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Abstract

We develop a robust queueing network analyzer algorithm to approximate the

steady-state performance of a single-class open queueing network of single-server queues

with Markovian routing. The algorithm allows non-renewal external arrival processes,

general service-time distributions and customer feedback. The algorithm is based on

a decomposition approximation, where each flow is partially characterized by its rate

and a continuous function that measures the stochastic variability over time. This

function is a scaled version of the variance-time curve, called the index of dispersion

for counts (IDC). The required IDC functions for the external arrival processes can be

calculated from the model primitives or estimated from data. Approximations for the

IDC functions of the internal flows are calculated by solving a set of linear equations.

The theoretical basis is provided by heavy-traffic limits for the flows established in our

previous papers. A robust queueing technique is used to generate approximations of

the mean steady-state performance at each queue from the IDC of the total arrival flow

and the service specification at that queue. The algorithm effectiveness is supported

by extensive simulation studies.
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1 Introduction

This paper contributes to analytical methods for designing and optimizing service systems.

Such systems appear in a broad and diverse range of settings, including customer contact

centers, hospitals, airlines, online marketplaces, ride-sharing platforms and cloud computing

networks. The design and operation of these systems is challenging, largely because there is

uncertainty about when customers will arrive and their service requirements.

Fortunately, useful guidance can often be provided by exploiting mathematical models

using stochastic processes. Prominent among these are stochastic queueing network models,

because service is often provided in a sequence of steps; e.g., see [5, 8]. There is an extensive

literature on the applications of queueing network models to service systems. For example,

see [43] for a review of applications in computer networks, see [4, 19, 39] for examples in

ride-sharing economies and see [7, 10, 12, 32, 61] for healthcare-related applications.

Service operation policies often rely on quantitative descriptions of the system perfor-

mance, called performance measures, such as the waiting time, the queue length, and the

workload in the system. Decision support for service operations relies on accurate charac-

terization of these performance measures.

A standard way to analyze the performance of complex queueing models is to employ

computer simulation, e.g., see [46, 62]. However, as noted in [16], a great disadvantage of

simulation-based optimization methods is the often prohibitive computation time required to

obtain optimal solutions for service operation problems involving a multidimensional stochas-

tic network. Thus, analytical analysis of the models can be very helpful. However, the class

of queueing networks that can be solved analytically requires strong assumptions that are

rarely satisfied, whereas more realistic models are prohibitively hard to analyze exactly.

Hence, analytical performance approximation of queueing networks remains an important

tool.

In this paper, we provide a new efficient algorithm to approximate the steady-state per-

formance measures in a single-class open queueing network (OQN) with Markovian routing,

unlimited waiting space and the first-come first-served (FCFS) service discipline. We focus

on non-Markov OQNs where the external arrival processes need not be Poisson or renewal

and the service-time distributions need not be exponential. Our algorithm is a decomposition

approximation, which combines three methodologies in operations research and stochastic

models: (i) robust optimization as in [3, 57], (ii) indices of dispersion and stationary point

processes as in [9, 15, 45] and (iii) heavy-traffic limits as in [11, 22, 55]. However, the paper

has been written to emphasize the efficient effective algorithm that is obtained in the end
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by synthesizing these methodologies.

1.1 Approximation Algorithms

In this section, we briefly review existing approximation algorithms for non-Markov OQNs;

additional literature review appears in an online appendix.

1.1.1 Decomposition Approximations

Under the assumption of Poisson arrival processes and exponential service-time distributions,

our OQN is a Markov model, called a Jackson network, which is easy to analyze, primarily

because the steady-state distribution of the queue lengths has a product form; i.e., the steady-

state queue lengths are independent geometric random variables, just as if each queue were

independent M/M/1 queues. The arrival rate at each queue can be obtained by solving a

system of linear equations called the traffic rate equations. Motivated by that product-form

property of Markov OQNs, decomposition approximations for non-Markov OQNs have been

widely investigated. In this approach, the network is decomposed into individual single-

server queues, and the steady-state queue length processes are assumed to be approximately

independent. For example, in [33] and [50] each queue is approximated by a GI/GI/1 model,

where the arrival and service processes are approximated by a renewal process partially

characterized by the mean and squared coefficient of variation (scv, variance divided by the

square of the mean) of an interarrival or service time.

While the decomposition approximations do often perform well, it was recognized that

dependence in the arrival processes of the internal flows can be a significant problem. The ap-

proximation for superposition processes used in the QNA algorithm [50] attempts to address

the dependence. Nevertheless, significant problems remained, as was dramatically illustrated

by comparisons of QNA to model simulations in [17, 47, 48], as discussed in [54].

To address the dependence in arrival processes, decomposition methods based on Markov

Arrival Processes (MAPs) have been developed. The MAP was introduced by Neuts [37];

see Ch. XI of [2]. Since it is not a renewal process, so that it can model the autocorrelation

in the arrival and service processes. Horváth et al. [25] approximated each station by a

MAP/MAP/1 model. Kim [30, 31] approximated each queue by a MMPP(2)/GI/1 model,

where the arrival process is a Markov-modulated Poisson process with two states (a special

MAP).
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1.1.2 Heavy-Traffic Limit Approximations

The early decomposition approximation in [50] drew heavily on the central limit theorem

(CLT) and heavy-traffic (HT) limit theorems. Approximations for a single queue follow from

[26, 27]. With these tools, approximations for general point processes and arrival processes

were developed in [49, 51]. Heavy-traffic approximation of queues with superposition arrival

processes in [52] helped capture the impact of dependence in such queues.

Another approach is to apply heavy-traffic limit theorems for the entire network. Such

HT limits were established for feedforward OQNs in [26, 27] and Harrison [20, 21], and

then for general OQNs by Reiman [40]. These works showed that the queue length process

converges to a multidimensional reflected Brownian motion (RBM) as every service station

approaches full saturation simultaneously.

These general heavy-traffic results for OQNs lead to approximations using the limit-

ing RBM processes. The QNET algorithm in Harrison and Nguyen [22] provides such an

approximation. Theoretical and numerical analysis of the stationary distribution of the

multi-dimensional RBM was studied in [13, 23, 24].

As a crucial step of the QNET algorithm, Dai and Harrison [13] proposed a numerical

algorithm to calculate the steady-state density of an RBM, but it require considerable com-

putation time. The computational accuracy of that algorithm improves as the number of

iteration n grows, and the author’s there note that n = 5 generally gives satisfactory an-

swers. For a OQN with d stations, the computational complexity is O(d2n), see Section 6 of

[13]. A further limitation is that the underlying theorem is for a sequence of OQNs in which

the associated sequences of traffic intensities at all queues approaches the critical value. For

practical application to large-scale systems or small systems with a wide range of traffic

intensities, hybrid methods that combine a decomposition approximation and heavy-traffic

theory were proposed in Reiman [41] and Dai et al. [11]. The version [11] has been shown

to be remarkably effective, but it requires the numerical solution of RBMs.

The present paper also relies heavily on heavy-traffic limit theorems, but here we exploit

our recent heavy-traffic limits for the flows in [56, 60].

1.1.3 Robust Queueing Approximations

Recently, a novel Robust Queueing (RQ) approach to analyze queueing performance in

single-server queues was proposed by Bandi et al. [3]. The key idea in RQ is to replace

the underlying probability law by a suitable uncertainty set, and analyze the (deterministic)

worst case performance. The authors there relied on the discrete-time Lindley’s recursion to
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characterize the customer waiting times as a supremum over partial sums of the interarrival

times and service times. Uncertainty sets for the sequence of partial sums are proposed based

on central limit theorem and two-moment partial traffic descriptions of the arrival process

and service process.

Although the general RQ idea is simple and good, there remain challenges in identifying

proper uncertainty sets and making connection to the original queueing system. These

challenges were addressed in [57], which lay the foundation for this paper. In [57], the

authors proposed a new non-parametric RQ formulation for approximating the continuous-

time workload process in a single-server queue, and proved asymptotic exactness of their

approximations light and heavy traffic. We briefly review this new RQ formulation in Section

2.2.

1.1.4 Non-Parametric Traffic Descriptions

As a trade-off for mathematical tractability, all approximation approaches so far rely on

incomplete traffic descriptions. For example, the approximation approaches reviewed above

can be characterized as parametric approaches, typically involving only means and variances

of random variables, The general stochastic system is then mapped into one of a parametric

family of highly structured models. Such approaches rely on a small finite set of parameters

as traffic descriptions and a key step is to understand how these parameters for each arrival

process evolve in the network.

Another stream of research models the temporal dependence in the stochastic processes

by non-parametric traffic descriptions. In Jagerman et al. [28], the authors approximate a

general stationary arrival process by a Peakedness Matched Renewal Stream (PMRS). The

key ingredient is the peakedness function, which is determined by the arrival point process

and the first two moments of the service-time distribution; see [34] for additional discussion.

However, [28] relied on a two-parameter approximation for the peakedness function of a

stationary point process, where the parameters are estimated by simulation. Similar non-

parametric traffic descriptions have been studied in [28, 35, 36], but they only focus on

single-station single-server queues.

We adopt a non-parametric approach to describe the arrival and service processes in an

OQN. Let A be a stationary counting process, e.g. the arrival counting process at a queue.

We partially characterize A by its rate and its Index of Dispersion for Counts (IDC), a

5



function of non-negative real numbers IA : R+ → R
+ defined as in §4.5 of [9],

IA(t) ≡
Var(A(t))

E[A(t)]
, t ≥ 0. (1)

A reference case is the Poisson process, where the IDC is a constant function IA(t) ≡ 1. As

regularity conditions, we assume that E[A(t)] and Var(A(t)) are finite for all t ≥ 0. For

renewal processes, it suffices to assume that the inter-renewal time distribution has finite

second moment.

Being a function of time t, the IDC captures the variability in a point process over all

timescales. The IDC encodes much more information about the underlying process than

traditional parametric descriptions. The RQ algorithm in [57] established a bridge between

the IDC traffic description and the performance measures in a single-server queue.

With the aid of the HT limits established in [56, 60], we now develop a network calculus

to characterize the IDCs of the customer flows in an OQN. Similar non-parametric traffic

descriptions have been studied in [28, 35, 36], but they focused on single-server queues. To

the best of our knowledge, we are the first to study the non-parametric traffic descriptions

in a network setting.

1.1.5 The Overall Robust Queueing Network Analyzer (RQNA)

We exploit the remarkably strong connection between the arrival IDC and the normalized

workload in a single-server queue. This connection, was first exposed by Fendick and Whitt

[18], but they did not produce the systematic approximations we obtained through robust

queueing in [57]. We advance that approach further by showing that all these approximations

can be combined to produce a Robust Queueing Network Analyzer (RQNA).

Our method is a decomposition approximation, because the algorithm decomposes the

network into individual G/GI/1 models, where the arrival process and service process at each

queue is partially specified by its rate and IDC, defined in (1). As in other decomposition

methods, three network operations become essential: first, the departure operation as cus-

tomers flow through a service station and an arrival process turns into a departure process;

second, the splitting operation as a departure process split into multiple sub-processes and

feed into different subsequent queues; and third, the superposition operation as departure

flows from different queues combine together and feed into a queue.

In Section 3, we introduce a set of linear equations, which we refer to as the IDC equations,

to describe the combined effect of these three network operations. These IDC equations are

derived from the HT limits in [56, 60]. We discuss the remaining technical details in the online
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appendix. The IDC of the total arrival flows at each queue is approximated by the solution

to the IDC equations. The RQ algorithm (13) is then applied to generate approximations of

the mean steady-state performance measures at each G/GI/1 queue in the network.

The RQNA algorithm has a remarkably concise analytical formulation, given in (13) and

(34) below, which makes it easy to implement. We discuss the computation complexity of

our proposed algorithm in Remark 8. We also conduct simulation experiments to evaluate

the effectiveness of the new RQNA and compare it to previous algorithms in [11, 22, 25, 50].

Our experiments indicate that RQNA performs as well or better than previous algorithms.

1.2 Network Structure and Our Contributions

In this section we briefly describe the contribution of each of our previous papers [56, 57,

58, 59, 60] and indicate how the present paper goes beyond them. To do so, it is helpful to

classify OQN’s according to structural complexity. We indicate the paper contributions in

this taxonomy.

1. a single G/GI/1 queue

This is an OQN with one node, where the service times are i.i.d and independent of

the arrival process, but the arrival process can be general (assuming stationarity). The

arrival process may be a superposition of other external arrival processes.

Robust queueing based on the IDC is developed for this model in our first paper [57].

Indeed, since a decomposition approximation is used, the robust optimization method

was established in this first paper. This paper should be the starting point for reading.

The main contributions are outlined in §1.2 of [57]. A highlight is Theorem 5 there

showing that the new robust queueing approximation is asymptotically exact in both

light and heavy traffic. While this result provides important insight, we emphasize that

the robust queueing approximation in [57] for a single G/GI/1 queue is not obtained

directly from the heavy-traffic limit; it is not itself a heavy-traffic approximation.

While the general framework for our robust queueing follows Bandi et al. [3], there are

significant differences even for one queue. Advantages over the initial robust queueing

algorithm in [3] are discussed in Remark 1 in [57].

Further insight is provided to the performance of the G/GI/1 queue when the arrival

process is partially characterized by the IDC in [58]. Theorem 2.1 in [58] shows that
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a renewal process is fully characterized by the IDC of the associated equilibrium (sta-

tionary) renewal process. As a first consequence, for a renewal process, the IDC can

be computed from the Laplace transform of the interarrival-time distribution by nu-

merical transform inversion. (That is one good way to get the required model data.)

As a second consequence, a GI/GI/1 model is fully characterized by the IDC of the

interarrival times and the IDC of the service times. That implies that any error in

approximations of performance measures for a GI/GI/1 queue must be due to the

robust queueing approximation step, because there is no model error in that case.

In summary, the IDC function encodes much more information about the underlying

distribution than traditional traffic descriptions.

The paper [59] is mostly unrelated to the present paper because it focuses on a single

time-varying queue with a time-varying arrival-rate function. Nevertheless, that paper

contributes even for one stationary G/GI/1 model because it shows how to develop

approximations for the percentiles of the steady-state workload distribution instead of

just the mean.

2. a tree network

This class includes queues in series, which are already very challenging OQNs. This

class also allows splitting of departure processes, which necessarily is independent split-

ting because of the Markovian routing assumption. However, superposition of internal

processes is not allowed. Even two queues in series presents challenging new problems.

The new problem presented by this class of OQNs is developing an effective approx-

imation for the IDC of a departure process from a G/GI/1 queue where the arrival

process is partially characterized by its IDC. Significant progress was obtained by es-

tablishing a new heavy-traffic limit theorem for the stationary departure process from

a G/GI/1 queue in [56]. In addition, drawing on this limit theorem, an algorithm to

approximate the IDC of a departure process was developed and tested in [56]. Again

we emphasize that the robust queueing approximation in [56] for queues in series is not

obtained directly from the heavy-traffic limit; the algorithm is not itself a heavy-traffic

approximation.

We have indicated that there are significant differences between the robust queueing

approximations for one queue in [3] and [57]. The full IDC-based RQNA here is even
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more different from the candidate full RQNA in [3]. The differences are highlighted in

the comparisons for the queues in series in Tables 1 and 2 in §4 of the online supplement

to [58]. These comparisons are for the same model considered in Tables 1 and 2 of the

online appendix to this paper. The comparison in the case of a high-variability in Table

2 of the two appendices is especially dramatic. The errors in the total waiting time in

this difficult network are 25% for QNA from [50], 19% for QNET from [22], 10% for

SBD from [11] and 2% − 11% for RQNA depending on the tuning function used. In

contrast, Table 2 in §4 of the online supplement to [58] shows that the corresponding

errors for three candidate algorithms from [3] are 126%, 180% and 549%.

3. feedforward network

This class allows superpositions of other previous arrival processes. The component

arrival processes in the superposition may be dependent. Nevertheless, the feedforward

property guarantees that each queue is a G/GI/1 model, where the service times are

i.i.d and independent of the arrival process, so that each queue is of the form assumed

for a single queue.

4. general OQN allowing feedback

This is the general case, allowing internal feedback and thus allowing dependence

among all interarrival times and service times. Each successive class in this heirarchy

allows greater complexity. We had provided no algorithms for these last two classes of

OQNs prior to the present paper.

The present paper develops and evaluates an algorithm based on IDCs and robust

queueing to compute approximate performance measures for each queue in a general OQN,

focusing especially on the two more general classes above, for which there was no previous al-

gorithm. The algorithm requires solving a system of linear equations, so that the complexity

is algorithm complexity is similar to that for QNA in [50], see Remark 9 for details.

To establish a theoretical basis for the algorithm, we established heavy-traffic limits for

the stationary flows in a general OQN in [60]. That paper contributes significantly to the

algorithm developed in the present paper, but just as with the previous classes of OQNs, the

heavy-traffic limit itself does not directly provide the algorithm.

In summary, the robust optimization component of the new algorithm is contained in

the first paper [57], with the extension to percentiles added in [59]. The remaining papers
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develop approximations for the IDC of the arrival processes in the network. The supporting

heavy-traffic theory is contained in [56, 57, 60].

1.3 Organization

The rest of the paper is organized as follows. In §2 we define the indices of dispersion,

discuss the connection between the index of dispersion for work and the mean steady-state

workload, and briefly review the robust queueing algorithm for a single G/GI/1 queue. We

also discuss how to obtain the IDC’s of the external arrival processes, as required in the

model data. In §3 we develop a framework for approximating the IDC’s of the flows. In

§3.5 we develop a relatively elementary version of the RQNA algorithm for tree-structured

networks. In §4 we discuss feedback elimination. In §5 we present the full RQNA algorithm.

In §6 we discuss numerical experiments. In §7 we draw conclusions. In §7.2 we indicate

when the approximations are likely to be reliable or not. We present additional supporting

material in an online appendix, including more experimental results.

2 The Indices of Dispersion and Robust Queueing

In this section we provide brief reviews of the IDC function in (1) and the robust queueing

algorithm from [57]. In §2.1 we define another continuous-time index of dispersion: the

Index of Dispersion for Work (IDW). We discuss a useful decomposition of the IDW and its

connection to the IDC and the mean steady-state workload. In §2.1.2 we indicate how to

calculate the IDC from a model of the arrival process; in §2.1.3 we indicate how to estimate

the IDC from data. In §2.2 we review the RQ algorithm from [57], which links the IDW to

approximations of the steady-state queueing performance.

2.1 The Indices of Dispersion

Consider a general single-server queue with a general arrival process A, i.e. A(t) counts the

total number of arrival in the time interval [0, t]. We assume that A is a stationary point

process; see [14, 45]. The IDC defined in (1) is a continuous-time function associated with A.

Being the variance function scaled by the mean function, the IDC exposes the variability over

time, independent of the scale. For this reason, the IDC can be viewed as a continuous-time

generalization of the squared coefficient of variation (scv, variance divided by the square of

the mean) of a nonnegative random variable. The IDC captures the way that the covariance
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in a point process changes over time, which extends the natural practice of including lag-k

covariances in modeling the dependence in a point process.

The reference case is a Poisson arrival process, for which Ia(t) = 1, t ≥ 0. However, for

general arrival processes, the IDC is more complicated. Even the IDC for a determinsitic D

arrival process is complicated, because the IDC is for the stationary version of the arrival

process, which lets the initial point be uniformly distributed over the constant interarrival

time. Much of this paper is devoted to the analysis and approximation of the IDC for the

arrival process at each station of the OQN.

Remark 1 (Time scaling convention) In [57] we defined the IDC and IDW in terms of rate-

1 processes, so that the actual rate of the process had to be inserted as part of the time

argument. In contrast, here as in [56] we let the underlying processes A and Y have any

given rate, so no further scaling is needed. That changes the formulas for the IDC of a

superposition process, e.g., compare (36) of [57] to (27) here. To illustrate the idea, consider

A(t) with rate-1 and Aλ(t) ≡ A(λt) with rate-λ. Let IA(t) denote the IDC of A(t), then we

have IAλ
(t) ≡ Var(A(λt))/E[A(λt)] = IA(λt). �

Now, consider a general sequence of service times {Vi : i ≥ 1}, where Vi is the service

requirement of the i-th customer. Let

Y (t) ≡
A(t)
∑

i=1

Vi (2)

denote the cumulative work input process. This process connects to the workload of a single-

server queue by (9) and (10) below.

Paralleling the IDC, the Index of Dispersion for Work (IDW) describes the variability

associated with the cumulative input process Y in (2). The IDW is defined as in (1) of [18]

by

Iw(t) ≡
Var(Y (t))

E[V1]E[Y (t)]
, t ≥ 0. (3)

The IDW captures the cumulative variability of the total service requirement brought to the

system as a function of time t, which is a key component of the new RQ approximation in

[57] as we review in §2.2.
Since we are interested in the steady-state performance of the OQN, we assume that the

processes A and Y have stationary increments. Given that arrival process and service times

have constant determined rates, the mean functions E[A(t)] and E[Y (t)] are linear in time.

Hence, much of the remaining behavior of the A and Y is determined by the variance-time
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function or index of dispersion. We are interested in the variance-time function, because

it captures the dependence through the covariances; the processes (A, Y ) have independent

increments for the M/GI/1 model, but otherwise not.

To connect the IDC to the IDW, consider the special case where the service times Vi are

i.i.d, independent of the arrival process A(t). The conditional variance formula gives a useful

decomposition of the IDW

Iw(t) = Ia(t) + c2s, t ≥ 0, (4)

where c2s = Var(Vi)/E[Vi]
2 is the scv of the service-time distribution.

2.1.1 The IDW and the Mean Steady-State Workload

The IDC and IDW are important because of their close connection to the mean steady-state

workload E[Zρ]. Here we make the performance measure explicitly depend on the traffic

intensity ρ to expose the joint impact of dependence in flows and the traffic intensity on it.

Under regularity conditions, the workload Z(t) converges to the steady-state workload Zρ as

t increases to infinity. In [18] it was shown that the IDW Iw is intimately related to a scaled

mean workload c2Z(ρ), defined by

c2Z(ρ) ≡
E[Zρ]

E[Zρ;M/D/1]
, (5)

where E[Zρ;M/D/1] is the mean steady-state workload in a M/D/1 model given by

E[Zρ;M/D/1] =
E[V1]ρ

2(1− ρ)
. (6)

As (6) suggests, the mean steady-state workload converges to 0 as ρ ↓ 0 and diverges to

infinity as ρ ↑ 1. The normalization in (5) exposes the impact of variability separately from

the traffic intensity.

In great generality as discussed in [18], we have

c2Z(0) = 1 + c2s = Iw(0) and c2Z(1) = c2A + c2s = Iw(∞), (7)

where c2A is the asymptotic variability parameter, i.e., the normalization constant in the

central limit theorem (CLT) for the arrival process; see §4 in [57] and §5 in the associated

e-companion. For a renewal process, c2A coincides with the scv c2a of an interarrival time.

The reference case is the classical M/GI/1 queue, for which we have

c2Z(ρ) = 1 + c2s = Iw(t) for all ρ, t, 0 < ρ < 1, t ≥ 0.
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The limits in (7) imply that, when c2A is not nearly 1, c2Z(ρ) varies significantly as a

function of ρ. Hence, the impact of the variability in the arrival process upon the queue

performance clearly depends on the traffic intensity. This important insight from [18] is the

starting point for our analysis. In well-behaved models, c2Z(ρ) as a function of ρ and Iw(t)

as a function of t tend to change smoothly and monotonically between those extremes, but

OQNs can produce more complex behavior when both the traffic intensities at the queues

and the levels of variability in the arrival and service processes at different queues vary; e.g.,

see the examples for queues in series in §§5.2, EC.8.2 and EC8.3 of [57].

2.1.2 Calculating the IDC from Models

For renewal processes, the variance Var(A(t)) and thus the IDC Ia(t) can either be calcu-

lated directly or can be characterized via their Laplace transforms and thus calculated by

inverting those transforms or approximated by performing asymptotic analysis. Because we

are interested in the steady-state behavior of the OQN, we are primarily interested in the

equilibrium renewal process, as in §3.5 of [42].

In turns out that the variance of the equilibrium arrival renewal process V (t) ≡ Var(A(t))

can be expressed in terms of the renewal function m(t) ≡ E[A0(t)], where A0 is the corre-

sponding ordinary renewal process. For a function f , let f̂ denote the Laplace transform of

f , defined by

f̂(s) ≡ L(f)(s) ≡
∫ ∞

0

e−stf(t)dt.

The following formula is taken from §2 of [56]

V̂ (s) =
λ

s2
+

2λ

s
m̂(s)− 2λ2

s3
=

λ

s2
+

2λ

s

ĝ(s)

s (1− ĝ(s))
− 2λ2

s3
, (8)

where g is the density function of the interarrival-time distribution. The variance function

can then be obtained numerically, which is discussed in §13 of [1]. The hyperexponential

(H2) and Erlang (E2) special cases are described in §III.G of [18].

It is also possible to carry out similar analyses for much more complicated arrival pro-

cesses. [38] applies matrix-analytic methods to give explicit representations of the variance

Var(A(t)) for the versatile Markovian point process or Neuts process; see §5.4, especially
Theorem 5.4.1. Explicit formulas for the Markov modulated Poisson process (MMPP) are

given on pp. 287-289.
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2.1.3 Estimating the IDC from Data

Now we present an algorithm to numerically estimate the variance V (t) = Var(A(t)) from a

given realized sample path of the stationary point process A(t). The main idea is based on

Section 5.4 (iii) of [9].

Our goal is to estimate V (t) for 0 < t < t0 using a realization of A(t) for 0 < t < T . The

simplest way is to apply crude Monte Carlo method to estimate V (t) for a fixed t and repeat

over a finite grid of t’s. This method divides the sample path of A(t) into non-overlapping

intervals of length t and counts the number of arrivals in each interval. The variance is then

estimated by the sample variance of the counts. This method is simple to implement but

can be slow to converge.

To accelerate the crude Monte Carlo method, we apply three techniques: (i) we use

overlapping intervals instead of non-overlapping ones, which introduces bias but reduces

sample variance; (ii) we calculate V (t) only over a finite grid equally spaced in the logarithm

scale instead of the linear scale; and (iii) we re-use the tallied number of events for shorter

intervals to calculate the total number of events for longer interval, which avoids repetitive

counting. We discuss the three techniques in turn:

Remark 2 (justifying the logarithmic scale) To justify the logarithm scale in (ii), we remark

that the IDC of most stationary processes converges exponentially fast to a constant, as

the time t increases. In particular, this holds for Markov arrival processes, which includes

hyperexponential renewal process, Erlang renewal process, and Markov modulated Poisson

Process as special cases; e.g.. see Ch. XI of [2], [37] or [38]. �

To use overlapping intervals, consider first k = T/t non-overlapping intervals, each with

length t. Now, we further divide each intervals of length t in to r intervals of the same length

τ = t/r. Hence we have rk number of non-overlapping intervals of length τ . Let ni be the

number of events fall in the i-th interval, consider

Ui ≡ A(Ii) ≡ A[iτ, (i+ r)τ) = ni + ni+1 + · · ·+ ni+r−1, i = 0, 1, . . . , rk − r + 1.

We estimate V (t) with the sample variance V̄l of {Ui}li=1, where l = rk−r+1. This estimator

is in general biased but can achieve lower variance compared with the one obtained with

crude Monte Carlo method. In §3 of the appendix we show that this estimator of V (t) is

asymptotically consistent under mild conditions that V (t) is differentiable with derivative

V̇ (t) having finite positive limits as t→∞.
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For the third technique, we now present a algorithm to simultaneously estimate V (2iτ)

for some τ > 0 and i = 0, 1, . . . , l. Let {Ii} be the collection of non-overlapping intervals of

length τ that covers [0, T ]. Let ni = A(Ii) be the number of events on interval Ii. Then we

have the following table from [9].

time horizon t

sample τ 2τ 22τ · · ·
1 n1 n1 + n2 n1 + n2 + n3 + n4 · · ·
2 n2 n2 + n3 n3 + n4 + n5 + n6 · · ·
3 n3 n3 + n4 n5 + n6 + n7 + n8 · · ·
...

...
...

...
...

We find the estimation of V (2iτ) by calculating the sample variance of the corresponding

column.

Now that we have a efficient algorithm to estimate V (2iτ) for fixed τ , we have obtained

the estimations of a grid equally spaced in logarithm scale. To obtain estimations for finer

grids we shift the crude grid by picking several τ ≤ τj ≤ 2τ equally spaced in log scale and,

for each j, simultaneously estimate V (2iτj) for all i.

2.2 Robust Queueing for Single-Server Queues

In this section, we review the RQ algorithm for single-server queues and discuss approx-

imations for other performance measures obtained as a result. The RQ algorithm serves

as a bridge between the IDC of the arrival process and the approximations of the perfor-

mance measures. In particular, as in (13), the RQ algorithm generates approximation of the

steady-state workload for any queue using the IDC of the total arrival process at that queue.

Consider the G/GI/1 queue, where the arrival process is a stationary and ergodic point

process and the service times are i.i.d., independent of the arrival process. We assume that

the arrival process A is partially characterized by the arrival rate λ and the IDC Ia defined

in (1). For a stationary point process, we always have E[A(t)] = λt; see §2.7 of [45]. We

further assume that the service time distribution has finite mean 1/µ (and thus rate µ) and

scv c2s. We also assume that ρ ≡ λ/µ < 1 for model stability. Let Z be the steady-state

workload in the G/GI/1 model. The RQ algorithm provides approximation for E[Z] with

(λ, Ia, µ, c
2
s) as input data.

To obtain the RQ algorithm, we start with a reverse-time construction of the workload
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process as in §3 of [57]. Define the net-input process N(t) as

N(t) ≡ Y (t)− t, t ≥ 0. (9)

Then the workload at time t, starting empty at time 0, is obtained from the reflection map

Ψ applied to N , i.e.,

Z = Ψ(N)(t) ≡ N(t)− inf
0≤s≤t

{N(s)}, t ≥ 0. (10)

With a slight abuse of notation, let Z(t) be the workload at time 0 of a system that started

empty at time −t. Then Z(t) can be represented as

Z(t) ≡ sup
0≤s≤t

{N(s)}, t ≥ 0, (11)

where N is defined in terms of Y as before, but Y is interpreted as the total work in service

time to enter over the interval [−s, 0]. That is achieved by letting Vk be the kth service

time indexed going backwards from time 0 and A(s) counting the number of arrivals in the

interval [−s, 0].
The workload process Z(t) defined in (11) is nondecreasing in t and hence necessarily

converges to a limit Z. For the stable stationary G/GI/1 model, Z corresponds to the

steady-state workload and satisfies P (Z <∞) = 1; see §6.3 of [45].

In the ordinary stochastic queueing model, N(s) is a stochastic process and hence Z(t)

is a random variable. However, in Robust Queueing practice, N(s) is viewed as a determin-

istic instance drawn from a pre-determined uncertainty set U of input functions, while the

workload Z∗ for a Robust Queue is regarded as the worst case workload over the uncertainty

set, i.e.

Z∗ ≡ sup
Ñ∈U

sup
x≥0
{Ñ(x)}.

Following the setting from [57], we adopt the following uncertainty set motivated from central

limit theorem (CLT)

U ≡
{

Ñ : R+ → R : Ñ(s) ≤ E[N(s)] + b
√

Var(N(s)), s ≥ 0
}

, (12)

where N(t) is the net input process associated with the stochastic queue, so

E[N(t)] = E[Y (t)− t] = ρt− t,

Var(N(t)) = Var(Y (t)) = Iw(t)E[V1]E[Y (t)] = (Ia(t) + c2s)ρt/µ.
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The RQ approximation based on this partial model characterization is

E[Zρ] ≈ Z∗
ρ ≡ sup

Ñρ∈Uρ

sup
x≥0
{Ñ(x)} = sup

x≥0
{−(1 − ρ)x+ b

√

ρx(Ia(x) + c2s)/µ}, (13)

which follows Theorem 2 of [57] and (4). Notice that the approximation in (13) is directly

a supremum of a real-valued function, and so can be computed quite easily for any given

4-tuple (λ, Ia, µ, c
2
s).

Theorem 5 in [57] states that the RQ algorithm gives asymptotically exact values of the

mean steady-state workload in both light-traffic and heavy-traffic limits. Through extensive

simulation experiments, it has been found that the mean steady-state workload E[Z] can be

well approximated by the IDW-based RQ algorithm.

Remark 3 (Continuous-time stationarity) We emphasize that, in the RQ formulation, it

is essential to use the continuous-time stationary version of the IDC in (1) and the IDW

in (3), instead of their discrete-time Palm stationary versions; see [45] for a comprehensive

discussion. The continuous-time stationary IDC we use here yields asymptotically correct

light-traffic limit, whereas the Palm stationary IDC does not; see §5.2 of [57]. �

Remark 4 (Queue length and waiting time) Approximations for other steady-state perfor-

mance measures can be obtained by applying exact relations for the G/GI/1 queue that

follow from Little’s law L = λW and its generalization H = λG; e.g., see [53] and Chapter

X of [2] for the GI/GI/1 special case. Let W,Q and X be the steady-state waiting time,

queue length and the number in system (including the one in service, if any). By Little’s

law,

E[Q] = λE[W ] = ρE[W ] and

E[X ] = E[Q] + ρ = ρ(E[W ] + 1).

By Brumelle’s formula [6] or H = λG, (6.20) of [53],

E[Z] = ρE[W ] + ρ
E[V 2]

2µ
= ρE[W ] + ρ

(c2s + 1)

2µ
.

Hence, given an approximation Z∗ for E[Z], we can use the approximations

E[W ] ≈ max{0, Z∗/ρ− (c2s + 1)/2µ} and

E[Q] ≈ λE[W ].

17



Remark 5 (Network performance measures) So far we only have discussed the performance

measures for a single station. The total network performance measures, on the other hand,

can also be derived. For example, the expected value of the total sojourn time T tot
i , i.e. the

time needed to flow through the queueing network for a customer that enters the system

from station i, is easily estimated from the obtained mean waiting time at each station.

Assuming Markov routing with routing matrix P , a standard argument from discrete time

Markov chain theory gives the mean total number of visits ξi,j to station j by a customer

entering the system at station i as

ξi,j =
(

(I − P )−1
)

i,j
,

where (I − P )−1 is the fundamental matrix of a absorbing Markov chain. Hence, the mean

steady-state total sojourn time E[T tot
i ] is approximated by

E[T tot
i ] ≈

K
∑

j=1

ξi,j(E[Wj ] + 1/µj). (14)

In real world applications, customers often experiences non-Markovian routing, where routes

are customer-dependent. For ways to represent those scenarios and convert them (approxi-

mately) to the current framework, see §2.3 and §6 of [50]. �

3 Approximating the IDCs of the Network Flows

In the i.i.d. service time setting, the IDW reduces to the arrival IDC plus the service scv

as in (4). To generalize the RQ algorithm in §2.2 into a RQNA algorithm for networks, the

main challenge is developing a successful approximation for the IDC of the total arrival flow

at each queue.

In this section we develop a framework for approximating the IDCs of the network flows

in the OQN, including the total arrival flows. We start in §3.1 by reviewing the OQN model

and the required model data for the RQNA algorithm. We review the standard traffic rate

equations in §3.2 and develop the new IDC equations in §3.3.

3.1 The OQN Model

3.1.1 The Model Primitives

We consider a network of K queues. Each queue has a single server, unlimited waiting space

and provides service in order of arrival.
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For each queue i, 1 ≤ i ≤ K, we have an external arrival process A0,i ≡ {A0,i(t) : t ≥ 0}.
Each external arrival process A0,i is assumed to be a simple (no batches) stationary and

ergodic point process with finite rate λ0,i and finite second-moment process E[A2
0,i(t)]. We

assume that all these external arrival processes, as well as the service and routing processes,

are mutually independent.

For each individual queue, we assume that the service times are i.i.d. Let V l
i denote

the service requirement of the l-th customer at queue i, which we assume to be distributed

according to cdf Gi with finite mean 1/µi and scv c2s,i. Let the associated service renewal

counting process be Si ≡ {Si(t) : t ≥ 0}, where

Si(t) = max

{

n ≤ 0 :

n
∑

l=1

V l
i ≤ t

}

, t ≥ 0. (15)

We assume that departures are routed from node to node and out of the network by

Markovian routing, which is independent of the arrival and service processes. We assume

that each arrival eventually leaves w.p.1. Let pi,j denote the probability that a departure

from node i is routed to node j. Let P ≡ {pi,j : 1 ≤ i, j ≤ K} be the (substochastic) routing
matrix. Furthermore, let pi,0 ≡ 1 −∑j pi,j denote the probability that a customer departs

the system after completing service at from node i.

3.1.2 The IDC’s of the Flows

In order to apply the RQ algorithm, our primary focus here is to analyze and approximate

the IDC’s of the customer flows in a OQN. The flows can be separated into two groups, the

external flows and the internal flows. The external flows are the flows associated with the

model primitives in §3.1.1. For external arrival process A0,i, we let Ia,0,i ≡ {Ia,0,i(t) : 0 ≤ t ≤
∞} denote the its IDC, as defined in (1). For service flows, let Is,i ≡ {Is,i(t); 0 ≤ t ≤ ∞}
be the IDC of the stationary renewal process associated with (15). For the case of renewal

process, we necessarily have Is,i(∞) = c2s,i. We assume that the IDC’s Ia,0,i and Is,i are

continuous functions with limits at 0 and +∞.

The IDC’s of the external flows forms an important part of the model input of our RQNA

algorithm. In particular, we assume that we are given (λ0,i, Ia,0,i, µi, Is,i) for each queue i

and the routing matrix P .

In practice, the IDC of the external flows can be specified by one of the following ways.

First, for renewal processes, it suffices to specify the inter-renewal-time cdf; then the asso-

ciated IDC can be computed from the cdf as indicated in §2.1.2. If we are only given the
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first two moments of the inter-renewal-time cdf, then we can fit a convenient cdf the inter-

renewal-time cdf to these parameters as indicated in §3 of [49], and use the previous method.

Similar methods apply to non-renewal arrival process models, as indicated in §2.1.2. Finally,
if we are only give sample data of the process, then we apply the numerical algorithm in

§2.1.3 to estimate the rate and IDC of the process.

To implement our IDC approximations, we develop approximations for the IDC’s of the

internal flows. We use the following notation: Let Ai denote the total arrival process at

queue i and let Ia,i be the associated IDC; let Di denote the departure process at queue

i and let Id,i be the associated IDC; and let Ai,j denote the departing customer flow from

queue i that are routed to queue j and let Ia,i,j be the associated IDC.

3.2 The Traffic Rate Equations and Traffic Intensities

Let λ ≡ (λ1, . . . , λK) be the effective (total) arrival rate vector. We use the same traffic

rate equations as in a Jackson network to determine λ. Then λi,j ≡ λipi,j is the rate of the

internal arrival flow Ai,j. Recall that λ0 ≡ (λ0,1, . . . , λ0,K) is the external arrival rate vector,

then the traffic-rate equations are

λi = λ0,i +
K
∑

j=1

λj,i = λ0,i +
K
∑

i=1

λjpj,i, 1 ≤ i ≤ K, (16)

or in matrix form

(I − P ′)λ = λ0,

where I denotes the K × K identity matrix. We assume that I − P ′ is invertible; i.e., we

assume that all customers eventually leave the system. The condition for the invertibility

of I − P ′ to hold is well known, e.g. in Theorem 3.2.1 of [29]. Hence, the vector of internal

arrival rates is given by

λ = (I − P ′)−1λ0. (17)

Then the traffic intensity at queue i is defined as usual by ρi ≡ λi/µi. We assume that

ρi < 1 for all i to ensure that the OQN is stable.

3.3 The Traffic Variability Equations

In this section, we develop a set of IDC equations to solve for the approximations of the IDC’s

of the internal flows. The IDC of the total arrival process at each queue is then converted

into approximations of the performances measures as in §2.2.
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As in other decomposition methods, three network operations are essential: the departure

operation (flow through a queue), the splitting operation (devide a flow into several sub-flows)

and the superposition operation (combining multiple flows). We develop IDC equations that

reveal (approximately) how the IDC’s evolve under each network operation.

3.3.1 The Departure Operation

The IDC of the stationary departure process has been studied in §6.2 of [56]. We briefly

review the departure IDC equation, see §5.1 of the appendix for more details.

We approximate the IDC Id,i by a convex combination of the arrival IDC Ia,i and the

service IDC Is,i. In particular,

Id,i(t) ≈ wi(t)Ia,i(t) + (1− wi(t))Is,i(ρit), t ≥ 0. (18)

The weight function wi is defined as

wi(t) ≡ w∗
(

(1− ρi)
2λit/ρic

2
x,i

)

, t ≥ 0, (19)

where c2x,i ≡ c2a,i + c2s,i and c2a,i = Ia,i(∞) and the canonical weight function w∗ is

w∗(t) =
1

2t

(

(

t2 + 2t− 1
)

(

1− 2Φc(
√
t)
)

+ 2φ(
√
t)
√
t (1 + t)− t2

)

(20)

Note that there is a change of notation between (18) here and (74) in [56]. In particular,

we have Is,i(ρit) here instead of Is,i(t). In [56], we worked with a single-server queue and

assumed that Is,i(t) is the IDC associated with the rate-λi service process. However, when

considering a OQN here, it is natural to work with service IDC that associated with the

service rate µi. These two approaches are equivalent, as we observed in Remark 1. Given

that the given stationary service process has rate µi, we convert it to rate λi by considering

Is,i(ρit).

Remark 6 (Parallel to QNA in [50].) The convex combination in the approximation (18)

is reminiscent of the convex combination for variability parameters in (38) of [50], i.e.,

cd,i ≈ (1− ρ2i )c
2
a,i + ρ2i c

2
s,i, (21)

which corresponds to a stationary-interval approximation, as discussed in [49, 50, 51].

Similar behavior can be seen in approximation (18). In particular, the canonical weight

function w∗ in (20) is a monotonically increasing function with w∗(0) = 0 and w∗(∞) = 1.

By the definition of wi(t), we see that for each t, (18) places less weight on Ia,i(t) and more
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weight on Is,i(t) as ρi increases. This makes sense intuitively, because the queue should be

busy most of the time as ρi increases toward 1. Thus departure times tend to be minor

variations of service times. In contrast, if ρi is very small, then the queue acts only as a

minor perturbation of the arrival process.

However, (19) reveals a more subtle interaction between ρi and the variability of the

departure process over different time scales. �

3.3.2 The Splitting Operation

To treat splitting, we write the split process Ai,j as a random sum. Let θli,j = 1 if the l-th

departure from queue i is directed to queue j, and let θli,j = 0 if otherwise. Then observe

that

Ai,j(t) =

Di(t)
∑

l=1

θli,j , t ≥ 0.

We apply the conditional-variance formula to write the variance Va,i,j(t) ≡ Var(Ai,j(t)) as

Va,i,j(t) = E[Var(Ai,j(t)|Di(t))] + V ar(E[Ai,j(t)|Di(t)]). (22)

With the Markovian routing we have assumed, the routing decisions at each queue at

each time are i.i.d. and independent of the history of the network. As a consequence, for

feed-forward queueing networks, we can deduce that the collection of all routing decisions

made at queue i up to time t is independent of Di(t). For the case in which independence

holds, we can apply (22) to express Va,i,j(t) in terms of the variance of the departure process,

Vd,i(t) ≡ Var(Di(t)); in particular,

Va,i,j(t) = p2i,jVd,i(t) + pi,j(1− pi,j)λit, (23)

or, equivalently, since E[Di(t)] = λit and E[Ai,j(t)] = pi,jλit = pi,jE[Di(t)],

Ia,i,j(t) = pi,jId,i(t) + (1− pi,j). (24)

The formula (24) is an initial approximation, which parallels the approximation used for

splitting in (40) of [50], i.e., c2a,i,j = pi,jc
2
d,i + (1− pi,j).

However, the independence assumption will not hold in the presence of customer feedback,

in which case there is a complicated dependence. We develop a more general formula to

improve the approximation in general OQNs.

For that purpose, we apply the FCLT for split processes in §9.5 of [55] and the heavy-

traffic limit theorems in [60]. We give the detailed derivation in §5.2 of the appendix.
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Based on that heavy-traffic analysis, we propose the splitting IDC equation as

Ia,i,j(t) = pi,jId,i(t) + (1− pi,j) + αi,j(t). (25)

To account for the dependence, we include a correction term αi,j, defined as

αi,j,ρi(t) ≈ 2ξi,jpi,j(1− pi,j)wρi(t)

= 2ξi,jpi,j(1− pi,j)w
∗((1− ρi)

−2λit/(h(ρi)c
2
x,i)), t ≥ 0, (26)

where wρi(t) is the weight function for the departure IDC in (19), c2x,i, c
2
a,i and c2s,i are also

as in (19), while ξi,j is the (i, j)th entry of the matrix (I − P ′)−1.

3.3.3 The Superposition Operation

In this section, we investigate the impact of the superposition operation on the IDC’s. To

start, consider the case in which the individual streams are mutually independent. In this

case, we have

Va,i(t) ≡ Var(Ai(t)) = Var

(

K
∑

j=0

Aj,i(t)

)

=

K
∑

j=0

Var(Aj,i(t)),

so that

Ia,i(t) =
K
∑

j=0

(λj,i/λi)Ia,j,i(t), (27)

where Ia,j,i(t) ≡ Var(Aj,i(t))/E[Aj,i(t)]. Recall that (27) differs from (36) of [57] because we

are not assuming rate-1 processes in our definitons of the IDC; see Remark 1.

While (27) is exact when the streams are independent, it is not exact in general cases.

Even for feed-forward networks, we may have a stream that splits and then recombines later,

which introduces dependence.

For dependent streams, the variance of the superposition total arrival process at queue i

can be written as

Va,i(t) ≡ Var

(

K
∑

j=0

Aj,i(t)

)

=
K
∑

j=0

Var (Aj,i(t)) + βi(t)E[Ai(t)]

where A0,i denotes the external arrival process at station i,

βi(t) ≡
∑

j 6=k

βj,i;k,i(t), and βj,i;k,i(t) ≡
cov (Aj,i(t), Ak,i(t))

E[Ai(t)]
. (28)
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In terms of the IDC’s, we have

Iai(t) =
K
∑

j=0

(λj,i/λi)Iaj,i(t) + βi(t). (29)

In general, an exact characterization of the correction term βi(t) is not available. Thus,

we again apply heavy-traffic limits in [60] to generate an approximation. Detailed derivation

appears in §5.3 of the appendix.

Assume without loss of generality that ρj ≥ ρi. From the heavy-traffic analysis, we obtain

the approximation

βj,i;k,i(t) = βk,i;j,i(t) ≈ (ζj,i;k,i/λi)w
∗((1− ρj)

2pj,iλjt/ρjc
2
x,j,i), (30)

where w∗ is the weight function in (20), c2x,j,i = pj,ic
2
a,j + (1− pj,i) + pj,ic

2
s,j and c2a,j is solved

from the variability equations for the asymptotic variability parameters in (35). The constant

ζj,i;k,i is defined as

ζj,i;k,i = ν ′
j

(

diag(c2a,0,iλi) +

K
∑

l=1

Σl

)

νk + ν ′
kΣjei + ν ′

jΣkei, (31)

where νl ≡ pl,ie
′
l(I −P ′)−1 for l = j, k, ei is the i-th unit vector, diag(c2a,0,iλi) is the diagonal

matrix with c2a,0,iλi as the i-th diagonal entry, Σl is the covaraince matrix of the splitting

decision process at station l defined as Σl ≡ (σl
i,j) with σl

i,i = pl,i(1 − pl,i)λl and σl
i,j =

−pl,ipl,jλl for i 6= j.

3.4 The IDC Equation System

We now assemble the building blocks into a system of linear equations (for each t) that

describes the IDC’s in the OQN. Combining (18), (25) and (29), we obtain the IDC equations.

These are equations that should be satisfied by the unknown IDCs. For 1 ≤ i ≤ K, the

equations are

Ia,i(t) =
K
∑

j=1

(λj,i/λi)Ia,j,i(t) + (λ0,i/λi)Ia,0,i(t) + βi(t),

Ia,i,j(t) = pi,jId,i(t) + (1− pi,j) + αi,j(t),

Id,i(t) = wi(t)Ia,i(t) + (1− wi(t))Is,i(ρit). (32)

The parameters pi,j, λi,j and λi are determined by the model primitives in §3.1.1 and the

traffic rate equations in §3.2. The IDC’s of the external flows Ia0,i(t) and Isi(t) are assumed
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to be calculated via exact or numerical inversion of Laplace Transforms, or estimated from

data. The weight functions wi(t) is defined in (19), which involves a limiting variability

parameter c2x,i ≡ Ia,i(∞) + c2s,i.

To solve for the limiting variability parameters Ia,i(∞), we let t→∞ in (32) and denote

c2a,i ≡ Ia,i(∞), c2a,i,j ≡ Ia,i,j(∞) and c2d,i ≡ Id,i(∞). Furthermore, we define

c2αi,j
≡ αi,j(∞) = 2ξi,jpi,j(1− pi,j),

c2βi
≡ βi(∞) =

2

λi

∑

j<k

ζj,i;k,i,

where we used w∗(∞) = 1 in (26) and (30). Hence, we have the limiting variability equations :

c2a,i =
K
∑

j=1

(λj,i/λi)c
2
a,j,i + (λ0,i/λi)c

2
a,0,i + c2βi

,

c2a,i,j = pi,jc
2
d,i + (1− pi,j) + c2αi,j

,

c2d,i = c2a,i, 1 ≤ i ≤ K. (33)

where we used the fact that wi(t)→ 1 as t→∞.

For a concise matrix notation, let

I(t) ≡ (Ia,1(t), . . . , Ia,K(t), Ia,1,1(t), . . . , Ia,K,K(t), Id,1(t), . . . , Id,K(t)),

b(t) ≡ (ba,1(t), . . . , ba,K(t), ba,1,1(t), . . . , ba,K,K(t), bd,1(t), . . . , bd,K(t)),

M(t) ≡ (Mm,n(t)) ∈ R
(2K+K2)2 , m, n ∈ {a1, . . . , aK , a1,1, . . . , aK,K, d1, . . . , dK},

c2 ≡ (c2a,1, . . . , c
2
a,K , c

2
a,1,1, . . . , c

2
a,K,K, c

2
d,i, . . . , c

2
d,K),

where

ba,i(t) ≡
λ0,i

λi

Ia,0,i(t) + βi(t), ba,i,j ≡ (1− pi,j) + αi,j(t),

bd,i(t) ≡ (1− wi(t))Is,i(t); Mai,aj,i(t) =
λj,i

λi

,

Mai,j ,di(t) = pi,j,Mdi,ai(t) = wi(t), and Mm,n(t) = 0 otherwise.

Then the IDC equations can be expressed concisely as

(E−M(t))I(t) = b(t), (34)

while the limiting variability equations can be expressed as

(E−M(∞))c2 = b(∞), (35)

where E ∈ R
(2K+K2)2 is the identity matrix.

The following theorem states that these equations have unique solutions.
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Theorem 1 Assume that I − P ′ is invertible. Then E −M(t) is invertible for each fixed

t ∈ R
+ ∪ {∞}. Hence, for any given t and b, the IDC equations in (34) have the unique

solution

I(t) = (E−M(t))−1b(t)

and the limiting variability equations in (35) have the unique solution

c2 = (E−M(∞))−1b(∞).

Proof. Let δi,j be the Kronecker delta function. Then substituting the equations for Ia,j,i(t)

and Id,i(t) into the equation for Ia,i(t), we obtain an equation set for Ia,i(t) with coefficient

matrix (δi,j − (λj,i/λi)pj,iwj(t)) ∈ R
K2

. Note that (λj,i/λi)wj(t) ≤ 1 for t ∈ R
+ ∪ {∞},

the invertibility of I − P ′ implies that the equations for Ia,i(t) have an unique solution.

Substituting in the solution for Ia,i(t), we obtain solutions for Ia,i,j(t) and Id,i(t). �

Remark 7 (The Kim [30, 31] MMPP(2) decomposition.) In Kim [30, 31], a decomposition

approximation of queueing networks based on MMPP(2)/GI/1 queues was investigated.

MMPP(2) stands for Markov modulated Poission process with 2 underlying states. The

four rate parameters in the MMPP(2) are determined from the approximations of the mean,

IDC and the third moment process of the arrival process at a pre-selected time t0 and the

limiting variability parameter of the arrival process. The IDC and third moment processes are

approximated by the network equations with correction terms motivated from the Markovian

routing settings.

At first glance, the IDC equations proposed here are quite similar to the network equations

used in [30], see (20), (22) and (31) there. However, our method are different in three aspects.

First, our approach does not fit the flows to special processes (MMPP in [30]), instead we

partially characterize the flows by the IDC and apply the RQ algorithm reviewed in §2.2.
Second, the entire IDC function is utilized in the RQ algorithm, whereas [30] used IDC

evaluated at a pre-selected time t0 to fit the parameters of the MMPP. Third, we rely on

more detailed heavy-traffic limit to propose asymptotically exact correction terms, see §5.3
of the appendix. �

3.5 RQNA for Tree-Structured Queueing Networks

With the IDC equations developed in §3.4, we immediately obtain an elementary algorithm

for tree-structured OQNs. A tree-structured queueing network is an OQN whose topology

forms a directed tree. Recall that a directed tree is a connected directed graph whose
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underlying undirected graph is a tree. The tree-structured network is a special case of

feed-forward network in which the superposed flows at each node have no common origin.

This special structure greatly simplifies the IDC-based RQNA algorithm. First, there is

no customer feedback, which significantly simplify the IDC equations as well as the depen-

dence in the queueing network. Second, for any internal flow Ai,j that is non-zero, we must

have αi,j = 0 for the correction term in (25), see discussions in §5.3 of the appendix. Finally,

the tree structure implies that βi = 0 for the correction term for superposition because all

superposed processes are independent.

We summarize the procedure in Algorithm 1. To elaborate, with these simplifications of

Algorithm 1: The RQNA algorithm for approximating the IDC’s at each time t

in a tree-structured queueing network.

Require: The queueing network has tree structure.

Output : Solution to the IDC equations (34).

1 for i = 1 to n do

2 λi ← λ0,i +
∑

j<i λjpj,i;

3 ρi ← λi/µi;

4 c2a,i ←
∑

j<i

λj,i

λi
c2a,j,i +

λ0,i

λi
c2a,0,i;

5 c2x,i ← c2a,i + c2s,i;

6 wi(t)← w∗((1− ρi)
2λit/(ρic

2
x,i));

7 Iai(t)←
∑

j<i

λj,i

λi
(pj,i (wj(t)Ia,j(t) + (1− wj(t))Is,j(t)) + (1− pj,i)) +

λ0,i

λi
Ia,0,i(t);

8 Idi(t)← wi(t)Ia,i(t) + (1− wi(t))Is,i(t);

9 for j < i do

10 Ia,i,j(t)← pi,jId,i(t) + (1− pi,j);

11 end

12 end

13 return I(t).

the correction terms, the equations in (32), yield, for 1 ≤ i, j ≤ K,

Iai(t) =
K
∑

j=1

λj,i

λi

Iaj,i(t) + (λ0,i/λi)Ia0,i(t),

Iai,j (t) = pi,jIdi(t) + (1− pi,j),

Idi(t) = wi(t)Iai(t) + (1− wi(t))Isi(t).

The IDC equations in this setting inherit a special structure that allows a recursive
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algorithm. Note that the stations in the tree-structured network can be partitioned into

disjoint layers {L1, . . . ,Ll} such that for station i ∈ Lk, it takes only the input flows from

j ∈
⋃k−1

j=1 Lj for 1 ≤ k ≤ l. To simplify the notation, we sort the node in the order of

their layers and assign arbitrary order to nodes within the same layer. If i ∈ Lk, then
⋃k−1

j=1 Lj ⊂ {1, 2, . . . , i − 1}, so that λj,i = 0 for all j ≥ i. Hence, by substituting in the

equations for Idi and Iai,j into that of Iai , we have

Iai(t) =

K
∑

j=1

λj,i

λi

(

pj,i
(

wj(t)Iaj (t) + (1− wj(t))Isj(t)
)

+ (1− pj,i)
)

+
λ0,i

λi

Ia0,i(t),

=
∑

j<i

λj,i

λi

(

pj,i
(

wj(t)Iaj (t) + (1− wj(t))Isj(t)
)

+ (1− pj,i)
)

+
λ0,i

λi

Ia0,i(t). (36)

Note that (36) exhibits a lower-triangular shape so that we can explicitly write down the

solution in the order of the stations.

4 Feedback Elimination

In this section, we discuss the case in which customers can return (feedback) to a queue after

receiving service there. Customer feedback introduces dependence between the arrival pro-

cess and the service times, even when the service times themselves are mutually independent.

As a result, the decomposition Iw(t) = Ia(t) + c2s in (4) is no longer valid. Indeed, assuming

that it is, as we have done so far, can introduce serious errors, as we show in our simulation

examples. We address this problem by introducing a feedback elimination procedure. We

start with the so-called immediate feedback in §4.1 and generalize it into near-immediate

feedback in §4.2.

4.1 Immediate Feedback Elimination

In Section III of [50] it is observed that it is often helpful to pre-process the model data by

eliminating immediate feedback for queues with feedback. We now show how that can be

done for the RQNA algorithm.

We consider a single queue with i.i.d. feedback. In this case, all feedback is immediate

feedback, meaning that the customer feeds back to the same queue immediately after com-

pleting service, without first going through another service station. For a GI/GI/1 model

allowing feedback, all feedback is necessarily immediate because there is only one queue.
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Normally, the immediate feedback returns the customer back to the end of the queue.

However, in the immediate feedback elimination procedure, the approximation step is to

put the customer back at the head of the line so that the customer receives a geometrically

random number of service times all at once. Clearly this does not alter the queue length

process or the workload process, because the approximation step is work-conserving.

The modified system is a single-server queue with a new service-time distribution and

without feedback. Let Np denote a geometric random variable with success probability 1−p

and support N+, the positive natural numbers, then the new service time can be expressed

as

Sp =

Np
∑

i=1

Si, (37)

where Si’s are i.i.d. copies of the original service times. This modification in service times

results in a change in the service scv. By the conditional variance formula, the scv of the

total service time is c̃2s = p + (1 − p)c2s. The new service IDC in the modified system is the

IDC of the stationary renewal process associated with the new service times. To obtain the

new service IDC, we need only find the Laplace Transform of the new service distribution,

then apply the algorithm in §2.1.2. We provides the details in §4 of the appendix.

For the mean waiting time, we need to adjust for per-visit waiting time by multiplying

the waiting time in the modified system by (1− p). Note that (1− p)−1 is the mean number

of visits by a customer in the original system.

In §4.1 of [60] it is shown that the modified system after the immediate feedback elimina-

tion procedure shares the same HT limits of the queue length process, the external departure

process, the workload process and the waiting time process. Hence, the immediate feedback

elimination procedure as an approximation is asymptotically exact in the heavy-traffic limit.

4.2 Near-Immediate Feedback

Now, we consider general OQNs, where the feedback does not necessarily happen immedi-

ately, meaning that a departing customer may visit other queues before coming back to the

feedback queue. To treat general OQNs, we extend the immediate feedback concept to the

near-immediate feedback, which depends on the traffic intensities of the queues on the path

the customer took before feedback happens. The near-immediate feedback is defined as any

feedback that does not go through any queue with higher traffic intensity.

By default, the RQNA algorithm eliminates all near-immediate feedback. To help un-

derstand near-immediate feedback, consider a modified OQN with one bottleneck queue,

29



denoted by h. A bottleneck queue is a queue with the highest traffic intensity in the network.

While all non-bottleneck queues have service times set to 0 so that they serve as instanta-

neous switches. In the reduced network, we define an external arrival Â0 to the bottleneck

queue to be any external arrival that arrive at the bottleneck queue for the first time. Hence,

an external arrival may have visited one or multiple non-bottleneck queues before its first

visit to the bottleneck queue. In particular, the external arrival process can be expressed

as the superposition of (i) the original external arrival process A0,h at station h; and (ii)

the Markov splitting of the external arrival process A0,i at station i with probability p̂i,h,

for i 6= h, where p̂i,h denote the probability of a customer that enters the original system

at station i ends up visiting the bottleneck station h. For the explicit formula of p̂i,h, see

Remark 3.2 of [60].

In §4.2 of [60], we showed that this reduced network is asymptotically equivalent in the HT

limit to the single-server queue with i.i.d. feedback that we considered in §4.1. In particular,

the arrival process of the equivalent single-station system is Â0 as described above, the service

times remain unchanged and the feedback probability is p̂, which is exactly the probability

of a near-immediate feedback in the original system; see (3.9) of [60] for the expression of p̂.

Hence we showed that eliminating all feedback at the bottleneck queue as described above

prior to analysis is asymptotically correct in HT for OQNs with a single bottleneck queue in

terms of the queue length process, the external departure process, the workload process and

the waiting time process. Moreover, the different variants of the algorithm - eliminating all

near immediate feedback or only the near-immediate feedback at the bottleneck queues - are

asymptotically exact in the HT limit for an OQN with a single-bottleneck queue, because

only the bottleneck queues have nondegenerate HT limit. In contrast, if there are multiple

bottleneck queues, the HT limit requires multidimensional RBM, which is not used in our

RQNA.

5 The Full RQNA Algorithm

As basic input parameters, the RQNA algorithm requires the model data specified in §3.1:

1. Network topology specified by the routing matrix P ;

2. External arrival processes specified by (i) the interarrival distribution, if renewal; or

(ii) rate λ and IDC; or (iii) a realized sample path of the stationary external arrival

process;
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3. Service renewal process specified by (i) the service distribution; or (ii) the rate and

IDC; or (iii) a realized sample path of the stationary service renewal process.

Combining the traffic-rate equation, the limiting variability equation, the IDC equation

and the feedback elimination procedure, we have obtained a general framework for the RQNA

algorithm, which we summarize in Algorithm 2. We remark that the RQNA algorithm

becomes much simpler in the case without customer feedbacks, as discussed in §3.5.

Algorithm 2: A general framework of the RQNA algorithm for the approximation

of the system performance measures.

Require: Specification of the correction terms αi,j(t) in §3.3.2 and βi(t) in §3.3.3, a
set of stations to perform feedback elimination as specified in §4 and the

flows to eliminate for each of the selected station.

Output : Approximation of the system performance measures.

1 Solve the traffic rate equations by λ = (I − P ′)−1λ0 as in §3.2 and let ρi = λi/µi;

2 Solve the limiting variability equations by c2 = (E−M(∞))−1b(∞) as in §3.4;
3 Solve the IDC equations by I(t) = (E−M(t))−1b(t) for the total arrival IDCs,

where we use c from Step 2 in (19);

4 Select a set of stations to perform feedback elimination, as in §4. For each selected

station, identify the flows to eliminate, then identify the corresponding feedback

probability, the modified service IDC as in §4.1 as well as the reduced network.

Repeat Step 1 to Step 3 on the reduced network to obtain the modified IDW (as

the sum of the modified total arrival IDC and the modified service scv) at the

selected station.

5 Apply the RQ algorithm in (13) to obtain the approximations for the mean

steady-state workload at each station.

6 Apply the formulas in Remark 4 and 5 to obtain approximations for the expected

values of the steady-state queue length and waiting time at each queue and the

total sojourn time for the system.

Remark 8 (Computation complexity.) We remark that the full RQNA algorithm is light

in computational complexity. Most of the calculation comes from Step 3 of the RQNA

algorithm. For each t, the algorithm needs to solve for one linear systems with K equations,

where K is the number of stations. By default, the algorithm solves these equations on a grid

with points logarithmically apart, see Remark 2. For station i, the RQ algorithm requires
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the value of arrival IDC in the interval [0, Ti] for Ti = O((1 − ρi)
−2). Hence, RQNA solves

for at most O(−2 log(1 − ρmax)) linear systems, where ρmax = maxi ρi. For each station

that we apply feedback elimination, we need to run RQNA (without feedback elimination)

on the reduced network. As a result, RQNA with feedback elimination solves for at most

O(−2K log(1− ρmax)) linear systems, each with at most K equations.

The general framework here allows different choices of (i) the correction terms αi,j in

§3.3.2 and βi in §3.3.3 and (ii) the feedback elimination procedure. The default correction

terms are given in (26) and (30). For the feedback elimination procedure, we apply near-

immediate feedback elimination to all stations. In §6 of the appendix we discuss an additional

tuning function to fine tune the performance of our RQNA algorithm.

6 Numerical Studies

In this section, we discuss examples of networks with significant near-immediate feedback

from [11]. We show that the near-immediate feedback in these examples makes a big dif-

ference in the performance descriptions. Hence our predictions with and without feedback

elimination are very different. We find that our RQNA with near-immediate feedback elimi-

nation performs as well or better than the other algorithms. Additional numerical examples

appear in our previous papers and in §7 of the appendix.

6.1 A Three-Station Example

In this section, we look at the suite of three-station examples §3.1 of [11] depicted in Figure

1. This example is designed to have three stations that are tightly coupled with each other,

so that the dependence among the queues and the flows is fairly complicated.

λ0,1 = 0.225
Queue 1 Queue 2

p2,3
Queue 3

p2,1

p3,2

Figure 1: A three-station example.

In this example, we have three stations in tandem but also allow customer feedback from

station 2 to station 1 and from station 3 to station 2, with probability p2,1 = p2,3 = p3,2 = 0.5.
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The only external arrival process is a Poisson process which arrives at station 1 with rate

λ0,1 = 0.225, hence by (16) the effective arrival rate is λ1 = 0.675, λ2 = 0.9 and λ3 = 0.45.

For the service distributions, we consider the same sets of parameters as in [11], summa-

rized in Table 1 and 2. Note that Case 2 is relatively more challenging because there are two

bottlneck stations; in contrast, all the other cases have only one.

Table 1: Traffic intensity of the four cases

in the three-station example.

Case ρ1 ρ2 ρ3

1 0.675 0.900 0.450

2 0.900 0.675 0.900

3 0.900 0.675 0.450

4 0.900 0.675 0.675

Table 2: Variability of the service dis-

tributions of the four cases in the three-

station example.

Case c2s,1 c2s,2 c2s,3

A 0.00 0.00 0.00

B 2.25 0.00 0.25

C 0.25 0.25 2.25

D 0.00 2.25 2.25

E 8.00 8.00 0.25

We now compare the RQNA approximations and four previous algorithms as in §7.3 of

the appendix, with the simulated mean sojourn times at each station, as well as total sojourn

time of the network. The sojourn time for each station is defined as the waiting time plus

the service time at that station, whereas the total sojourn time of the network is defined

as in (14). We consider two cases of the RQNA algorithm: (1) the plain RQNA algorithm

without feedback elimination, as in Algorithm 2 and (2) the RQNA algorithm with feedback

elimination, as discussed in §4.
For RQNA with feedback elimination, we apply feedback elimination to each station

that has at least one feedback flow that only passes through stations with equal or lower

traffic intensities. We eliminate all such flows in the feedback elimination procedure. Take

Case 1 for example, we do not apply feedback elimination for Station 1 because all feedback

customers go through Station 2, which has higher traffic intensity; we will, however, eliminate

the flow from 2 to 1 as well as the flow from 3 to 2 for Station 2, since both Station 1 and

3 have lower traffic intensities. As another example, for both Station 2 and 3 in case 4, we

eliminate the flow from 3 to 2, but we do not eliminate the flow from 2 to 1, since Station 2

and 3 share the same traffic intensity while Station 1 has higher traffic intensity.

Tables 3 and 4 expand Tables II and III in [11] by adding values for (1) the mean

total sojourn time and (2) the RQ and RQNA approximations, with and without feedback

elimination. For each table, we indicate by an asterisk in the last column the stations where
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Table 3: A comparison of six approximation methods to simulation for the total sojourn

time in the three-station example in Figure 1 with parameters specified in Table 1 and 2. In

calculating the average absolute relative error, the diverging entry for QNET is ignored.

Case Simulation QNA QNET SBD RQ RQNA RQNA (elim)

A 1 40.39 (3.75%) 20.5 (-49%) diverging 43.0 (6.4%) 73.9 (83%) 83.5 (107%) 44.8 (11.0%)

2 59.58 (3.29%) 36.0 (-40%) 56.7 (-4.9%) 58.2 (-2.4%) 78.0 (31%) 94.3 (58%) 69.3 (16.4%)

3 40.72 (4.78%) 24.0 (-41%) 38.7 (-5.0%) 40.2 (-1.3%) 57.2 (41%) 74.7 (83%) 43.3 (6.3%)

4 42.12 (3.36%) 26.2 (-38%) 41.8 (-0.7%) 42.7 (1.3%) 59.3 (41%) 75.1 (78%) 41.2 (-2.2%)

B 1 52.40 (2.64%) 42.0 (-20%) 52.6 (0.4%) 50.2 (-4.2%) 72.4 (38%) 93.7 (79%) 53.1 (1.4%)

2 91.52 (3.77%) 94.1 (2.8%) 83.7 (-8.5%) 95.3 (4.1%) 109 (20%) 169 (85%) 94.5 (3.2%)

3 61.68 (3.44%) 72.2 (17%) 61.9 (0.4%) 60.9 (-1.3%) 79.4 (29%) 133 (115%) 60.5 (-1.9%)

4 63.34 (2.83%) 75.8 (20%) 64.1 (1.3%) 64.7 (2.1%) 83.0 (31%) 135 (113%) 62.4 (-1.4%)

C 1 44.24 (1.96%) 31.3 (-29%) 37.0 (-16%) 47.1 (6.4%) 75.7 (71%) 91.4 (106%) 42.1 (-4.8%)

2 92.42 (4.23%) 87.4 (-5.4%) 91.2 (-1.4%) 91.6 (-0.83%) 106 (15%) 156 (68%) 96.0 (3.8%)

3 44.26 (4.69%) 33.2 (-25%) 44.0 (-0.7%) 45.0 (1.7%) 61.3 (38%) 84.2 (90%) 44.0 (-0.6%)

4 50.20 (1.04%) 41.4 (-18%) 51.1 (1.7%) 52.2 (4.0%) 67.4 (34%) 91.2 (82%) 45.9 (-8.6%)

E 1 134.4 (4.77%) 265 (97%) 155 (15%) 116 (-14%) 158 (17%) 305 (127%) 120 (-11%)

2 213.1 (3.47%) 308 (45%) 228 (7.1%) 206 (-3.3%) 234 (10%) 367 (72%) 173 (-19%)

3 138.7 (3.97%) 244 (76%) 161 (16%) 135 (-2.5%) 163 (17%) 300 (116%) 136 (-2.0%)

4 155.1 (4.37%) 252 (63%) 168 (8.2%) 147 (-5.0%) 178 (15%) 312 (101%) 148 (-4.8%)

Average absolute relative error 36.63% 5.82% 3.80% 33.19% 92.50% 6.15%

elimination is applied.

We observed that the plain RQNA algorithm works well for stations with moderate to

low traffic intensities, but not so satisfactory for congested stations. On the other hand, the

accuracy of the RQNA algorithm with feedback elimination is on par with, if not better than

the best previous algorithm.

6.2 A Ten-Station Example

We conclude with the 10-station OQN example with feedback considered in §3.5 of [11]. It

is depicted here in Figure 2.

The only exogenous arrival process is Poission with rate 1. For each station, if there

are two routing destinations, the departing customer follows Markovian routing with equal

probability, each being 0.5. The vector of mean service times is (0.45, 0.30, 0.90, 0.30, 0.38571,

0.20, 0.1333, 0.20, 0.15, 0.20), so that the traffic intensity vector is (0.6, 0.4, 0.6, 0.9, 0.9, 0.6,

0.4, 0.6, 0.6, 0.4). The scv’s at these stations are (0.5, 2, 2, 0.25, 0.25, 2, 1, 2, 0.5, 0.5), where

we assume a Erlang distribution if c2s < 1, an exponential distribution if c2s = 1 and a

hyperexponential distribution if c2s > 1.

In particular, note that stations 4 and 5 are bottleneck queues, having equal traffic
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Table 4: A comparison of six approximation methods to simulation for the sojourn time at

each station of the three-station example in Figure 1 for Case D in Table 1 and 2.

Case Station Simulation QNA QNET SBD RQ RQNA RQNA (elim)

D1 1 2.476 (0.61%) 2.24 (-9.4%) 2.48 (0.3%) 2.47 (-0.1%) 2.47 (-0.28%) 2.68 (7.8%) 2.68 (7.8%)

2 10.85 (3.21%) 14.9 (37%) 11.6 (6.5%) 11.4 (5.2%) 19.8 (83%) 28.4 (162%) 11.1∗ (2.7%)

3 2.544 (0.63%) 2.53 (-0.8%) 2.54 (-0.0%) 2.59 (1.6%) 2.57 (1.2%) 2.53 (-0.7%) 2.53 (-0.7%)

Total 55.81 (2.58%) 71.4 (28%) 58.8 (5.3%) 58.2 (4.3%) 91.8 (64%) 127 (127%) 57.6 (3.3%)

D2 1 11.35 (3.29%) 8.01 (-29%) 10.8 (-4.5%) 11.1 (-1.9%) 13.7 (20%) 16.6 (46%) 11.3∗ (0.1%)

2 2.643 (1.25%) 2.96 (12%) 2.75 (4.0%) 2.82 (6.7%) 2.85 (7.8%) 3.06 (16%) 3.06 (16%)

3 26.87 (2.04%) 32.9 (22%) 26.8 (-0.4%) 24.9 (-7.5%) 27.5 (2.2%) 36.4 (35%) 31.1∗ (16%)

Total 98.36 (1.82%) 102 (3.4%) 97.2 (-1.2%) 94.4 (-4.0%) 104 (6.0%) 132 (34%) 105 (7.1%)

D3 1 11.39 (3.04%) 7.95 (-30%) 11.0 (-3.5%) 11.3 (-0.5%) 15.8 (39%) 16.5 (45%) 11.3∗ (-0.5%)

2 2.290 (1.27%) 2.90 (27%) 2.53 (10%) 2.26 (-1.4%) 2.57 (12%) 3.04 (33%) 2.10∗ (-8.2%)

3 2.220 (0.59%) 2.40 (7.9%) 2.38 (7.0%) 2.59 (16%) 2.39 (7.6%) 2.43 (9.6%) 2.43 (9.6%)

Total 47.72 (2.51%) 40.2 (-16%) 47.8 (0.2%) 48.2 (1.0%) 62.6 (31%) 66.6 (39%) 47.5 (0.51%)

D4 1 11.30 (6.39%) 7.97 (-29%) 10.9 (-3.2%) 11.3 (0.3%) 14.2 (26%) 16.43 (45%) 11.3∗ (0.3%)

2 2.414 (1.12%) 2.93 (21%) 2.64 (9.5%) 2.60 (7.7%) 2.65 (10%) 3.05 (26%) 2.10∗ (-13%)

3 5.886 (1.05%) 6.83 (16%) 6.31 (7.3%) 6.17 (4.8%) 6.47 (10%) 6.85 (16%) 5.95∗ (1.1%)

Total 55.24 (4.37%) 49.3 (-11%) 56.0 (1.4%) 56.7 (2.7%) 69.3 (25%) 75.5 (37%) 54.3 (-1.7%)

Average absolute relative error 20.24% 4.72% 4.52% 21.61% 42.60% 5.51%

intensity, far greater than the traffic intensities at the other queues. Moreover, these two

stations are quite closely coupled. Thus, at first glance, we expect that SBD with two-

dimensional RBM should perform very well, which proves to be correct. Moreover, this

example should be challenging for RQNA because it is based on heavy-traffic limits for

OQNs with only a single bottleneck, thus involving only one-dimensional RBM.

1 2 3

6 4 5

7 8 9 10

Figure 2: A ten-station with customer feedback example.

In Table 5, we report the simulation estimates and approximattions for the steady-state

mean sojourn time (waiting time plus service time) at each station, as well as the total

sojourn time of the system, calculated as in (14). For the approximations, we compare QNA

from [50], QNET from [22], SBD from [11], RQ from [57] (with estimated IDC), as well as

the RQNA algorithms here. The simulation, QNA, QNET and SBD columns are taken from
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Table 5: A comparison of six approximation methods to simulation for the mean steady-state

sojourn times at each station of the open queueing network in Figure 2.

Station Simulation QNA QNET SBD RQ RQNA RQNA (elim)

1 0.99 (0.86%) 0.97 (-2.8%) 1.00 (0.2%) 1.00 (0.4%) 0.97 (-2.0%) 1.09 (9.2%) 1.00∗ (0.4%)

2 0.55 (0.69%) 0.58 (6.0%) 0.56 (2.6%) 0.55 (0.2%) 0.55 (-0.1%) 0.56 (1.3%) 0.56 (1.4%)

3 2.82 (1.93%) 2.93 (4.2%) 2.90 (3.2%) 2.76 (-2.0%) 2.96 (5.0%) 3.40 (21%) 2.75∗ (-2.5%)

4 1.79 (3.71%) 1.34 (-25%) 1.41 (-21%) 1.76 (-1.6%) 2.34 (31%) 3.51 (97%) 2.11∗ (18%)

5 2.92 (4.77%) 2.49 (-15%) 2.44 (-17%) 2.81 (-3.6%) 3.77 (29%) 9.07 (211%) 3.35∗ (15%)

6 0.58 (0.78%) 0.64 (10%) 0.62 (7.4%) 0.59 (2.2%) 0.60 (3.8%) 0.70 (20%) 0.49∗ (-16%)

7 0.24 (0.28%) 0.24 (-1.7%) 0.26 (7.1%) 0.27 (11%) 0.23 (-3.0%) 0.24 (-1.3%) 0.24 (-1.3%)

8 0.58 (0.67%) 0.64 (9.6%) 0.61 (4.6%) 0.60 (1.7%) 0.61 (3.9%) 0.70 (20%) 0.59∗ (0.6%)

9 0.34 (0.63%) 0.32 (-6.1%) 0.35 (2.0%) 0.43 (26%) 0.33 (-4.2%) 0.73 (111%) 0.42∗ (21%)

10 0.29 (0.19%) 0.30 (2.4%) 0.29 (1.4%) 0.28 (-1.7%) 0.28 (-1.5%) 0.26 (-8.7%) 0.26 (-8.7%)

Total 22.0 (2.45%) 20.3 (-7.9%) 20.4 (-7.3%) 22.4 (1.7%) 26.1 (18%) 44.5 (102%) 24.2∗ (9.9%)

Table XIV of [11].

Again, we consider two versions of RQNA algorithm, the first one does not eliminate

feedback, while the second one (marked by ‘elim’) applies the feedback elimination procedure.

As before, in eliminating customer feedback, for each station, we identify the near-immediate

feedback flows as the flows that come back to the station after completing service, without

passing through any station with a higher traffic intensity. We then eliminate all near-

immediate feedback flows, apply plain RQNA algorithm on the reduced network and use the

new RQNA approximation as the approximation for that station.

We make the following observations from this numerical example:

1. Particular attention should be given to the two bottleneck stations: 4 and 5. Note

that QNA and QNET produce 15− 25% error, which is satisfactory, but SBD does far

better with only 1− 4% error.

2. The RQNA algorithm without feedback elimination can perform very poorly with high

traffic intensity and high feedback probability, presumably due to the break down of

the IDW decomposition in (4).

3. With feedback elimination, the RQNA algorithm performs significantly better and is

competitive with previous algorithms in this complex setting, producing 15−18% error

at stations 4 and 5. The performance of RQNA at the tightly coupled bottleneck queues

evidently suffers because the current RQNA depends heavily on one-dimensional RBM.
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7 Conclusions

7.1 Summary

In this paper we developed a new decomposition approximation for the principal steady-state

performance measures of each queue in a single-class open queueing network of single-server

queues with unlimited waiting space and the first-come-first served service discipline. We

focus on non-Markov OQNs where the external arrival processes need not be Poisson or

renewal and the service-time distributions need not be exponential. Our algorithm combines

three methodologies in operations research and stochastic models: (i) robust optimization

as in [3, 57], (ii) indices of dispersion and stationary point processes as in [9, 15, 45] and

(iii) heavy-traffic limits as in [11, 22, 55]. The algorithm builds on our previous papers

[56, 57, 58, 59, 60] as indicated in §1.2.
Given the model data, the computational effort is the same as for QNA in [50]. Efficient

ways to obtain the model data, primarily the indices of dispersion of the external arrival

processes, are indicated in §2.1. Just as for QNA in [50], an effective way to apply the

algorithm in applications is together with simulation. The analytical algorithm can be used

to rapidly explore and optimize over spaces of candidate models, while simulation can be

used to confirm algorithm predictions.

In addition to the goal of computing steady-state performance measures of interest, a

major goal in this work has been to gain a better understanding of the dependence in the

flows of an OQN and the impact of that dependence upon the performance of the queues.

Heavy-traffic limits have traditionally aimed at exposing the performance impact by skipping

this step. We have used indices of dispersion to approximately characterize the dependence.

The starting point is to link the indices of dispersion to the performance of a single queue.

That initial step was provided with robust queueing in [57]. Theorem 5 of [57] shows that the

robust queueing based on the IDC is asymptotically correct in both light and heavy traffic.

Nevertheless, it was not evident that the approximation of one queue in [57] could be

extended to yield an analog of QNA in [50] for a general OQN. With the aid of heavy-traffic

limits for the flows in [56, 60], the present paper synthesizes those theoretical results and

develops an efficient algorithm for a general OQN.

After reviewing the indices of dispersion and the robust queueing approximation for a

single queue in §2, we developed the important variability linear equations for the IDCs of the

internal arrival processes in §3. We then introduced the extra step of feedback elimination

in §4. We put all this together into a full algorithm in §5, developing a simplified version for
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networks with tree structure in §3.5.
We then evaluated the performance of the new RQNA-IDC by making comparisons with

simulations for various examples in §6 and §7 of the appendix. These experiments confirm

that RQNA-IDC is remarkably effective.

7.2 When Should the IDC-Based RQNA Be Effective?

It is significant that the IDC provides a useful diagnostic tool to judge when candidate

performance approximations for OQNs are likely to be effective or not. This is well illustrated

by the figures in [56, 57]. They show plots of the IDC in (1) as a function of time and the

normalized mean workload in (5) as a function of the traffic intensity.

The easiest case is a Poisson process when the IDC is 1. If an entire IDC is nearly 1, then

the arrival process should behave much like a Poisson process. More generally, when the

IDC is nearly constant, there should be relatively little ambiguity about the relevant level

of variability in the arrival process; e.g., see the light traffic and heavy-traffic limits in (7).

For the GI/GI/1 model with a renewal arrival process, the IDC and IDW approach limits

as time evolves, usually with exponential decay. Thus, standard approximations are usually

effective.

In an OQN, this good behavior is likely to prevail if the level of variability of in all

the service times, as measured by their scv’s, and in all the external arrival processes, as

characterized by the IDC’s, are roughly equal. Experience has shown that the difficult

examples typically arise when that property is seriously violated. This is reflected by the

convex combination appearing in the approximation for the departure process in equation

(18). More generally, problems with the approximations are likely to arise as the complexity

of the OQN increases when the level of variability is not nearly constant, as indicated in

§1.2.
The traffic intensities of the queues also play a role. The RBM-based heavy-traffic QNET

algorithm in [22] is likely to be especially effective if the traffic intensities are nearly equal and

relatively high. The SBD decomposition in [11] is likely to be especially effective if the traffic

intnsities can be separated into groups, with some high, others medium and others low. The

RQNA developed here is likely to be especially effective if there is a single bottleneck node,

because we exploit the heavy-traffic theory in [60] for that case. That condition is violated

for the three-station examples in §6.
It is important to note that our numerical examples have deliberately been chosen from

the most difficult cases exposed in previous work. The first class of notorious examples is

38



based on the heavy-traffic bottleneck phenomenon from [48], which is studied in [11, 56] and

in §7.3 of the appendix to this paper. The different levels of variability appear at different

queues depending on the traffic intensity of the queue. The second class are the networks

with near-immediate feedback from [11], which is studied here in Tables 3 and 4 here.

The ten-station example in Table 5 here from [11] has quite a bit of feedback, but is not

so difficult. Note that, all methods produce reasonable accuracy for this example, provided

feedback elimination is incorporated in the IDC-based RQNA here. For many-realistic OQNs

arising in practice, such as the large manufacturing examples in [44], most methods work

quite well.

7.3 Directions for Future Research

There are many excellent directions for future research, including (i) developing refined ap-

proximations for the flows that exploit multi-dimensional RBM instead of just one-dimensional

RBM, (ii) extending RQNA-IDC to other OQN models, e.g., with multiple servers and other

service disciplines and (iii) extending our initial robust queueing for a time-varying queue in

[59] to time-varying networks of queues. In fact, we think that our work should be regarded

as only one step in the serious study of dependence in stochastic point (arrival) processes,

queueing networks and related stochastic models.
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