i (t − u)Fi (t − u)λi (u)dWθi (s),

Q̂i,3(t) ≡ λi (t − wi )F
c
i (wi )Ĥi (t),

for Wλi
,Wθi ,Wµi being independent standard Brownian motions. Finally, the limits for number

in system is given by X̂i (t) = B̂i (t) + Q̂i (t).

As an immediate consequence of the FCLT result, we have(
B̄n

1 , . . . , B̄
n
K , Q̄

n
1 , . . . , Q̄

n
K , X̄

n
1 , . . . , X̄

n
K ,H

n
1 , . . . ,H

n
K ,V

n
1 , . . . ,V

n
K

)
⇒ (m1, . . . ,mK , q1, . . . , qK , x1, . . . , xK ,w1e, . . . ,wK e,w1e, . . . ,wK e) in D5K

as n→∞ where e denotes constant function of one.

Xu Sun (Columbia IEOR) Service Differentiation in TV Queues September 22, 2018 37 / 44



Computing C (t, s)

Algorithm:

(i) Pick an initial candidate C (0)(·, ·);

(ii) In the k th iteration, let C (k+1) = Θ
(
C (i)
)

with Θ given by

Θ(CĤ)(t, s) = −
∫ t

0

∫ s

0

L(t, u)L(s, v)CĤ(u, v)dvdu +

∫ t

0

L(t, u)CĤ(u, s)du

+

∫ s

0

L(s, v)CĤ(t, v)dv +

∫ s∧t

0

J(t, u)J(s, u)du.

Here Θ(·) is a contraction operator.

(iii) If ‖C (k+1) − C (k)‖T < ε, stop; otherwise, k = k + 1 and go back to step (ii).

According to the Banach contraction theorem, this algorithm should converge
exponentially fast. Finally, we take Var(Ĥ(t)) = C(t, t), for 0 ≤ t ≤ T .
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Part I - Single Class Model
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Mt/M/st + GI

Nonhomogenous Process arrivals (easily extendable)

I.I.D. exponential service times with rate µ (great difficulty arises when
extended to general services)

Time-varying staffing level (TBD)

I.I.D. abandonment times ∼ F (x) ≡ P(A ≤ x) (the +GI )

First-Come First-Served

Unlimited waiting capacity

Performance functions

Q(t) and B(t): number in queue and in service at time t

X (t) ≡ Q(t) + B(t): total number in system at time t

V (t): potential waiting time at time t
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Staffing to Reduce Excessive Delay

Objective: P(V (t) > w) ≈ α ∈ (0, 1)

Key idea: V (t) is approximately normal for λ and s large (L&W14)

Propose staffing:
s(t) = dm(t) + c̃(t)e (3)

Detailed Formula:

m(t) = F c(w)

∫ t

0

e−µ(t−u)λ(u − w)du (offered-load process) (4)

c(t) = zαe
−µt

(
Z (t)− (µ− hF (w))

∫ t

0

Z (s)ds

)
(5)

for Z (t) ≡ e(µ−hF (w))t

√∫ t

0

e2hF (w) (F c(w)λ(u − w) + µm(u)) , (6)

zα = Φ−1(1− α) and hF (x) ≡ f (x)/F c(x).

Formula (4) was derived by L&W12 and (5) - (6) came from L18.
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Heuristic Derivation of m(·)
1 Consider an Mt/GI/∞ model with arrival from time zero. Then number in

system Q(t) ∼ Poisson r.v. with mean (EMW93)

m(t) ≡ E[Q(t)] =

∫ t

0

λ(u)G c(t − u)du =

∫ t

0

λ(t − s)G c(s)ds.

With exponential services we have G c(x) = e−µx , and so

m(t) =

∫ t

0

λ(u)e−µ(t−u)du. (7)

2 If the mean waiting time is stabilized at the target w , then on average a
customer (if not abandon) will wait w time units before entering service.

3 Hence the “effective arrival” rate λ̃(t) ≡ λ(t − w)F c(w). Replacing λ(t) in
(7) with λ̃(t) yields (4), as desired!

4 In summary, the offered load m(t) is the mean number of busy servers
needed to serve all customers who are willing to wait (hence excluding an
acceptable faction of customer abandoned).
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A Five-Class V Model: Parameters and QoS Targets

Sinusoidal arrival rates λi (t) = nλ̄i (1 + ri sin(γi t + φi ));

Exponential service times;

Exponential abandonment times;

Scale n = 50.

Arrival Parameters
Abandonment

rates
Service
rates

Service
levels

Class λ̄i ri γi φi θi µi wi αi

1 1.0 0.20 1 0 0.6 1 0.2 0.1
2 1.5 0.30 1 -1 0.3 1 0.4 0.3
3 1.2 0.05 1 1 0.5 1 0.6 0.5
4 1.1 0.15 1 -2 1.0 1 0.8 0.7
5 1.6 0.40 1 2 1.2 1 1.0 0.9

The priority decreases in i , 1 ≤ i ≤ 5.
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Five-Class Example

Goal: Stabilizing mean waiting time E[Wi (t)] = wi ,
(w1,w2,w3,w4,w5) = (0.2, 0.4, 0.6, 0.8, 1).

Apply our staffing and scheduling rule with αi = 1/2, 1 ≤ i ≤ 5.
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