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Why EV Usage Is Likely to Expand Rapidly?

No tailpipe emissions; can be refueled using renewable energy (solar, thermal
and wind power).

Strong government support; e.g., Beijing waives license plate lottery for the
EV users; EV owners in Ontario can travel in HOV and HOT lanes.
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Issues with EV Adoption

1. Range anxieties 2. Long charging times
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Modes of Refueling

Rapid charging Battery swap
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Pros and Cons of Batter Swap vs. Rapid Charging

Pros

Lower charge voltages prolong battery life; batteries suffer from stress
when exposed to heat.

Ability to use grid electricity when it is off-peak, cheapest, or when
some green energy generation is available.

Provides a more rapid way of refueling the EV; enable EVs to travel
nonstop on long road trips.

Cons

Ownership issue - consumers (especially private users) would like to
buy the vehicle together with the battery.

Conclusion

Battery swap is most likely to thrive in companies with fleet vehicles
(e.g., city taxis and electric power trucks) and future Mobility Systems
with self-drive EVs.
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A Battery Swap Station

...

...

Two jobs
It provides battery swap service for EVs (uncontrollable).
It recharges DBs so as to produce FBs for future use (controllable).

Two types of resource constraints
The number of charging bays (model parameter)
The number of batteries in circulation (a decision variable)
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Objectives

Long-term decision on the number of charging bays

Medium-term decision on the number of batteries to be purchased

Short-term decisions on when and how many batteries to recharge

Primarily focus on medium-term and short-term decision making.
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Existing Work and Our Contributions

Literature review

Optimizing BSS operations
Schneider et al. (2017); Sun et al. (2017); Widrick et al. (2018)

All follow an MDP approach and can be computationally expensive,

especially for large scale problems.

Fluid-model analysis
Maglaras and Meissner (2006); Whitt (2006); Dai et al. (2018)

Focus on different application domains.

Our contribution:

Propose a fluid-based formulation that allows for easy implementation
of large-scale systems.

Obtain managerial insights for optimizing BSS operations under
non-stationary demand and energy price.

In the event of high service levels, propose a robust formulation to
account for demand uncertainty.
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Fluid-based Optimization - I

System parameters

Demand function λ ≡ {λ(t); t ≥ 0}

Per-charger charging rate µ

Total number of batteries b

Total number of charging bays κ

Cost parameters

Amortized battery purchasing cost per unit time γ

Day-ahead electricity price p ≡ {p(t); t ≥ 0}

Waiting cost per unit time c

State x ≡ {x(t); t ≥ 0} representing the number of FBs

Control m ≡ {m(t); t ≥ 0} representing the number of (depleted)
batteries being recharged
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Fluid-based Optimization - II

We formulate the BSS battery purchasing and charging problem as

min
b

γτb︸︷︷︸
battery cost

+ V (b)︸ ︷︷ ︸
operating cost

(first-stage)

where the second-stage problem is given by

V (b) ≡ min
(x0,m)∈X (b)

∫ τ

0
p(t)m(t)dt︸ ︷︷ ︸

charging cost

+ c

∫ τ

0
x−(t)dt︸ ︷︷ ︸

waiting cost

and the decision region for the recourse variables

X (b) ≡{x0 ≤ b,m : ẋ(t) = µm(t)− λ(t), 0 ≤ m(t) ≤ κ,
m(t) + x+(t) ≤ b, x(0) = x(τ) = x0.}
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Structural Properties

Theorem

(I) There exists at least one optimal solution (x∗0 ,m
∗) to the second-stage

problem. (II) The optimal value function V(b) is convex in b. In addition, there
exists a cutoff value b∗ such that any number of batteries beyond this threshold
b∗ will not improve the operating cost V (b).

b∗ is the minimum number of batteries that guarantees zero wait and the
lowest charging cost.

b∗ permits an explicit representation.

Example

Suppose p(t) = p̄ + Ap sin(2πt/τ) and λ(t) = λ̄+ Aλ sin(2π(t − ψ)/τ). In
addition, µ = 1 and κ = 2λ̄. Then

b∗ = κ+ λ̄τ −
∫ τ

τ/2

λ(t)dt = 2λ̄+
λ̄τ

2
+

Aλτ

π
cos(2πψ/τ).
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Numerical Studies
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Figure 1: Illustrating the battery-swapping demand and the energy price.
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Balancing Battery Purchasing Cost and Operating Cost - I
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Figure 2: Impact of the battery capital price
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Balancing Battery Purchasing Cost and Operating Cost - II
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Figure 3: Impact of service level
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High Service Level

In the event of high service levels, one would want to avoid negative FB
inventory entirely. In that case the second-stage problem becomes

V (b) ≡ min
(x0,m)∈X (b)

∫ τ

0
p(t)m(t)dt︸ ︷︷ ︸

charging cost

where the decision region X (b) for the recourse variables

X (b) ≡{x0 ≤ b,m : ẋ(t) = µm(t)− λ(t), 0 ≤ m(t) ≤ κ,
x(t) ≥ 0, m(t) + x(t) ≤ b, x(0) = x(τ) = x0.}

(1)
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A Robust Formulation - I

The idea is to model demand uncertainty via uncertainty set. Let λ and λ̃ to
denote the nominal and realized demand, respectively, and λ̂ be such that

0 < λ̂(t) < λ(t)/2 and
∣∣∣λ̃(t)− λ(t)

∣∣∣ ≤ λ̂(t).

Introduce a budget-of-uncertainty function Γ(·), and stipulate∫ t

0

∣∣∣λ̃(u)− λ(u)
∣∣∣/λ̂(u)du ≤ Γ(t) for all t ∈ [0, τ ].

Let F be the uncertainty set. Then the robust cost minimization problem

min
(x0,m,χ)∈X (b)

χ

subject to ẋ(t) = µm(t)− λ̃(t), 0 ≤ m(t) ≤ κ, x(t) ≥ 0,m(t) + x(t) ≤ b,
x(0) = x(τ) = x0, and χ ≥

∫ τ
0
p(t)m(t)dt for all λ̃ ∈ F .
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A Robust Formulation - II

It turns out that preceding robust formulation can be simplified, yielding an
equivalent form as specified below:

min
(x0,m)∈X (b)

∫ τ

0

p(t)m(t)dt

where the decision region X (b) for the recourse variables

X (b) ≡{x0 ≤ b,m : ẋ(t) = µm(t)− λ(t), 0 ≤ m(t) ≤ κ,
x(t) ≥ η(t), m(t) + x(t) ≤ b − η(t), x(0) = x(τ) = x0},

(2)
and the function η only depends on the budget-of-uncertainty function Γ.

Comparing (2) with (1), one immediately sees that Γ trades off between the
level of conservatism of the robust solution and its performance.
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THANK YOU!
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Optimal Control and State Trajectory
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Figure 4: Illustration of the optimal charging control and state trajectory.
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Deriving the Cutoff Value b∗

Define the set-valued function φ(ζ) ≡ {0 ≤ t ≤ τ : p(t) ≤ ζ}.

0 5 15 2010
Time (hours)

0.02

0.06

0.055

0.05

0.045

0.04

0.035

0.03

0.025

E
ne

rg
y 

P
ric

e 
($

/k
W

h)

Optimal charging rule (run in full capacity when the energy price is among the lowest)

m∗(t) =

{
κ if t ∈ φ(ζ∗),
0 if t /∈ φ(ζ∗),

Minimum initial FB inventory that leads to zero congestion:

x∗(0) ≡ sup
0≤t≤τ

[
Λ(t)− µ

∫ t

0
m∗(u)du

]+

.

Minimum number of batteries that ensures the lowest operating cost:

b∗ ≡ sup
t≤τ
{m∗(t) + x∗(t)}.
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