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The value of knowing drivers’ opportunity cost in
Ride Sharing systems

Consider a ride sharing platform, and a large population of strategic potential drivers, heterogeneous in

terms of their opportunity costs, who choose whether or not to work for that platform. The platform is

endowed with knowledge about the different drivers’ opportunity costs. How can the platform implement

a matching policy that uses this knowledge in order to improve system efficiency? Can such improvement

be quantified? In this work we introduce an analytically-tractable mean field (fluid) model that accounts

for the dynamic nature of drivers’ spatial location, revenue, and availability status. Based on this model

we compare drivers’ equilibrium participation under two different matching policies. Our analysis leads to

improvement bounds on the equilibrium performance: We show that a policy which utilizes knowledge about

drivers’ opportunity costs can perform up to two times better than a policy that does not do so, in terms

of the number of drivers it attracts and in terms of the rate of matches it produces. We demonstrate by

simulation that the mean field model provides an accurate approximation for a corresponding (stochastic)

discrete model, in which the discussed improvement is observed empirically.
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1. Background and motivation

Many companies in the sharing economy sector, and ride sharing platforms in particular, are

putting tremendous efforts to retain their partners (specifically, drivers in the case of ride sharing),

as well as recruiting new ones. These companies are providing potential and existing partners

with monetary incentives to work for the platforms, for example by offering sign-up promotions. A
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prevalent method in the ride-sharing business to increase drivers’ total work time is bonus programs

that reward drivers for achieving certain productivity benchmarks. Though the precise format and

motives of different bonus programs may vary, by and large, their high-level goal is similar, which

is to increase drivers’ supply in the (possibly time/location-specific) market.

Just as any other economic system, the fact that platforms can benefit from having a large

service capacity initially seems obvious. However, a NYC Department of Transportation report

(Department of Transportation (2019)) states, with regard to for-hire vehicles in the Manhattan

core area, that

“...Uber, Lyft, Juno and Via [...] saturated the market with vehicles [...] causing drivers to

spend over 40% of total work time empty and cruising for passengers. [...] this underutilization

led to significant declines in driver income.”

Given that drivers spend close to half of their working time idling, it is perhaps surprising that

platforms invest abundant resources, via bonuses and promotions, in increasing their potential

supply. The rationale is given in part in Parrott and Reich (2018) – a report of the NYC Taxi and

Limousine Commission:

“To achieve quick response times, the [ride-sharing] companies require many idle drivers to

be available at any given moment and at many locations. This model creates a gap between the

drivers’ desires to maximize their earnings – by maximizing trips per working hour – and the

companies’ desire to minimize response times. In other words, the app business model works

only if it keeps driver utilization low, which then keeps drivers’ hourly pay low as well.”

In order to design efficient bonus and promotion programs, it is crucial to understand the value

of drivers’ commitment, i.e., to be able to quantify the benefit for the platform from having more

drivers working for it in a given time. In this paper we interpret the latter quantity as the marginal

value for the platform, either in terms of improved matching rate or in terms of response times,

with respect to growth in working-drivers intensity.

What distinguishes drivers in ride sharing platforms from service providers in more traditional

markets is that ride-sharing drivers are classified private contractors who get paid per job, as
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opposed to employees getting paid a fixed (global) salary. Thus, drivers are highly sensitive to

changes in the system’s overall performance. Performance measures, such as driver utilization, often

exert impact on drivers’ income – a fact notably highlighted by the Parrott and Reich (2018) and

the Department of Transportation (2019) reports. In this paper, the main performance measure of

interest will be the matching rate, i.e., the average number of passenger-driver matches produced

by the platform per unit of time, which directly relates to per-driver income and utilization.

The matching rate is a byproduct of the balance between the demand side, namely potential

passengers, and the supply side, which are the active drivers that are available for pick up. However,

a simplistic supply-demand economic model that ignores the spatial dynamics of the system falls

short of capturing the interplay between drivers utilization and response times as discussed in

Parrott and Reich (2018). For example, a naive model for a ride sharing market considers a closed

network with N drivers in circulation, with a pool of available drivers, ride requests arriving at

rate λN per unit time, and a trip duration m for each ride (for concreteness, this can be thought of

as a single-node BCMP queueing network). Each ride request upon arrival is matched arbitrarily

with an available driver if the pool is not empty, otherwise the ride is lost. When N is large, this

network behaves like fluid in circulation, where the proportion of fluid in the pool corresponds to

the fraction of time drivers spend idling, and the demand flow is analogous to a pump that can

drain fluid from the pool at rate not larger than λ. Such modeling approach will always lead to the

conclusion that either (a) the pool is always empty, namely, all drivers are busy 100% of the time;

or (b) the pool may not be empty but the pump is working at its maximal rate, in which case all

the demand is filled. In case (b), the system is saturated with fluid (i.e., drivers), and increasing

the amount of it will bring about any gains in terms of throughput. The data from the two reports

regarding drivers idling time immediately contradict conclusion (a), while conclusion (b) falls short

of explaining how ride sharing platforms benefit from saturating the market with drivers, albeit

low per-driver utilization.

In the paper we introduce a novel modeling approach that resolves this conflict. Specifically, we

introduce a spatial setting with pickup-time range – passengers whose ride requests cannot be filled
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immediately by an available driver within their pickup region are never matched and we consider

them lost demand. We adopt a mean field approach that allows us to perform exact analysis to

quantify the value for the platform, in terms of increased matching rate, and/or improved pickup

range, from having an increased supply of drivers. Pickup time is a factor of significant importance,

as mentioned in Parrott and Reich (2018):

“The [ride sharing] companies compete with each other primarily by minimizing passengers’

wait times and, to a lesser extent, by decreasing fares.”

This means that for the platform to remain relevant in the market it must adhere to a pickup

range competitive with that of other platforms, which is an underlying assumption of our model.

As one would expect, when potential demand grows, thereby increasing the matching rate (all

other factors unchanged), drivers in the system spend less time idling and hence their income grows

as well. However, a natural trade off is that a higher per-driver profit makes it more attractive to

other potential drivers to work for the system, an act that generally imposes negative externalities

on other drivers in the platform due to the arising competition between them. Thus, a question of

economic equilibrium is brought about: Can one identify the supply level under which all active

drivers meet their reservation wage?

Assuming that the platform is capable of employing matching policies that differentiate between

drivers based on their heterogeneous characteristics, drivers’ revenues and therefore the equilibrium

supply level will depend on the matching policy. It is therefore of interest to compare different

matching policies with respect to the equilibrium matching rates that each policy produces. In this

work, we compare two policies subject to a certain pickup-time standard: One policy that treats all

drivers symmetrically, ignoring all information about their income goals, and another policy which

is geared towards helping drivers meet their income goals. The key takeaway that raises from the

analysis is simple: Compared to a symmetric policy, a policy that takes into account drivers income

goals in its matching decisions yields a more efficient distribution of the revenue among drivers

and hence increases the number of active drivers in equilibrium. An increased number of drivers
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yields a better coverage of drivers over the city area and therefore reduces lost demand, hence it is

more Pareto efficient. In the extreme, the matching rate can be improved by up to 100%. From a

pickup range perspective, this means that if a platform switches from the first to the second policy,

it can potentially reduce its pickup range (and hence its response time) without having to sacrifice

potential demand.

2. The motivating discrete model

Prior to the formulation of the analytic model we describe in broad strokes the discrete simulation

setup that motivates the mean field model to be analyzed. We study the discrete model by sim-

ulation and briefly explain how the simulation outcome supports the results accomplished in our

mean field analysis.

2.1. Model entities

City: We consider a one-dimensional ring-shaped city which comprises a continuum of loca-

tions, represented by the unit interval [0,1). The city being ring shaped implies that the distance

between two locations x, y ∈ [0,1) is given by dist(x, y) = min{|x− y|,1− |x− y|}. We assume that

drivers’ travel time between locations is a continuous increasing function of distance so there is a

one-to-one correspondence between travel time and distance.

Drivers: In the city, there is an overall potential supply of ΘN > 0 drivers, with Θ> 0 being

the potential-drivers’ intensity. The scaling parameter N is interpreted as the market size. Each

driver has an idiosyncratic opportunity cost rate (measured in money per unit-time) which is

guaranteed to them in case they decide not to work for the platform. Driver’s are heterogeneous in

terms of their opportunity cost rates. To make insights sharp, we focus on the case where drivers

are divided into 2 distinct classes, high (H) and low (L), which we refer to as types, each type

i∈ {L,H} with potential number of drivers ΘiN and opportunity cost rate κi, such that κH >κL,

and ΘL + ΘH = Θ.

Drivers are strategic entities who, before the system starts operating, can choose whether to

work for the platform (i.e., participate) or not. Based on the system parameters and the platform’s
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matching policy, which are common knowledge, each potential driver forms a belief about the

participation of other potential drivers as well as the resulting revenue rate from working for the

platform. Given their opportunity cost rate, they then make an irrevocable participation decision.

The aggregate decision profile results in an endogenous total participation intensity θ = θL + θH

where θi is the (endogenous) participation intensity per type i∈ {L,H}. Accordingly, the effective

total number of drivers who circulate the city is then given by θN , and similarly, θiN for each type

i∈ {L,H}.

While working, drivers alternate between states: available (idle) and busy (picking up/carrying

a passenger). When carrying a passenger, a driver obtains revenue at rate of r per unit time, thus,

r can equivalently be thought of as the revenue rate per unit distance traveling, so that a driver’s

revenue from carrying a passenger from a pickup location xp ∈ [0,1) to their drop off xd ∈ [0,1)

is given by r · dist(xp, xd). When busy, drivers cannot be matched with new passengers. How the

matching is formed and how it triggers alternations in drivers’ states will be discussed shortly.

Passengers: Passengers generate the demand for service in the market by submitting ride

requests into the system. Ride requests arrive following a Poisson process with rateNλ> 0, for some

exogenous parameter λ > 0. Each request is associated with a single passenger and characterized

by a pickup location xp ∈ [0,1) and a drop-off location xd ∈ [0,1). For simplicity, we assume that xp

and xd are iid and uniformly distributed across the city’s locations, [0,1). We refer to a passenger’s

location and their pickup location interchangeably.

A passenger has to be matched with a driver immediately at the moment of their arrival. When

such matching is formed the ride request is carried out by the matched driver, and once completed,

the passenger leaves the system. Yet, it may occur, depending on the system state, that a passenger

cannot be matched with a driver, in which case the passenger leaves instantaneously, and no

matching is formed.

Platform: The platform operates in a competitive market, in which passengers has different,

comparable transportation possibilities. Thus, the platform has a rigid (exogenous) pickup range
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δ
2N

: The latter assumption means that the platform matches a customer only with a driver not

farther than δ
2N

units distance away from a passenger’s location. Because travel time as a function

of distance is bijective, this implies that the platform adheres to a rigid pickup-time standard,

which is increasing with δ. When a passenger arrives with pickup location xp, all (if any) available

drivers located in a δ
N

-long neighborhood centered at xp constitute the set of candidates for the

matching. Assuming such candidate driver exists, the matching policy that is set by the platform

then determines which among the candidate drivers to match to that passenger. Loosely speaking,

when N is the size of the market, the average distance between a passenger and their best outside

transportation option is of order 1
N

. Thus, following the assumption that the platform’s response

time are competitive, the platform’s pickup range is appropriately scaled.

While operating, the platform keeps track of each driver’s state, which consists of the following

attributes:

� the driver’s availability status, i.e., available (idling) or busy (carrying out a ride);

� the driver’s physical (spatial) location in the city;

� the driver’s accumulated revenue.

Knowing also each driver’s opportunity cost rate, the platform employs one of the following two

matching policies: MinRev, which matches a ride with the candidate driver whose accumulated net

revenue is the lowest; and MinWeightRev, that assigns the ride to the candidate driver whose net

revenue rate normalized (or weighted) by their opportunity cost rate is the lowest.

Dynamics: For a given participation intensity θ there are θN drivers working for the platform,

each driver at time t = 0 resides in an arbitrary location in the [0,1) interval. For the ease of

exposition we assume that all drivers are initially available and start with 0 accumulated revenue.

We describe the dynamics for the MinRev policy first.

Suppose a passenger arrives at time t1 with pickup location xp and drop-off location xd. The

platform then concerns all the candidate drivers, namely, drivers who by time t1 are available and

located in the interval xd± δ
2N

. The platform chooses among the candidates the one who by time
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t1 had the minimal accumulated revenue, ties are broken arbitrarily. The matching is performed

instantaneously. Once matched, the driver then changes their state from “available” to “busy”.

They then travel from their current location x to the pickup location xp, and continue to the drop-

off location xp.Denoting by m to the mean duration of a ride, the mean revenue from a ride is then

given by r ·m. Upon arrival to xd, the driver becomes available again. To capture disturbance in

available drivers’ locations we assume that while available, drivers are making random movements

in an O
(

1
N

)
-wide surrounding of their locations.

The matching mechanism for MinWeightRev is similar to that of MinRev, except that Min-

WeightRev differentiates between drivers based on their types. Recall that drivers are divided

into two sets: drivers with outside opportunity κL and drivers with outside opportunity κH . For

a given set of candidates, instead of comparing the actual accumulated revenue of candidates,

MinWeightRev considers the weighted accumulated revenue, i.e., the accumulated revenue for each

driver divided by their opportunity cost rate. It will then select the candidate driver with the

minimal weighted accumulated revenue.

2.2. Equilibrium participation

Our main interest is in analyzing and comparing the participation intensities and the resulting

matching rate under equilibrium induced by each of the two aforementioned policies. Equilibrium

is characterized by a decision profile, namely a pair of participation intensities (θL, θH), such that

when the system is in its steady state, no customer can benefit by deviating from their joining

decision. Our equilibrium analysis is therefore valid under the assumption that drivers’ states

(availability, location and revenue rate) reach stationarity.

In order to make their decision, each driver has to asses their long run revenue rate from joining

given the decision of others, thus, a game between drivers is brought about. However, exact analysis

of the discrete model with a large yet finite market size N , is highly complex, mainly due to

the dependencies between drivers’ states. Thus, deriving performance measures that correspond

to various decision profiles, and specifically the evaluation of drivers’ revenue rate for every such
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profile, become impractical to carry out analytically. In this paper we therefore perform our analysis

on a mean field (fluid) model, which is shown to provide a fairly accurate approximation for these

performance measures when the value of N is large.

2.3. Simulation results

Below we present some results obtained in two separate simulation experiments, one for each of

the two policies, MinRev and MinWeightRev. The purpose of these experiments is to demonstrate

the equilibrium performance of each of the two policies under the same market condition. The

setting consists of a market of size N = 100 and potential drivers intensity Θ = 1.25 with per-type

potential intensities ΘL = 1 and ΘH = .25 and corresponding opportunity costs κL = .6 and κH = .8.

Thus, the potential market consists of 125 drivers with 80% being type-L and the rest type-H. The

arrival rate and mean ride duration are given by λ=m= 1. In our simulations choose the bijection

between travel times and distances so as to make the ride duration exponentially distributed. The

working wage is r= 1.04, and the pickup range is δ= 5.

First we simulate the system working under MinRev with total (effective) participation intensity

θ= 1 (corresponding to a total number of θN = 100 drivers) from time 0 until time t= 103, summing

up to a total number of (roughly) λ×N × t= 105 arriving passengers during that period. The left

panel of Figure 1 shows a histogram of the revenue rates of all the 100 participating drivers, from

which it can be seen that the distribution is concentrated around its mean which is approximately

.72. This strongly suggests that over time, the revenue rates of all drivers converge to the same

value, which is expected due to symmetry between drivers.

In this particular setup the observed mean revenue rate (=.72) is between κL(=.6) and κH (=.8).

This means that if all the 100 type-L drivers were to participate, they should expect a revenue rate

higher then their opportunity cost. It is intuitive that if some type-H drivers were to participate

as well (so as to make the total number of participating drivers larger than 100), then the revenue

rate per driver would decrease, which is already below κH , suggesting that in equilibrium, θ= θL =

ΘL = 1, and θH = 0, i.e., 80% of the potential market participate under MinRev.
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Figure 1 Revenue rate histogram in equilibrium for each policy. Dashed vertical lines correspond to κL = 0.6

(green) and κH = 0.8 (purple). In the left panel, the policy is MinRev and the number of drivers

participating in equilibrium is 100 (corresponding to θ= 1), with average per-driver revenue rate of .72.

In the right panel, the policy is MinWeightRev and the number of drivers participating in equilibrium

is 125 (corresponding to θ= 1.25), with type-L (green) earning .64 and type-H (purple) earning .81 on

average.

Next, we simulate the system under MinWeightRev with total participation intensity θ = 1.25,

namely, all 125 potential drivers participate, with 100 type-L drivers and 25 type-H (keeping

all other parameters the same). As before, we simulate the system from time 0 to t = 103, and

plot the histogram of revenue rates for each of the two types in the right panel of Figure 1.

Remarkably, for both types, the average revenue rate is above their opportunity costs, with an

average revenue rate of approximately .64>κL = .6 for type L and .81>κH = .8 for type H. Thus,

under MinWeightRev, all the 125 potential drivers participate in equilibrium, leading to a 25%

increase in drivers participation compared to MinRev.

For each arriving passenger, we count the number of candidates (i.e., drivers available in the

passenger’s pickup range at the time of their arrival), thus, generating roughly 105 samples. Figure

2 shows the corresponding histogram of these samples (blue bars), in each of the two experiments:

In the left panel, the policy is MinRev with its equilibrium participation intensity θ= 1, and in the

right panel the policy is MinWeightRev with its equilibrium participation intensity θ= 1.25. In both
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Figure 2 No. of candidates histogram in equilibrium for each policy. The fraction of lost rides (namely, rides with

0 candidates) is larger under equilibrium with MinRev (left panel) than with MinWeightRev. The red

dashed curve is the probability distribution function of Poisson and its parameter is calculated based

on the field approximation. on average.

panels of Figure 2, the red dashed line depicts the probability function of a Poisson distribution,

whose mean is calculated using our analytic (mean field) model discussed in the following section.

The strong similarity between the empirical histogram and the approximated Poisson probability

function conforms to the intuition that the scaled locations of available drivers over the city area

form a homogeneous spatial Poisson process, whose parameter is well-approximated using our mean

field model’s prediction.

Recall that the dynamics are such that a ride with 0 candidates is lost. By comparing the

two histograms we observe that the proportion of lost rides in equilibrium under MinRev (left

panel) is .26, whereas under MinWeightRev is .14. For this example we conclude that the increased

equilibrium participation intensity under MinWeightRev significantly cuts down the demand loss

by 46% compared to MinRev, resulting in 12% increase in the matching rate (from .74 × λ to

.86×λ). In the paper, we show, based on our mean field analysis, that a factor 2 is an upper bound

for the improvement in terms of the participation intensities and the matching rate.



:
12 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

3. Formulation, main result and relation to literature

In this section we introduce the baseline mean-field model that lays the groundwork for the subse-

quent comparison of the two policies. We present the relevant objects and the mean field dynamics

that drive the progression of the system over time, and spell out the equilibrium conditions. We then

state the papers’ main result (Proposition 1) in terms of the mathematical objects and quantities

defined.

To set up the model we introduce the primitives which are consistent with the notation and

terminology introduced in Section 2. As explained, we assume a ring-shaped city represented by

the real interval [0,1), and two types of drivers, L and H, which differ by their opportunity cost

rates. We denote by Θi the intensity of potential drivers of type i∈ {L,H}, and let κi denote their

opportunity cost rate, assuming w.l.o.g. that κL < κH . For convenience, we denote Θ = ΘL + ΘH .

Considering a type i ∈ {L,H}, we often use the term “i-drivers” to refer to drivers of that type,

and we shall typically denote by j the opposite (i.e., complement) type, j ∈ {L,H} \ {i}.

The local intensity of passengers’ arrivals is given by λ, which is equal across all locations in

the city. In the mean field model, it is convenient to think about drivers and passengers as fluid

particles. We let m denote the mean total duration of a ride (from the moment of the passenger’s

arrival until their drop off) and assume passengers’ requested drop-off locations are uniformly

distributed across the city. More precisely, suppose at a time epoch the amount of passengers riding

in the system is given by y, then the instantaneous rate of passengers being dropped off at location

x ∈ [0,1) is (y/m) · dx. The instantaneous total rate of revenue accumulation (of all busy drivers

together) in that case is given by y · r, where r is a positive constant. To avoid trivialities, we

assume κH < r (which also implies κL < L). This means that drivers are not expecting to make

more revenue than they would have made if they were carrying passengers all the time without

idling. Lastly, the parameter δ will be referred to as the pickup range.

Throughout the paper we will be interested in the (endogenous) quantity θi ∈ [0,Θi] for each type

i∈ {L,H} which represents the effective participation intensity of type-i drivers, namely the actual
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intensity of type-i drivers assuming a proportion θi
Θi

of them decide to participate. Thus, drivers’

decision profile is characterized by a pair (θL, θH) ∈ [0,ΘL]× [0,ΘH ]. For a given pair {θi}i∈{L,H}

we shall typically denote θ= θL+θH and assume that θ > 0. Our state space of choice is Q2, where

Q is defined as the set of all differentiable, (weakly) increasing, positive real functions over the

domain [0,1) mapping 0 to itself.

3.1. Mean field dynamics and equilibrium

We now describe the evolution of our mean field dynamical system through time as a set of

differential equations, assuming that the participation intensities θL and θH (as well as θ) are

known. To avoid using cumbersome notation, in some places we suppress the dependence on the

participation intensities {θi}i∈{L,H} and on the matching policy, yet all of the objects to be defined

here should be understood as functions thereof.

At time t ∈ [0,∞), and for each type i ∈ {L,H}, let the function Qi(·; t) ∈ Q represent the

proportion of type-i drivers (out of θi), who by time t were both available and located in the sub-

interval [0, x)⊆ [0,1). Thus, Qi(x; t) is a cumulative quantity, and for x= 1, Qi(1; t) expresses the

fraction of available type-i drivers in the entire city, which in general is less than unity. Naturally,

we assume Qi(0; t) = 0 for all t∈ [0,∞) and i∈ {L,H}. The initial state Qi(·; 0)∈Q for each type

i∈ {L,H} is assumed given. We use Q′i(x; t) to denote the derivative of Qi(x; t) with respect to x.

Consistent with our interpretation of Qi(x; t), the term θiQ
′
i(x; t) is understood as the density of

available type-i drivers in the infinitesimal surrounding of location x.

Define

Q(x; t) =
θL
θ
QL(x; t) +

θH
θ
QH(x; t), (1)

Then for each t, Q(·; t) ∈Q, and it can be interpreted as the proportion of drivers, irrespective of

types, who by time t were both available and located in the sub-interval [0, x). Further define

Ri(t) =
1

t

∫ t

u=0

r · (1−Qi(1;u))du, (2)
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Then Ri(t) is the average revenue rate accumulated by type-i drivers, i ∈ {L,H}, calculated over

a given (finite) time span, [0, t]. By contrast, when comparing the performance of the two policies

we will be mainly interested in the stationary behavior of the system operating under each of the

two different policies. Loosely speaking, the comparison of the policies hinges on the existence of a

stationary system state, with the understanding that the latter reflects the limiting behavior of the

system over a large time span (even though in the paper we do not prove such relation, but rather

treat the stationary state as the solution concept of interest). Assuming such stationary state exists

uniquely (this, in fact is proven in Lemma 2 for MinRev and in Lemma 5 for MinWeightRev) we

define the stationary revenue rate R∗i for each type i∈ {L,H} as the unique solution

d

dt
Ri(t) = 0. (3)

Not surprisingly, given the participation intensities in the MinRev policy, types do not play any

role in the matching decision, and it is anticipated that R∗L =R∗H . The stationary effective arrival

rate (or equivalently, the matching rate) to the system, λ∗, is defined as the unique solution of the

system

d

dt
λ(t) = 0, (4)

where

λ(t) =
1

t

∫ t

u=0

θ

m
(1−Q(1;u))du, (5)

noting that these relations, together with (1) and (2) imply

λ∗ =
θLR

∗
L + θHR

∗
H

rm
.

In the analysis, we use the same state representation to study both the MinRev and the Min-

WeightRev policies. However, in order to avoid confusion, when we discuss the MinWeightRev

policy we shall use the “hat” indication (̂·), e.g., the notation Qi will be replaced by Q̂i.
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Collective revenue and dimension reduction Noticeably, our state space of choice Q2

does not account for the revenues accrued by individual drivers over time. This follows the observa-

tion that when the system is in its stationary state, symmetric drivers should all be accumulating

revenue at the exact same rate (which is constant over time). Both policies are such that partici-

pating drivers of the same type are considered symmetric in the eyes of the platform, thus, for the

purpose of analyzing the system in steady state it is enough to keep track of the stationary average

revenue of type i, which is captured by the term R∗i , i∈ {L,H}.

With this in mind, setting about the mean field formulation we deviate from the discrete model

described in Section 2 by slightly modifying the policy as follows: Instead of keeping track of each

driver’s revenue over time, we will assume that the accumulated revenue at each time epoch t is

the same across all type-i drivers, and equals Ri(t). This is done by grouping drivers of the same

type and letting them work as a collective, in which the profit generated from each ride is shared

evenly across all drivers. This modification promotes a substantial reduction of the state space

dimension yet does not affect the stationary performance of the system.

In particular, the collective approach implies that when multiple drivers of different types become

candidates for a ride, determining the matched driver’s type is done by comparing only two values:

RL(t) vs. RH(t) under MinRev, and similarly, R̂L(t)/κL vs. R̂H(t)/κH under MinWeightRev. This

means that as long as one value is strictly larger than the other, the type with the smaller value

will obtain strict priority in the matching over the other type. When these values are equal we

resolve the tie using the concept of partial (or “probabilistic”) priority: We let Si(t) denote the

cumulative time until time epoch t that type i was granted a matching priority. If at time t,

no type qualifies for strict priority then each type i ∈ {L,H} is granted partial priority with

proportion Si(t)/(SL(t) +SH(t)). In the discrete setup, this corresponds to randomly selecting the

prioritized type, with probability for each type equal to the historic proportion of time that type

was prioritized. Note that assuming both types start with 0 revenue, this mechanism requires that

we set initial values for SL(0) and SH(0).
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MinRev policy The dynamics of the system operating under MinRev obey the following set

of equations, for all x∈ [0,1), t∈ [0,∞), and i∈ {L,H},

∂Qi(x; t)

∂t
=
x

m
(1−Qi(1; t))− λ

θi

∫ x

s=0

(
1− e−Q

′
i(s;t)θiδ

)
Di(s; t)ds, (6)

where

Di(s; t) = e−Q
′
j(s;t)θjδ +

dSi(t)

dt
·
(

1− e−Q
′
j(s;t)θjδ

)
and

dSi(t)

dt
= 1 (Ri(t)<Rj(t)) + 1 (Ri(t) =Rj(t)) ·

Si(t)

SL(t) +SH(t)
.

MinWeightRev policy The dynamics of the system operating under MinWightRev obey the

following set of equations, for all x∈ [0,1), t∈ [0,∞), and i, j ∈ {L,H} s.t. i 6= j,

∂Q̂i(x; t)

∂t
=
x

m
(1− Q̂i(1; t))− λ

θi

∫ x

s=0

(
1− e−Q̂

′
i(s;t)θiδ

)
D̂i(s; t)ds, (7)

where

D̂i(s; t) = e−Q̂
′
j(s;t)θjδ +

dŜi(t)

dt
·
(

1− e−Q̂
′
j(s;t)θjδ

)
and

dŜi(t)

dt
= 1

(
R̂i(t)

κi
<
R̂j(t)

κj

)
+ 1

(
R̂i(t)

κi
=
R̂j(t)

κj

)
· Ŝi(t)

ŜL(t) + ŜH(t)
.

Equation (6) is a special case of (7) for κi = κj. An intuitive explanation for the drift terms in

Equations (6) and (7) is given in Section 3.3. It should be mentioned that systems (6) and (7)

fall into the category of non-smooth dynamical systems (see Kunze (2000)), and therefore their

rigorous formulation is of the form of a differential inclusion problem. These technicalities are dealt

with in more detail in the appendix (see APX-A).

Remarkably, given {θi}i∈{L,H}, we note that by summing up the terms θi/θ · ∂Q̂i(x; t)/∂t in

Equation (7) (and similarly the terms θi/θ · ∂Qi(x; t)/∂t in Equation (6)) for i= L,H, using the

relation in (1) and the fact that (d/dt)(ŜL + ŜH) = 1, we produce a differential equation

∂Q(x; t)

∂t
=
x

m
(1−Q(1; t))− λ

θ

∫ x

s=0

(
1− e−Q

′(s;t)θδ
)
ds. (8)
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This suggests that when the participation intensities {θi}i∈{L,H} are given, the dynamics of the

process Q(x; t), and therefore the term λ∗ as defined in (4), do not depend on the matching policy.

It should be mentioned however that in equilibrium the terms {θi}i∈{L,H} are endogenously formed

as a consequence of drivers’ strategic considerations, on which the matching policy has significant

impact.

Equilibrium Conditions In equilibrium, no driver can increase their revenue by deviating

from their decision. To stress the dependence of the stationary (per-type) revenue rate (defined

in (3)) on the pair of participation intensities, we rewrite the former as a function of the latter,

namely, R∗i (θL, θH) for each i∈ {L,H}. Given the platforms’ matching policy, a pair of participation

intensities {θi}i∈{L,H} is said to induce Nash Equilibrium in the mean field system, if for each

i∈ {L,H} it satisfies (jointly): 
R∗i (θL, θH)<κi ⇒ θi = 0,

R∗i (θL, θH)>κi ⇒ θi = Θi.

(9)

The condition is identical for both policies (replacing R∗i by R̂∗i for MinWeightRev). We will also be

interested in the stationary effective arrival rate (defined in (4)) resulting from each pair {θi}i∈{L,H},

thus, we write it as λ∗(θ) = λ∗(θL + θH).

3.2. Main result

The key findings of this work are summarized in the following Proposition 1, whose proof follows

the analysis elaborated in the subsequent sections. This proposition argues that for each policy

there exists a unique equilibrium, and provides bounds on the improvement of the equilibrium

performance of the MinWeightRev policy compared to that of MinRev.

Proposition 1. For each given pair {θi}i∈{L,H}, the system defined in (6) with any initial

state {Qi(·; 0), Si(0)}i∈{L,H} ∈ {Q × R+}2, and similarly the one in (7) with any initial state

{Q̂i(·; 0), Ŝi(0)}i∈{L,H} ∈ {Q×R+}2, admit a unique solution, and therefore are well defined. Addi-

tionally, the stationary revenues {R∗i (θL, θH)}i∈{L,H} and {R̂∗i (θL, θH)}i∈{L,H}, and the stationary
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effective matching rate λ∗(θL+θH), all exist uniquely, thus, the equilibrium condition in (9) is well

defined.

Moreover, there exists a unique pair {θei }i∈{L,H} satisfying the equilibrium condition (9) for Min-

Rev, and similarly, a unique pair {θ̂ei }i∈{L,H} exists satisfying (9) for MinWeightRev. Denote the

improvement ratios in terms of the equilibrium participation intensities and effective arrival rate

by

Φ =
θ̂eL + θ̂eH
θeL + θeH

and Ψ =
λ∗(θ̂eL + θ̂eH)

λ∗(θeL + θeH)
, (10)

respectively. Then the equilibrium pairs corresponding with the two policies satisfy

1. θeH > 0 ⇒ θeL = ΘL and similarly, θ̂eH > 0 ⇒ θ̂eL = ΘL

2. θeL = θ̂eL and θeH ≤ θ̂eH ;

3. Φ∈ [1,2], with Φ = 2 if and only if R∗L(θeL, θ
e
H) = κH and R̂∗L(θ̂eL, θ̂

e
H)≥ κL;

4. Ψ∈ [1,2), with limΘ→0 Ψ = 2 if and only if limΘ→0 Φ = 2.

Discussion Item (1) in Proposition 1 tells us that both policies are such that in equilibrium,

H-drivers participate only when all L-drivers participate. In MinRev, this behavior is expected

due to drivers being treated in a symmetric manner, thereby receiving the same long-run revenue

rate, which in turn makes MinRev more attractive to drivers with lower opportunity cost. The

same conclusion is also true for MinWeightRev, however the explanation is less intuitive, because

symmetry among drivers breaks after normalizing the revenue rates. We discuss this in more details

in Section 5.2.

Given a pair of participation intensities, all other factors being equal, L-drivers are worse off

under MinWeightRev compared to MinRev. However, item (2) interestingly states that when chang-

ing the policy from MinRev to MinWeightRev, the reduction in revenue rate that L-drivers incur

is not too substantial so as to make less of them want to participate in equilibrium. In contrast,

H-drivers do benefit from such a change, hence, more of them tend to participate. Consistent with

item (3), it means that the participation intensity can only increase, i.e., Φ ≥ 1, which further

implies that Ψ ≥ 1 as argued in (4). Items (3) and (4) further provide bounds on how large the
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improvement is, in terms of the total participation intensity and in terms of the matching rate, and

assert that these bounds are tight. In other words, depending on the parameters, MinWeightRev

has the potential of processing twice as much throughput as MinRev, due to increased participation,

assuming drivers in both policies are in equilibrium.

3.3. Intuitive explanation of mean field equations

We shall now provide some intuitive justification for the formulation of the two mean field systems

defined in Equations (6) and (7). Due to their similarity, we shall focus in the explanation only

on Equation (6) (namely the MinRev policy), and the same explanation will follow also for (7) by

replacing the terms Ri(t) with R̂i(t)/κi.

For any type i ∈ {L,H}, consider the positive drift term in Equation (6), (1−Qi(1; t)) x
m

. The

term 1−Qi(1; t) relates to the type-i proportion of busy drivers at time t. Busy drivers complete

their rides at rate 1
m

, after which they become available at the ride’s drop-off location which is

uniformly distributed. Hence, the probability that such busy driver will become available in a

location in [0, x) is x. Therefore, the total rate at which busy type-i drivers become available in

[0, x) is (1−Qi(1; t)) x
m

.

To explain the negative term in (6), and specifically the intuition that leads to the terms(
1− e−Q′i(s;t)θiδ

)
and Di(s; t) in the integral, we consider the motivating discrete model described in

Section 2. The term λ ·
(

1− e−Q′i(s;t)θiδ
)
Di(s; t) captures the instantaneous matching rate of type-i

drivers at time t around location s. In the discrete model, the term 1− e−Q′i(s;t)θiδ is analogous

to the probability that a passenger arriving at time t and location s will face at least one type-i

candidate, and conditioned on that, Di(s; t) is the probability that this passenger will indeed be

matched with a type-i driver. The explanation relies on the construction below.

Recall that in the discrete model, for a market of finite size N , the total number of drivers in the

system is given by θN . Assume that at time t, the state of the system is given by {Qi(·; t)}i∈{L,H}.

Consider the set of of type-i available drivers, and suppose their locations are iid continuous random



:
20 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

variables with cdf Qi(·;t)
Qi(1;t)

. Provided a ride request arrives at time t with pickup location s, the

probability that any type-i driver is available within the pickup region s± δ
2N

is given by

1−
(

1−
Qi(s+ δ

2N
; t)−Qi(s− δ

2N
; t)

Qi(1; t)

)θiNQi(1;t)

∼= 1−

(
1−

Qi(s; t) +Q′i(s; t)
δ

2N
−
(
Qi(s; t)−Q′i(s; t) δ

2N

)
Qi(1; t)

)θiNQi(1;t)

= 1−
(

1− Q′i(s; t)δ

NQi(1; t)

)θiNQi(1;t)

−−−−→
N→∞

1− e−Q
′
i(s;t)θiδ

where the approximation follows the first order Taylor’s expansion for Qi as a function of x around

the point s. Hence, 1− e−Q′i(s;t)θiδ is the probability that at least one type-i driver is a candidate

for that ride. Furthermore, as an implication of Le Cam’s theorem we have that for large N , the

number of type-i candidates in the passenger’s patience region is asymptotically Poisson distributed

with parameter θiQ
′
i(s; t)δ, independent of the number of candidates of the other type, j, j 6= i.

Conditioned on the pickup region containing at least one available type-i driver, the probability the

ride will be matched with a type-i driver is captured through Di(s; t). This conditional probability

depends on type-i’s priority status at time t, which we defined as Si(t). We partition into three

complement cases:

� If Ri(t)<Rj(t), then dSi(t)/dt= 1 and type-i are granted priority over a type-j in the match-

ing. This means that conditioned on a type-i candidate being available for a ride, the ride will be

assigned to a type-i driver with probability 1.

� If Ri(t)>Rj(t), then dSi(t)/dt= 0. Thus, type-i drivers are only matched with a ride when

no type-j candidates are around, and the latter event happens with probability e−Q̂
′
j(s;t)θjδ.

� Lastly, when Ri(t) = Rj(t), the priority is determined based on a random selection, with

probability Si(t)/(SL(t) +SH(t)) being in favor of type i.

Because passengers arrive with rate λ to the system at uniformly distributed locations, the

instantaneous rate of rides matched to drivers of type i located in [0, x) is λ
∫ x
s=0

Di(s; t)ds. Equiv-

alently, it is also the rate at which type-i drivers in [0, x) change their state from available to busy.

Dividing by θi then gives us the rate proportion of those out of the total population of drivers.

In the next sections we execute the analysis for the two policies based on the mean field formu-

lation discussed here.
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4. Modeling approach and related literature

The literature studying ride sharing platforms from an OR-MS perspective is extensive. The lion’s

share in this growing line of research is focused (either purely or jointly) on pricing the service, relo-

cating drivers, and matching drivers and riders. Given the variety of existing models it is perhaps

questionable whether adopting a new modeling approach will yield any significant contribution.

The purpose of this section is to give a brief survey of existing relevant work, with emphasis on

queueing networks models, and to justify our approach by explaining how it differs from the one

taken in other papers. Extensive surveys of the OM literature with applications to the sharing

economy is given in Benjaafar and Hu (2020) and in Hu (2019), chapters ? and ?. A summarized

tutorial to that stream of literature is provided in Hu (2020).

In terms of modeling time-driven dynamics, probably the closest approach to ours is the one in

Braverman et al. (2019), where the authors consider the problem of optimal relocation of empty

cars. Their underlying model is a closed BCMP queueing network (which is similar to that Iglesias

et al. (2019)) and its mean field (fluid) limit can be interpreted as a closed network of finitely-many

nodes in which fluid particles (drivers) flow in circulation. In this model the distribution of available

drivers across locations is atomic (as opposed to the non-atomic one here), and a passenger can only

be picked up by a driver residing in their location. Consider for example the case where locations

in the network are symmetric. Then, depending on the arrival rate, either all drivers are constantly

busy, or all the demand is filled. This conclusion, which is not limited to the symmetric setup, is

similar in essence to the one drawn by observing the naive model described in the introduction

(see Section 1). The naive model is in fact the special, single-node case of the Braverman et al.

(2019) model. Thus, albeit useful for studying empty car routing policies, this modeling approach

is not appropriate for understanding the friction between pickup range and utilization.

Contrary to Braverman et al. (2019), Ozkan and Ward (2017) adapt a different approach, mod-

eling a ride sharing system as an open queueing network. Rather than circulating the network,

drivers arrive sequentially at different locations (represented by the different queues), and leave the
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system once matched or due to abandonment, whichever comes first. It is assumed that drivers’

arrivals to each location form an independent stochastic process that does not depend on the system

state. Service times correspond to passengers’ arrivals, and pickup range is taken into account by

allowing each passenger to be matched with a driver residing in one of several different sufficiently-

close locations. The authors show how the fluid counterpart of their model can be used to devise

and study the performance of sophisticated matching policies, some of which obtain asymptotic

optimality (in terms of matchings produced). Unfortunately, since the model ignores ride duration

and views drivers as short-lived entities, it does not offer a natural evaluation of variables such

as drivers’ long-run busy fraction and revenue rate, which are detrimental to our discussion of

equilibrium. A similar modeling approach is followed also in Özkan (2020) to study joint pricing

and matching decisions.

A variant of Braverman et al. (2019) is studied in Afeche et al. (2018), further accounting for

drivers’ strategic consideration: drivers can make participation as well as relocating decisions. The

assumptions made in Afeche et al. (2018) regarding equilibrium participation of drivers is similar

to those in here. Other similar-in-spirit models that consider strategic drivers in a queueing (or

queueing-like) system include: Banerjee et al. (2015), in which the network is open (drivers may exit

and enter) with a single location, and passengers arrivals depend on the price which is dynamically

set by the platform; Taylor (2018) who studies the impact of passenger delay sensitivity and driver

independence on prices and wages in a single queue setup; Bai et al. (2019), that build on Taylor

(2018) to gain managerial insights on the interplay between prices, driver capacity and passenger

waiting cost; and Bimpikis et al. (2019), who consider spatial pricing and drivers compensation as

tools for balancing supply and demand over the (fluid) network, in a discrete time setting with

price-sensitive passengers. All of the papers listed above do not model pickup range. Even though

the underlying model in this paper is not a classical queueing model per se, it is closely related

and inspired by this theory, and the strategic considerations of drivers raises strong connections to

the literature about strategic queueing. An exhaustive survey of the theory and literature about

queuing models with strategic agents can be found in Hassin and Haviv (2003) and Hassin (2016).
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Relevant papers that depart from the queueing literature with applications to ride sharing plat-

forms include Besbes et al. (2020) who study a two-stage Stackelberg game of a platform setting

location-dependent ride prices, and drivers who react to these prices by making repositioning deci-

sions. The authors employ a general spatial network structure that allows for both atomic as well

as non atomic distributions of drivers across the city locations. Similar to Besbes et al. (2020),

Cachon et al. (2017) also consider a Stackelberg game setting to compare different pricing schemes

and employment contracts with respect to the firm’s profit, drivers wage and passengers welfare.

In a newsvendor setting, Gurvich et al. (2019) consider the problem faced by a firm, such as a ride

sharing company, who manage its workforce, and self-scheduling strategic agents choose whether

or not to work for that firm.

As briefly mentioned in Section 3, the discrete model introduced in Section 2 is intractable.

Indeed, when only one driver participates, the stochastic process describing the availability status of

the driver is that of an M/G/1/1 queue. The spatial component describing the driver’s location, and

the driver’s revenue accumulation over time play no significant role in the analysis. Increasing the

number of drivers beyond one immediately complicates the analysis to the point of intractability,

mainly due to the dependencies that arise between drivers’ availability, spatial location, revenue

accumulation and effective matching processes. We therefore perform the analysis in this paper on

a mean field model that well-approximates the discrete one in a large market regime.

Mean field models for queueing networks in relation with their stochastic counterparts have been

studied for instance by Tsitsiklis and Xu (2012), and by Xu and Hajek (2013) who further account

for customers’ strategic decision making. One challenging technical aspect of the model considered

here is that the mean field dynamics are formulated as a non-smooth dynamical system (i.e., having

a discontinuous drift), a challenge that is also dealt with in Tsitsiklis and Xu (2012). The rigorous

way to treat dynamical systems of that kind is by reformulating them as a differential inclusion

problem. Gast and Gaujal (2012) provide a concise introduction to differential inclusions and lay

out a unified frame work for studying mean field limits of finite-dimensional queueing models

with discontinuous drifts. For technical information about differential inclusion and non-smooth

dynamical systems we refer the interested reader to Kunze (2000).
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5. Analysis of mean field model

In this section we prove and discuss the first part of Proposition 1, that relates to the validity of our

definition of the mean field system, and to the existence and uniqueness of equilibrium participation

intensities, for each of the two policies. The analysis in this Section is carried separately for each

policy, starting with MinRev.

5.1. The MinRev policy

The first milestone in the analysis of the mean field model is proving that the differential equations

defined in (6) and (7) for a given pair of participation intensities {θi}i∈{L,H} indeed define a unique

mapping of time to system state. We state this in the following result:

Lemma 1. For every pair of participation intensities {θi}i∈{L,H}, and every pair of initial states

{Q0
i , S

0
i }i∈{L,H} ∈ {Q ×R+}2, there exists a unique pair of mappings {Qi}i∈{L,H}, Qi : R+ →Q,

with a corresponding pair of real functions {Si}i∈{L,H}, Si : R+→R+, that solve the initial value

problem defined by Equation (6) for each i∈ {L,H} with initial value Qi(·; 0) =Q0
i , and Si(0) = S0

i .

The proof is in Appendix APX-A.

Lemma 1 implies that our dynamical system is well defined given any initial state {Q0
i , S

0
i }i∈{L,H}.

As a corollary we also have that for an initial state Q0 = (θL/θ)Q
0
L + (θH/θ)Q

0
H , there exists a

unique solution Q(x; t) for the problem defined in Equation (8). The next lemma states that this

system of functions Q,QL and QH admits a unique steady state, which can be easily characterized.

To simplify notation, when referring to steady state we omit the t argument in Qi(x; t) and Q′i(x; t)

by writing Qi(x) and Q′i(x).

Lemma 2. The unique solution {Q∗i }i∈{L,H} ∈Q2 to the mean field steady-state equations

x · (1−Qi(1))
θi
m
−λ

∫ x

s=0

Di(s)ds= 0, ∀x∈ [0,1), i∈ {L,H}, (11)

is given by Q∗L(x) = Q∗H(x) = qx, where q ∈ [0,1] is the unique solution to the (single variable)

transcendental equation

(1− q) θ
m
−λ ·

(
1− e−qθδ

)
= 0. (12)
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The corresponding stationary prioritization functions are given by S∗L(t) = sL and Ŝ∗H(t) = sH ,

where for each i, j ∈ {L,H}, i 6= j,

si =
θi

θ(1− e−qθiδ)
− θje

−qθjδ

θ(1− e−qθjδ)
(13)

The proof is in Appendix APX-B.

From Lemma 2 it can be seen that in steady state, the functions Q∗
′
L (x) =Q∗

′
H(x) = q are constant,

thus, the density of available drivers at each location in the city is the same and equals θq. It also

follows that by defining Q∗ = (θL/θ)Q
∗
L + (θH/θ)Q

∗
H as in Equation (8) we obtain Q∗(x) = qx(=

Q∗i (x)).

We notice that the value of q depends on the joining rates {θi}i∈{L,H} only through their sum, θ.

This is because MinRev does not differentiate between drivers of different types, thus the density

of available drivers across the city depends on the total number of drivers but not on how they

split into different types.

The constant q can be interpreted as the proportion of available drivers in the city in steady state,

or, alternatively, the stationary proportion of time each driver spends being available. Interestingly,

Equation (12) is related to the system’s steady-state performance, in that it reflects a variant of

Little’s Law: If the long run proportion of available drivers is q, then the time-averaged number

of passengers being served is (1− q)θ, each of which remains in the system for m units of time on

average. By Little’s Law, (1− q) θ
m

must be equal to passengers’ effective arrival rate (namely the

matching rate), which is given by the potential arrival rate λ, multiplied by the long-run proportion

of accepted rides, 1− eqθδ, which is the same for all pickup locations.

Recall our definition of the long-run revenue R∗i , as defined in (3). While busy, a driver generates

revenue at rate r > 0. Consistent with our interpretation of q as the long-run availability fraction,

we have that R∗L =R∗H = (1− q)r.

Equilibrium under MinRev For the purpose of performing equilibrium analysis, with a

slight abuse of notation we shall refer to the steady-state proportion of available drivers q as a
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function of the total participation intensity θ, and denote it by q(θ). We also reintroduce the long-

run revenue rate, R∗(θ) = (1−q(θ))r, which as previously explained is equal for both drivers’ types

under MinRev, namely R∗i (θL, θH) =R∗(θ) for i∈ {L,H}, assuming θ= θL + θH .

The next property of q(θ) plays an important roll in the discussion about uniqueness of the

equilibrium solution:

Lemma 3. The steady-state proportion of available drivers, q(θ) is increasing in θ.

The proof is in Appendix APX-C.

We note, since the long-run revenue rate R∗ is decreasing with q(θ), by Lemma 3 it is also

decreasing with θ.

Rearranging Equation (12) and taking the limit as θ→ 0 we get

1− q(0) = λm · lim
θ→0

1− eq(0)θδ

θ
= λm · q(0)δ

from which we derive a lower bound for the availability fraction, q ≡ q(0) = 1/(1 + λδm), and

therefore also an upper bound for the revenue rate per driver R = (1− q)r = λδmr/(1 + λδm).

Being the highest revenue rate possible, R can be interpreted as the revenue rate of a driver in

the hypothetical case where no other driver joins the system. Intuitively, in the discrete model

with finite N , such driver, when available, will be matched with the first ride that arrives within

their pickup surrounding, which is of size δ/N . The average time until the arrival of such ride is

λN · δ/N = (λδ)−1. Hence, the expected time this driver spends in a cycle between subsequent jobs

consists of the mean availability duration, (λδ)−1, and the total ride’s duration m. Their revenue

rate is therefore given by r ·m/((λδ)−1 +m) =R.

To avoid trivialities when dealing with equilibrium joining rates, we make the assumption that

κL <κH <R, which ensures that a non-zero proportion of drivers choose to join in equilibrium.

Recall that κL < κH , thus, substituting R∗ for both types in the equilibrium condition (9), it

is clear under MinRev, any type-H driver decides to participate, then all type-L drivers should

participate too. It is therefore natural to characterize drivers’ equilibrium participation intensity
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using a single value, θe ∈ (0,ΘL+ΘH ], such that if θe ≤ΘL, only type-L drivers join, and if θe >ΘL,

all type-L join in addition to θe−ΘL type-H drivers.

Proposition 2. The equilibrium participation intensity under MinRev, denoted by θe, is unique

and satisfies exactly one of the following:

1. θe <ΘL and R∗(θe) = κL

2. θe = ΘL and κL ≤R∗(θe)≤ κH

3. θe ∈ (ΘL,ΘL + ΘH ] and R∗(θe)≥ κH

The proof is in Appendix APX-D.

Proposition 2 stems from the monotone behavior of the revenue rate R∗ with respect to θ. The

revenue rate decreasing in θ implies that the game dynamics are of the Avoid-the-Crowed (ATC)

kind – the more drivers participating the less beneficial it becomes to do so. This observation

may seem obvious, due to the fact that when more drivers participate, each driver’s share of the

total revenue decreases. While being true, this argument alone does not adequately rationalize the

ATC dynamics, because the total revenue generated in the system, which is proportional to the

matching rate 1− eqθδ, is increasing in θ. Nevertheless, it is implied by Lemma 3 that the negative

impact of θ on the per-driver revenue rate is dominating. In the discrete setting with finite N ,

this is intuitive: As long as two drivers are located δ/N units away from each other, they do not

interact and therefore are indifferent to the existence of one another. But once they get closer than

δ/N units from each other, it is possible that the two drivers will have to compete for the same

ride, in which case it is of interest for each one of them that the other would not participate.

The three different cases in Proposition 2 correspond with each of the three scenarios respectively:

(1) The system under equilibrium can generate only enough revenue so that some type-L drivers

decide to join, these drivers are indifferent between participating or not, and all type-H drivers are

better off not working for the platform; (2) There is enough revenue in equilibrium to attract all

type-L drivers, but not enough to attract type-H drivers; (3) All type-L drivers (strictly) prefer

to participate, and some (possibly all) type-H drivers participate too.
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5.2. The MinWeightRev policy

In this section we study the the MinWeightRev policy, to derive results paralleling Lemmas 1–2

and Proposition 2 as obtained for MinRev. Once again we assume at first we are given a fixed pair

of participation intensities, and later on we solve for the endogenous participation intensities that

induce equilibrium.

Lemma 4. For every pair of participation intensities {θi}i∈{L,H}, and every pair of initial states

(Q̂0
L, Q̂

0
H)∈Q2, there exists a unique pair of functions Q̂L(x; t) and Q̂H(x; t) solving the initial value

problem defined by Equation (7) with initial value Qi(x; 0) =Q0
i (x) for each i∈ {L,H}.

The proof is in Appendix APX-E.

Similarly to MinRev, given a pair of initial states (Q̂0
L, Q̂

0
H) we define Q̂0 = (θL/θ)Q̂

0
L+(θH/θ)Q̂

0
H ,

and Q̂(x; t) as the unique solution for the problem defined in Equation (8). Next we characterize

the invariant state (omitting the argument t as done in Lemma 2).

Lemma 5. The unique stationary solution (Q̂∗L, Q̂
∗
H)∈Q2 to the mean field steady-state equations

x · (1− Q̂i(1))
θi
m
−λ

∫ x

s=0

D̂i(s)ds= 0, ∀x∈ [0,1), i∈ {L,H}, (14)

is given by Q̂∗L(x) = q̂Lx and Q̂∗H(x) = q̂Hx, where (q̂L, q̂H , q̂)∈ [0,1]3 uniquely solve the system

θLq̂L + θH q̂H = θq̂,

1− q̂= λm · (1− e−q̂θδ)/θ,

1− q̂H = min
{

(1− q̂L)κH/κL, λm · (1− e−q̂HθHδ)/θH
}
.

(15)

The corresponding stationary prioritization functions are given by Ŝ∗L(t) = ŝL and Ŝ∗H(t) = ŝH ,

where (ŝL, ŝH)∈ [0,1]2 satisfy ŝL = 1− ŝH , and

ŝH =


α

1−e−q̂HθHδ
− (1−α)e−q̂LθLδ

1−e−q̂LθLδ
if 1−q̂H

κH
= 1−q̂L

κL
,

1 otherwise,

(16)

with

α=
θHκH

θLκL + θHκH
.
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The proof is in Appendix APX-F.

Observing the first equation in (15), it follows that by defining Q̂∗ = (θL/θ)Q̂
∗
L + (θH/θ)Q̂

∗
H we

have that Q̂∗(x) = q̂x. We also note that the second equation in (15) is equivalent to Equation

(1), thus the value of q̂ (and hence Q̂∗) depends on the participation intensities only through their

sum, θ. This is because MinWeightRev is a “work conserving” policy, in the sense that it always

matches a passenger if a driver is available within the pickup region. Thus the proportion of busy

drivers (irrespective of types) depends on the total participation intensity θ but not on how it is

partitioned.

The third equation in (15) is slightly more intricate. Each term in the choice set of the mini-

mization in the right hand side corresponds to a different implication:

1. If 1− q̂H = (1− q̂L)κH/κL, then

R̂∗H
κH

=
1− q̂H
κH

r=
1− q̂L
κL

r=
R̂∗L
κL

.

This means that in stationarity, the weighted revenues of both types are equal, thus the busy

fractions of the two types are equally proportional to their opportunity costs.

2. If 1− q̂H = λm · (1− e−q̂HθHδ)/θH , then by rearranging we have

(1− q̂H)
θH
m
−λ ·

(
1− e−q̂HθHδ

)
= 0,

hence the solution q̂H for the given participation intensities (θL, θH) is similar to the solution q

defined by Equation (12) under MinRev given the participation intensities (0, θH). This can be

interpreted as a situation in which H-drivers are granted priority over L-drivers in the matching.

In other words, there exists some time epoch t̃ such that for all t > t̃, R̂H(t)/κH < R̂L(t)/κL, which,

by Equation 7 implies the D̂H(s; t) = 1− e−Q̂′H (s;t)θHδ . It further implies that R̂∗H/κH < R̂
∗
L/κL.

MinWeightRev is designed so as to reduce the imbalances between drivers’ actual revenues and

their income goals, by matching a ride with the candidate whose accumulated revenue is the furthest

away from their goal. These imbalances arise due to the heterogeneity in opportunity cost rates

(and in the discrete setup, also due to the stochastic nature of the process). It therefore seems



:
30 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

natural to anticipate that as time approaches infinity, the weighted revenue rates of both types

of drivers converge to a common limit. Somewhat counter-intuitively, Case 2 in the explanation

above implies that this conjecture is false in general.

To shed light on this result, imagine a hypothetical extreme situation where κL is negligibly small

compared to κH . Suppose the participation intensities are fixed and consider one singled-out type-L

driver in the discrete system with market size N . Provided this driver is available, passengers arrive

within this driver’s pickup region at rate λδ. For any fixed joining rate θ, every such passenger has

a non-infinitesimal probability (invariant of κH) that the only available candidate is the tagged

type-L driver, in which case this driver is selected for the matching. This means that type-L drivers’

revenue is bounded from below by a non-zero value, irrespective of κL. Therefore, this driver

obtains a non-negligible rate of revenue, and because κL is small, this driver’s normalized revenue

is arbitrarily large, in particular, larger than that of a type-H driver. This inequality can prevail

even after factoring in equilibrium conditions: In equilibrium, when κL is sufficiently small, type-L

drivers choose to participate. Because the normalized revenue rate of type-H drivers is bounded

by R/κH , when κH is fixed, one can set κL small enough such that R̂∗L/κL >R/κH ≥ R̂∗H/κH .

The above intuition can be mathematically verified, observing that when the ratio κH/κL is

sufficiently large (that is, larger than a finite threshold), the third equation in (15) takes the form

1− q̂H = λm ·
(
1− e−q̂HθHδ

)
,

and the solution to system (15) in that case does not depend on the opportunity costs. Such

solution prescribes that in the stationary states, the platform should endow type-H drivers with

full priority in the matching over type L.

We stress that the discrepancy in normalized revenues between drivers of different types does

not require an extreme choice of parameters to occur. The characterization of the equilibrium

participation intensities in Proposition 3 below points out that this phenomenon directly impacts

the formation of equilibrium.
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Equilibrium under MinWeightRev As a corollary of Lemma 5, we have that (1− q̂H)/κH ≤

(1− q̂L)/κL, and therefore R̂∗H/κH ≤ R̂∗H/κL, meaning type-L drivers have stronger incentives to

participate than type H. As in Section 5.1, we again exploit this structure by describing the

participation intensity using a single value, θ ∈ (0,ΘL + ΘH ], such that type-H drivers participate

iff θ >ΘL. Using this characterization of the participation intensity we express the dependence of

q̂L, q̂H and q̂ on θ through writing q̂L(θ), q̂H(θ) and q̂(θ). Then, we have the following lemma:

Lemma 6. The steady-state, type-dependent proportions of available drivers, q̂L and q̂H are increas-

ing functions of θ.

The proof is in Appendix APX-G.

We further reintroduce the revenue rates as functions of θ, R̂∗L(θ) and R̂∗H(θ), which by Lemma

6 are decreasing in θ.

Proposition 3. The equilibrium participation intensity under MinWeightRev, denoted by θ̂e, is

unique and satisfies exactly one of the following:

1. θ̂e ≤ΘL with R̂∗L(θ̂e)≥ κL and R̂∗H(θ̂e)<κH

2. θ̂e ∈ (ΘL,ΘL + ΘH ] with R̂∗L(θ̂e)≥ κL and R̂∗H(θ̂e)≥ κH

The proof is in Appendix APX-H.

6. Policy comparison

Equipped with Propositions 2 and 3 derived in Section 5 we can compare the equilibrium perfor-

mance of the two policies. Recall the equilibrium participation intensities, θe, θ̂e ∈ (0,ΘL + ΘH ],

corresponding with the two policies, MinRev and MinWeightRev respectively. For consistency, we

denote

θeL = min{θe,ΘL} and θeH = {θe−ΘL}+,

and similarly,

θ̂eL = min{θ̂e,ΘL} and θ̂eH = {θ̂e−ΘL}+,
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Lemma 7. The equilibrium participation intensity for MinRev is never greater than that of Min-

WeightRev, namely, θe ≤ θ̂e, with strict inequality iff θe >ΘL.

The proof is in Appendix APX-I

Lemma 7 suggests that by moving from MinRev policy to MinWeightRev, the platform increases

the number of participating drivers. Following our characterization of the equilibrium participation

intensities, it also follows that the participation intensity per type increases as well, θei ≤ θ̂ei , i ∈

{L,H}.

Recall that for a fixed participation intensity θ, the matching rate is given by λ∗(θ) as defined

in (4). A corollary of Lemmas 2 and 5 is that for both policies in steady state, the latter can be

expressed as

λ∗(θ) = λ · (1− eq(θ)θδ)

where q(θ) is the (overall) availability proportion (replacing q(θ) by q̂(θ) for MinWeightRev). It

therefore follows from Lemma 3 that λ∗(θ) is increasing in θ. As a consequence, together with

Lemma 7 above we have that λ∗(θ̂e) ≥ λ∗(θe), i.e., in equilibrium MinWeightRev yields higher

matching rate than MinRev. We next prescribe bounds on this improvement, showing that both

the participation intensity and the matching rate can potentially increase by a multiplicative factor

of 2.

Recall from (10) the definitions of the improvement ratios, Φ and Ψ, for the participation intensity

and the matching rate, respectively which can now be written as

Φ =
θ̂eL + θ̂eH
θeL + θeH

=
θ̂e

θe
and Ψ =

λ∗(θ̂e)

λ∗(θe)
=

1− eq̂(θ̂e)θ̂eδ

1− eq(θe)θeδ

Clearly, by Lemma 7, both Φ and Ψ are greater or equal to one. With regard to the above ratios

we can state the following result:

Proposition 4. The participation intensity and the matching rate improvement ratios, Φ and Ψ,

satisfy:

1. Φ∈ [1,2], with Φ = 2 if and only if R∗L(θe) = κH and R̂∗L(θ̂e)≥ κL;
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2. Ψ∈ [1,2), with limΘ→0 Ψ = 2 if and only if limΘ→0 Φ = 2.

The proof is in Appendix APX-J

We can in fact construct a mechanism that specifically chooses the system primitives so as

to obtain the bound Φ = 2. To this aim we first arbitrarily set values to λ,m, δ and ΘL, and

choose ΘH such that ΘH ≥ΘL. To simplify the explanation assume that ΘH = ΘL = Θ/2. Using

Lemma 2 we compute R∗(Θ/2), i.e. the revenue rate assuming that all type-L drivers (and only

them) participate, and set κH = R∗(Θ/2). Assuming κL < κH , this ensures that in equilibrium

under MinRev, all type-L drivers participate. Type-H are “on the verge” of participating, however,

because R∗(θ) is decreasing in θ (by Lemma 3), they do not do so under MinRev. We then choose

an arbitrarily small value for κL and solve for the equilibrium revenue rates using Equation (15),

assuming that all drivers join. Specifically, we choose κL such that the solution to (15) does not

depend on the opportunity costs. Under this assumption, type-H drivers obtain matching priority

in steady state under MinWeightRev, and therefore are indifferent to the existence of type-L in

the system. The revenue rate that type-H drivers obtain when they all participate is exactly κH ,

namely R̂∗H(Θ) = R∗(Θ/2) = κH , making Θ/2 the equilibrium participation intensity for type-H

under MinWeightRev. Assuming that κL is chosen such that the solution to (15) is independent

of κH/κL, we ensure that R̂∗L(Θ) ≥ κL, facilitating the participation of type-L drivers in this

equilibrium. Thus, the equilibrium participation intensity grows from Θ/2 under MinRev to Θ

under MinWeightRev.

Proposition 4 also asserts that using this mechanism, if λ is initially set small enough, the doubled

participation intensity will result in nearly 100% improvement in terms of matching rate. This is

due to the fact that around a point x= 0, the value of 1− e−x can be approximated by x itself,

thus (1− e−2x)/(1− e−x)≈ 2. Letting Θ diminish and keeping Φ = 2 using the mechanism above

will result in Ψ approaching the value 2. Similar limiting behavior is exhibited by taking δ→ 0.

Lemmas 1–7 together with Propositions 2–4 constitute a full proof of our main result Proposition

1. In the subsequent section we support these analytic findings numerically and compare them by

simulation to the performance of the discrete model described in Section 2.
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7. Numerical results and simulation

In this section we conduct an extensive numerical study to support the analytic results of Section

5. Unless explicitly said differently, we will assume throughout this section that the following

model parameters satisfy λ = m = δ = r = 1. We will assume, as in Section 5.2, that given the

total participation intensity θ ∈ (0,ΘL + ΘH ], the type-dependent participation intensities satisfy

θL = max{θ,ΘL} and θH = [θ−ΘL]+.

It is worth noticing that for this specific parameters set of choice, the revenue rate for a driver

(under any policy and for any participation profile) is bounded by R = r ·m/((λδ)−1 +m) = .5.

Furthermore, because r = m = 1, the matching rate equals the total revenue rate in the system.

That is, for every θ, λ∗(θ) = θ ·R∗(θ) under MinRev, and under MinWeightRev, λ∗(θ) = θL ·R̂∗L(θ)+

θH · R̂∗H(θ).

7.1. Validation and justification of theoretic results

The purpose of the first example is to visually illustrate the theoretic results of Propositions 2 and

3, namely the monotonicity of the revenue rates and uniqueness of equilibrium. We consider the

pair of opportunity costs κL = .35 and κH = .45, with potential intensities ΘL = ΘH = 1. Figure 3

depicts the change in revenue rates R∗ (black), R̂∗L (green) and R̂∗H (purple) as functions of θ. The

dashed horizontal lines correspond with the values of κL (green) and κH (purple), and the dashed

vertical line correspond with the values of ΘL (green) and ΘH (purple). Noticeably, when θ≤ΘL,

only type-L drivers participate and the two policies are equivalent, thus we will be mainly focusing

on θ > ΘL. As implied by Lemmas 3 and 6, all three functions, R∗, R̂∗L and R̂∗H , are decreasing

with θ.

At θ= ΘL = 1, the revenue for L-drivers (under both policies) takes the value R∗(ΘL) = .433, thus

satisfying κL <R∗(ΘL)< κH , meaning that θe = ΘL = 1 is the equilibrium participation intensity

under MinRev. Interestingly, for MinWeightRev, it can be seen that

lim
θ→Θ−

L

R̂∗H(θ) = 5 =R.
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Figure 3 Revenue rates as a functions of participation intensity, θ. All three functions, R∗(θ) (black), R̂∗L(θ)

(green) and R̂∗H(θ) (purple) are decreasing. Equilibrium under MinRev is induced by θe = ΘL = 1, and

under MinWeightRev (vertical dotted black line) by θ̂e = 1.619

This is because for the specific choice of parameters here, when θH(= [θ−ΘL]+) is small, H-drivers

obtain strict priority in the matching, thus when their participation intensity is arbitrarily small,

they approach the maximal revenue rate possible. The non-smoothness of R̂∗H(θ) and R̂∗L(θ) around

the point θ= 1.479 is the point where MinWeightRev transitions from grantingH-drivers with strict

priority (ŝH = 1) to partial priority (ŝH < 1), in which case we have that the normalized revenue rate

is equal for both types. Marked by a black dotted vertical line, the point θ = 1.619 is where both

types break even, namely R̂∗L(θ)/κL = R̂∗H(θ)/κH = 1, indicating that this is equilibrium: θ̂e = 1.619.

In this example we conclude that Φ = 1.619/1 = 1.619, and further elementary calculations yield

Ψ = .629/.433 = 1.453.

For further validation of our numeric results, and for the purpose of justifying our mean field

formulation, we conduct a simulation study concerning the above setup. Elaborate explanation of

the simulation process is given in Section 2. We plot empirical observations of the system state

with its mean field counterparts at different points in time. As an input to our simulation process

we need to set the market size, N , and we experiment with different values of N .
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Figure 4 Simulated state (solid black) and mean field state (dashed gray) for various values of N and t. The

simulated state approaches the mean field state for every t as N increases, and the latter approaches

its stationary state as t increases.

In the simulation, we assume that all drivers are initially available with 0 revenue and their

locations are drawn independently from a distribution whose density, f , for x∈ [.4, .6] is given by:

f(x) =


100 · (x− .4) if x∈ [0.4, .5),

10− 100 · (x− .5), if x∈ [.5, .6],

and is zero for any x /∈ [.4, .6]. Thus f forms an isosceles triangle with height 10 (and base length

.2) centered at x= .5. For both types, the initial state for the mean field system is the cdf of that

distribution.

First we consider the MinRev policy at its equilibrium point, θe = 1. Note that in this case only

L-drivers participate, thus QL(x; t) and Q(x; t) coincide (for all t). Figure 4 depicts the simulated
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Figure 5 Simulated state (solid black) and mean field state (dashed gray) for various values of N and t. The

simulated state approaches the mean field state for every t as N increases, and the latter approaches

its stationary state as t increases.

state (solid black line) and its mean field counterpart Q(x; t) (dashed gray line), across all x∈ [0,1),

for all combinations of N ∈ {27,29,211} and t ∈ {22,23,24}. It can be seen that as the market size

N scales up, the two curves become arbitrarily close to each other, for all t. Moreover, for large

t, the mean field state approaches a linear function with slope .567, which agrees with the unique

steady state characterized by Lemma 2.



:
38 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Next we apply the same methodology to study the system under MinWeightRev, with partici-

pation intensity equal to its corresponding equilibrium θ̂e = 1.619 (implying θ̂eL = 1 and θ̂eH = .619).

We simulate the system for all combinations of N ∈ {27,29,211} and t ∈ {22,23,24,25} (with the

implementation of collective revenue accumulation as discussed in Section 3). The solid curves in

Figure 5 depict the simulated state for each type, green for L-drivers and purple for H-drivers.

The dashed curves correspond to the parallel state of the mean field system, Q̂L(x; t) (green) and

Q̂H(x; t) (purple). We conclude that the qualitative results regarding the accuracy of the mean

field approximation and the convergence to the stationary state apply to MinWeightRev as well.

7.2. Extreme improvement example

This example is tailored to demonstrate the extreme factor-2 improvement in participation that

can be obtained when moving from MinRev to MinWeightRev. We consider the pair of opportunity

costs κL = .27 and κH = .433, with potential intensities ΘL = ΘH = 1. Intentionally, we chose κH

such that it equals the revenue rate when only L-drivers participate (see Example 7.1), that is, κH =

R∗(ΘL). This is in correspondence with the conditions of the first item of Proposition 4. Similar to

the description of Figure 3, the left panel of Figure 6 shows the revenue rates as functions of the

participation intensity. It can be seen that under MinRev (black curve) at θ= ΘL = 1, the revenue

is above κL, yet H-drivers break even, i.e., R∗(θ) = κH >κL. This means that if a non-zero intensity

of H-drivers participate, their revenue will be strictly less than their opportunity cost, hence this is

equilibrium: θe = ΘL = 1. Under MinWeightRev, H-drivers break even at θ = ΘL + ΘH = 2 (while

L-drivers revenue is still above κL), meaning that θ̂e = 2. It therefore follow that Φ = 2/1 = 2, and

by calculating the equilibrium matching rates we get Ψ = .703/.433 = 1.624.

By considering smaller potential intensities we can construct a similar example so as to make Ψ

arbitrarily close to 2. For example, by changing the potential intensities to ΘL = ΘH = .1 and the

opportunity costs to κL = .48 and κH = .494, we obtain θe = ΘL = .1 and θ̂e = ΘL + ΘH = .2, thus

Φ = .2/.1 = 2, and it can be shown that Ψ = .975/.494 = 1.974. This is illustrated in the right panel

of Figure 6.
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Figure 6 Revenue rates as a functions of participation intensity, θ. Left panel considers ΘL = ΘH = 1 and κL =

.27 < κH = .433, and right panel considers ΘL = ΘH = .1 and κL = .48 < κH = .494. In both panels,

equilibrium under MinRev is induced by θe = ΘL, and under MinWeightRev by θ̂e = ΘL + ΘH

7.3. Pickup range improvement

Propostion 4 as illustrated by the previous example suggests that the most significant improvement

in terms of the matching rate ratio Ψ is obtained when the potential intensity Θ is small, hence the

absolute values of the equilibrium matching rates are small too. When equilibrium under MinRev

is such that the matching rate is already high, switching to MinWeightRev will not make significant

impact on utilization. However, the increased participation intensity obtained by MinWeightRev

allows the platform to improve its pickup range without forgoing more potential demand. We

demonstrate this idea in the following example.

Suppose the potential market for drivers is characterized by ΘL = 2 and ΘH = 1, with opportu-

nity costs κL = .37 and κH = .5. Given the matching policy, the platform has to set the minimal δ

so as to meet a matching rate goal of .99× λ, meaning 99% of potential passengers are matched

in equilibrium under the predetermined policy. Figure 7 depicts various values θ and their corre-

sponding δ such that the resulting matching rate is .99.

When the policy is MinRev, this goal is obtained by setting δ = 4.559, and the corresponding

equilibrium is given by θe = ΘL = 2 for which R∗(ΘL) = .495 ∈ (κL, κH). Left panel of Figure 8

depicts the revenue rate as a function of θ. Under MinWeightRev with δ = 3.05, the resulting

equilibrium θ̂e = 2.5 (see Figure 8 right panel, dotted black line), which also obtains a matching
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Figure 7 Pickup range required for .99 matching rate, as a function of participation intensities. To guarantee a

matching rate λ∗ = .99×λ, when θ= 2, the required pickup range is δ= 4.559, whereas for θ= 2.5, the

required pickup range is δ= 3.05 which is roughly 33% smaller.

Figure 8 Revenue rates as a functions of participation intensity, θ. In the left panel, the policy is MinRev, and

δ= 4.559. The corresponding equilibrium is θe = ΘL = 2. In the right panel, the policy is MinWeightRev,

δ= 3.05 and the corresponding equilibrium is θ̂e = 2.5 (black dotted line).

rate of .99, as shown in Figure 7. By switching to MinWeightRev the platform can reduce its pickup

range by 33%, from 4.559 to 3.05.

8. Concluding remarks

In this paper we suggest a novel modeling approach to study the behavior of nomadic agents

that are constantly moving across locations in a network and interact with each other through

matching mechanism controlled by a centralizing platform. Our model accounts for the possibility

of rides being lost due to temporal and spatial mismatches between drivers’ supply and passenger’s

demand at specific locations of the network. Yet it is simple enough to allow stationary-state
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and equilibrium analysis to be carried out, for two different (yet closely related) policies. We

derive analytic results concerning the uniqueness of equilibrium and bounds on the improvement

in equilibrium performance obtained by changing the policy from the symmetric MinRev policy

to the slightly more sophisticated MinWeightRev. In particular, we show that the MinWeightRev

policy, in which drivers with different opportunity costs are treated differently by the policy, yields

to more efficient allocation of revenue, which in turn increases the equilibrium participation of

drivers, thus, generating more matches and increasing system efficacy.

Not surprisingly, it is shown that in terms of revenue-to-goal ratio, drivers with lower oppor-

tunity cost are in a (weakly) favorable position compared to those with higher opportunity cost,

under both policies discussed. What is perhaps less intuitive is that even though MinWeightRev is

designed to eliminate this discrepancy, under certain market conditions it may not be possible to

do so, assuming that the platform do not reject passengers when it can potentially match them to

available drivers.

We justify the formulation of the mean field model by comparing it with simulation results of

the motivating discrete model. In fact, the motivating discrete model we consider is not a single,

but rather a sequence of systems indexed and scaled by N , the market size. The scaling procedure

involves increasing the number of agents, as well as the arrival rate, linearly with N , yet keeping

constant the average number of available drivers in a passengers pickup region. Of much interest in

the study of fluid approximations for queueing models is proving an interchange-of-limits argument.

By that we mean proving three properties: (a) that for any fixed time t, observing the state of

the N -th system at time t, as N →∞, this sequence of states converges to the state of the mean

field system at time t (given an appropriate sequence of corresponding initial states); (b) that for

each N , the N -th system converges to a steady-state at t→∞; and (c) that when both N →∞

and t→∞, one obtains convergence to the steady state of the fluid system, irrespective of the

order according to which the limits are taken. In general, proving the interchange of limits is often

involved, and supposedly very much so in the setup described here.
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Because the purpose of this paper is to demonstrate the advantage of income-goal-aware matching

in ride sharing platforms, we leave the task of proving the interchange of limits for future research.

However we justify our mean field formulation based on an extensive simulation study described

in Sections 2 and 7. These simulations show that the mean field model provides a practical and

useful approximation for the discrete model, even when the market size N is of moderate size. The

simulations also give a strong empirical evidence that the mean field system is indeed the fluid

limit of the discussed sequence of systems, and that it converges to a stationary state as time tends

to infinity.

To keep insights sharp we focus on a stylized model, imposing simplifying assumptions about

the dynamics of the system, the geometric structure, drivers characteristics, etc. For this setup we

prove our main managerial insight: that a matching policy which is aware of drivers’ opportunity

cost in equilibrium performs generally better than a policy that ignores it, because taking into

account drivers’ opportunity cost in equilibrium promotes higher willingness to participate among

drivers with high opportunity cost. The maximal improvement ratio is proved to be 2, namely

twice as much drivers in the former equilibrium as in the latter, and this bound is tight. The simple

explanation behind this result implies that it is quite robust. In particular, we believe that assuming

a more elaborate opportunity cost structure (e.g., more than two, as well as a continuum of types),

or modifying the dynamics, will not yield a greater improvement ratio. Nevertheless, generalizing

the model to cope with more than two types, non-uniform, possibly dependent pickup/drop-off

locations, and more complex geometries, are important extensions that may appeal for practition-

ers.

Lastly, an important issue which we completely disregard in this paper is the question of how the

platform can obtain knowledge about the different drivers’ opportunity costs. In the introduction,

we briefly mention that incentives and bonus programs are widely used in practice, from which

useful knowledge about drivers income goals can be extracted. The question of devising efficient

bonuses for drivers is interesting in its own right, and studying it from a mechanism design perspec-

tive may reveal new interesting research directions. Quantifying the value of drivers’ commitment
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for the platform, which is the main purpose of this paper, is an essential prerequisite for an efficient

design of any incentive program, and we hope the framework presented here can lay the foundation

for such research.

APPENDIX

APX-A. Proof of Lemma 1

We show first uniqueness of a solution for Q(x; t). Observe that under the assumption Q(0; t) = 0

for all t∈ [0,∞) , together with the definition of Q′(x; t), we have that

Q(x; t) =

∫ x

s=0

Q′(s; t)ds, ∀x∈ [0,1),

therefore showing there exists a unique solution for Q′(x; t) will imply uniqueness of the solution

for Q(x; t). By taking the derivative with respect to x of both sides of (8) we get, using Leibniz’

rule of integration, for all x∈ [0,1)

∂Q′(x; t)

∂t
=

(
1−

∫ 1

s=0

Q′(s; t)ds

)
m− λ

θ

(
1− e−Q

′(x;t)θδ
)

(17)

Let G be the space of real, positive and absolutely integrable functions over [0,1). For any f ∈ G,

define:

ϕf(x) =
1

m

(
1−

∫ 1

s=0

f(s)ds

)
− λ
θ

(
1− e−θδf(x)

)
.

with initial value ft0(x) = f0(x) We continue the proof by showing first that ϕ is Lipschitz contin-

uous (with respect to the uniform norm), and then showing convergence of the sequence of Picard

iterations to a fixed point.

To show that ϕ is Lipschitz continuous, note firstly that for any two functions f, g ∈ G,∣∣∣∣∫ 1

s=0

f(s)ds−
∫ 1

s=0

g(s)ds

∣∣∣∣≤ ∫ 1

s=0

∣∣f(s)− g(s)
∣∣ds≤ ∫ 1

s=0

‖f − g‖∞ ds

= ‖f − g‖∞ ,

and in addition, assuming that f is a positive function, for any α> 0∥∥e−αf − e−αg∥∥∞ =
∥∥e−αf (1− eαf−αg)∥∥∞ ≤ ∥∥e−αf · (1− (1 +αf −αg))

∥∥
∞

=
∥∥e−αf ·α (g− f)

∥∥
∞ ≤ α‖f − g‖∞ ,
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where the first inequality follows from the fact that for any z ∈R, ez ≥ 1 + z. It follows that ϕ is

Lipschitz continuous as a sum of such functions, and we denote its Lipschitz constant by L.

Fix an initial time t0 and value f0 ∈ G. Define H as the set of all continuous functions of the

form F (x; t) : [0,1)×R→R such that for every fixed t, F (·; t) ∈ G, and equip it with the uniform

norm ‖F‖∞ = supx,τ |F (x, τ)|. Define the operator Γ by

(ΓF )(x; t) = f0 +

∫ t

τ=t0

ϕF (x; τ)dτ,

Note that for every regular point t, (ΓF )(·; t) defines a real function over x∈ [0,1). Moreover, since

ϕ is L-Lipschitz continuous, f0−Lt≤ ΓF (·; t)≤ f0 +Lt, meaning ΓF (·; t) is absolutely integrable

and hence resides in G, thus Γ maps the space H into itself. We next show that if t is chosen in a

1
L

-neighborhood of t0 then Γ is a contraction mapping.

Fix t and let F,G∈H. Let t∗ ∈ [t0, t] be the point satisfying

‖ΓF −ΓG‖∞ = ‖ΓF (·; t∗)−ΓG(·; t∗)‖∞ = sup
x∈[0,1)

|ΓF (x; t∗)−ΓG(x; t∗)|.

Note that in the first term the maximum is taken jointly on both arguments while in the second

only on the first (x) argument. Then,

‖ΓF −ΓG‖∞ = sup
x∈[0,1)

∣∣∣∣∣
∫ t∗

τ=t0

ϕF (x; τ)−ϕG(x; τ)dτ

∣∣∣∣∣≤
∫ t∗

τ=t0

‖ϕF (x; τ)−ϕG(x; τ)‖∞ dτ

≤L
∫ t∗

τ=t0

‖F (x; τ)−G(x; τ)‖∞ dτ ≤L(t∗− t0)‖F −G‖∞ ≤L(t− t0)‖F −G‖∞ ,

and choosing t such that t− t0 < 1
L

implies that Γ is a contraction. It follows from Banach fixed

point theorem that the operator has a unique fixed point. In particular, there is a unique function

F satisfying ΓF = F , and so, we established the uniqueness of a local solution to the initial value

problem.

In order to show global uniqueness we utilize Gronwall’s inequality: Let F,G∈H be two different

solutions and denote for all t, F (x; t) = ft(x) and G(x; t) = gt(x) with identical initial values f0 = g0.

Consider the two following functions:

z(t) =

∫ 1

x=0

(F (x; t)−G(x; t))2dx=

∫ 1

x=0

(ft(x)− gt(x))2dx,
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and

y(t) =

(∫ 1

x=0

(F (x; t)−G(x; t))dx

)2

=

(∫ 1

x=0

(ft(x)− gt(x))dx

)2

.

Note by the assumption f0 = g0 we have that at t0,

z(t0) = y(t0) = 0.

We shall show that z ≡ 0, by relying on that y≡ 0, which we show first.

For every t, due to ϕ being L-Lipschitz we have

d

dt
y(t) = 2

(∫ 1

x=0

(ft(x)− gt(x))dx

)
· ∂
∂t

(∫ 1

x=0

(F (x; t)−G(x; t))dx

)
= 2

(∫ 1

x=0

(ft(x)− gt(x))dx

)
·
(∫ 1

x=0

(ϕft(x)−ϕgt(x))dx

)
≤ 2

(∫ 1

x=0

(ft(x)− gt(x))dx

)
·
(∫ 1

x=0

‖ϕft−ϕgt‖∞dx
)

≤ 2

(∫ 1

x=0

(ft(x)− gt(x))dx

)
·L‖ft− gt‖∞ = y(t)β(t)

where

β(t) =
2L‖ft− gt‖∞∫ 1

x=0
(ft(x)− gt(x))dx

.

By Gronwall’s inequality,

y(t)≤ y(t0)e
∫ t
t0
β(u)du

= 0,

and therefore y≡ 0, implying that for all t,

∫ 1

x=0

ft(x)dx=

∫ 1

x=0

gt(x)dx.

We move on to showing z ≡ 0. Using the above relation, together with the definition of ϕ, we get,

for every t and x∈ [0,1),

|ϕft(x)−ϕgt(x)|= λ

θ

∣∣e−θδft(x)− e−θδgt(x)
∣∣= λ

θ

∣∣e−θδft(x)(1− eθδ(ft(x)−gt(x)))
∣∣

≤ λ

θ
e−θδft(x) |1− (1 + θδ(ft(x)− gt(x)))| ≤ λδ |ft(x)− gt(x)| ,
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and therefore,

d

dt
z(t) =

∫ 1

x=0

∂

∂t
(F (x; t)−G(x; t))2dx

=

∫ 1

x=0

2(F (x; t)−G(x; t))

(
∂F (x; t)

∂t
− ∂G(x; t)

∂t

)
dx

≤
∫ 1

x=0

2|ft(x)− gt(x)| · |ϕft(x)−ϕgt(x)|dx

≤
∫ 1

x=0

2λδ(ft(x)− gt(x))2dx= 2λδ · z(t)

Utilizing Gronwall’s inequality once again we get

z(t)≤ z(t0)e2λδt = 0,

and we conclude that (F −G)2 ≡ 0, hence, proving global uniqueness.

Next we shall show that Q′i(x; t) exists uniquely.

Proof outline:

Set i ∈ {L,H}. We treat based on the above explanations, given the initial states, θQ′(x; t) exists

uniquely and therefore we can treat it as an exogenous input. Define

w(t) :=
tθi
mλr

· (Rj(t)−Ri(t)) =
θi
mλ
·
∫ t

u=0

(Qi(1;u)−Qj(1;u))du

=
θi
mλ
·
∫ t

u=0

∫ 1

s=0

(Q′i(s;u)−Q′j(s;u))dsdu

from which it is clear that Ri(t) > Rj(t)⇔ w(t) < 0 and Ri(t) = Rj(t)⇔ w(t) = 0. Note that

Q′j(s;u) can be written as

Q′j(s;u) =
θQ′(s;u)− θiQ′i(s;u)

θj
.

Define functions φ : G →R, ψi,ψj : G →G and η : G ×R→G, such that given y ∈ G,

φ(y) =
θi
mλ

(
1−

∫ 1

s=0

y(s)ds

)
(18)

ψi(y) = 1− e−δθiy and ψj(y) = 1− e−δθjy (19)

η(y, t) =
θQ′(·; t)− θiy

θj
(20)
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and note that

w(t) =

∫ t

u=0

(φ(η(Q′i(·;u), u))−φ(Q′i(·;u)))du

and that ψi(0) =ψj(0)≡ 0. Define the set-valued positivity indicator function I :R→ 2R:

I(s) := conv
(
1(s > 0)

)
=



{0} if s < 0

[0,1] if s= 0

{1} if s > 0.

Note that −I(s) is OSL, i.e., for every s, s̃∈R and z ∈−I(s), z̃ ∈−I(s̃),

(s− s̃)(z− z̃)≤ 0≤ (s− s̃)2.

Let D := Q × R2. We redefine our DE as the following differential inclusion problem, with the

(set-valued) drift function ϕ:

∂

∂t


y

ω

τ

∈ϕ(y,ω, τ)×{φ(η(y, τ))−φ(y)}×{1} a.e., (y,ω, τ)∈D (21)

where

ϕ(y, v, τ) =
λ

θi
·
{
φ(y)−

(
1−ψj

(
η(y, τ)

))
ψi(y)− z ·ψj

(
η(y, τ)

)
ψi(y) : z ∈ I(ω)

}
. (22)

For y = (y,ω, τ)∈D, we define the total (set-valued) drift term F :D→ 2D:

F(y) = F(y,ω, τ) =ϕ(y,ω, τ)×{φ(η(y, τ))−φ(y)}×{1}

All values of F are convex and compact and F has a closed graph and therefore it is USC (upper

semi-continuous). We endow the space G with the `2 norm and its corresponding inner product,

i.e., for y, ỹ ∈ G

〈y, ỹ〉=
∫ 1

s=0

y(s)ỹ(s)ds, and ‖y‖=

(∫ 1

s=0

(y(s))2ds

)1/2

.
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We naturally extend this to D by defining for all y, ỹ ∈D with y = (y,ω, τ) and ỹ = (ỹ, ω̃, τ̃):

〈y, ỹ〉= 〈y, ỹ〉+ω · ω̃+ τ · τ̃ , and ‖y‖=
(
‖y‖2 +ω2 + τ 2

)1/2

thus, defining and inner product and its induced norm over D.

Our goal is to show that F satisfies the OSL (one-sided Lipschitz) condition, namely, for all

y, ỹ ∈D, with z∈F(y) and z̃∈F(ỹ),

〈y− ỹ,z− z̃〉 ≤ c1 · ‖y− ỹ‖2,

for some constant c1 ∈R.

For this aim we note that φ, ψi, ψj and η (w.r.t to its first argument) are all Lipschits continuous,

that is, there exists some constant L s.t. for every y, ỹ ∈ G,

|φ(y)−φ(ỹ)|2 ≤L‖y− ỹ‖2, ‖ψi(y)−ψi(ỹ)‖2 ≤L‖y− ỹ‖2, ‖ψj(y)−ψj(ỹ)‖2 ≤L‖y− ỹ‖2, and

‖η(y, t)− η(ỹ, t)‖2 ≤L‖y− ỹ‖2 for all t.

It follows that φj ◦η is Lipschitz for every t. In addition, φi and φj have bounded values, thus φi ·φj

is Lipschitz, and we conclude that the following function:

φ(y)−
(

1−ψj
(
η(y, τ)

))
ψi(y)

is Lipschitz for every τ , and so is

φ(η(y, τ))−φ(y).

Thus, the following set-valued map

F0(y,ω, τ) :=

{
φ(y)−

(
1−ψj

(
η(y, τ)

))
ψi(y)

}
×{φ(η(y, τ))−φ(y)}×{1}

which is in fact a singleton for every (y,ω, τ), is Lipschitz, and as so satisfies the OSL condition.

For the discontinues part: for every y and τ , the function ψi(y)ψj
(
η(y, τ)

)
is positive and (uni-

formly) bounded by 1. Therefore −I(ω) ·ψi(y)ψj
(
η(y, τ)

)
:D→ 2G is OSL. Defining

F1(y,ω, τ) :=
{
−z ·ψi(y)ψj

(
η(y, τ)

)
: I(ω)

}
×{0}×{0}
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we have that F = F0 + F1 is a sum of OSL functions and thus it is OSL. For y = (y,ω, τ) define

F1 : D →D as F1(y) =
(
ψi(y)ψj

(
η(y, τ)

)
,0,0

)
, which, as explained, is Lipschitz. We have for all

y ∈D,

sup{‖z‖ : z∈F(y)} ≤ ‖F0(y)‖+ sup{‖z‖ : z∈F1(y)}

= ‖F0(y)‖+ ‖F1(y)‖

= ‖F0(y)−F0(0) + F0(0)‖+ ‖F1(y)−F1(0)‖

≤ c2‖y−0‖+ ‖F0(0)‖+ c3‖y−0‖

≤ c0(1 + ‖y‖)

for some constants c2, c3 > 0 and c0 ≥max{c2 +c3,‖F0(0)‖} (note that F0(y) for all y and F1(0) are

singletons in D, thus slightly abusing notation). The steps follow because F0 and F1 are Lipschitz

(as single-valued functions) in D, with F1(0) = 0. It follows (see book by Kunze, 2000) that the

differential inclusion attains a unique solution.

APX-B. Proof of Lemma 2

First, we show that a unique solution to Equation (12) exists. By rearranging Equation (12) we

get

(1− q)θ= λm ·
(
1− e−qθδ

)
. (23)

A solution inside [0,1] must exist because both sides of Equation (23) are continuous, positive

functions of q and attain the value 0 at their minimum point over q ∈ [0,1]. Uniqueness follows

from the fact that the LHS of (23) is (strongly) monotone decreasing and the RHS is monotone

increasing in q.

Showing that the function qx satisfies Equation (11) is done by simple substitution: Assuming

Q∗(x) =Q∗L(x) =Q∗H(x) = qx for every x ∈ [0,1) and S∗i (x) = si as defined in (13), basic algebraic

manipulations yield Di(x) = (1− e−qθδ)θi/θ for each i ∈ {L,H}, therefore Equation (11) for every

x∈ (0,1) and i∈ {L,H} takes the form

x · (1− q) θi
m
−λx · (1− e−qθδ)θi

θ
= 0

which is equivalent to (12) and therefore satisfies the equality.
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APX-C. Proof of Lemma 3

Assuming θ > 0, the equality in (12) can be rewritten as

q+λ
1− e−qδθ

mθ
= 1 (24)

where λm−1 is a positive constant. The LHS is an increasing function in q. Differentiating it w.r.t.

θ we arrive at

d

dθ

(
q+λ

1− e−qδθ

mθ

)
= λ · e

−qδθ

mθ2

(
1 + qδθ− eqδθ

)
and we note that eqδθ > 1 + qδθ, thus, the LHS of Equation (24) is decreasing in θ. Therefore, if q1

is the solution for (24) with θ = θ1, and q2 is the solution for (24) with θ = θ2 > θ1, then it must

hold that q2 > q1.

APX-D. Proof of Proposition 2

By Lemma 3, the revenue rate, R∗(θ) = (1− q(θ))r is decreasing with θ, and assuming κL <R=

R∗(0), we have that an equilibrium θe > 0 exists. We focus on showing uniqueness by dividing into

three cases based on the value of R∗(ΘL):

If R∗(ΘL)<κL, then, by monotonicity, there exists a unique θe ∈ (0,ΘL) satisfying R∗(θe) = κL

and for every θ > θe, R∗(θe)< κL < κL, therefore θe is the unique equilibrium, which corresponds

to item (1).

If R∗(ΘL) ∈ [κL, κH ], then, for every θ <ΘL, R∗(θ)> κL, thus θ violates the equilibrium condi-

tion 9 for type L. In addition, every θ > ΘL is such that R∗(θ) < κH , and therefore violates the

equilibrium condition for type H. Hence, θe = ΘL is the unique equilibrium, which corresponds to

item (2).

Finally, if R∗(ΘL)>κH , then either there exists a unique θe ∈ (ΘL,ΘH ] satisfying R∗(θe) = κH ,

or R∗(ΘH)>κH in which case Θ = ΘL + ΘH is the unique equilibrium, which corresponds to item

(3).

APX-E. Proof of Lemma 4

Similar to the proof of Lemma 1.
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APX-F. Proof of Lemma 5

First we show that there exists a unique triple (q̂L, q̂H , q̂) ∈ [0,1]3 solving System (15). Note that

q̂ solves Equation (12) and therefore by Lemma 2 exists uniquely in the interval [0,1]. Given the

solution q̂, the pair (q̂L, q̂H) either solves
θLq̂L + θH q̂H = θq̂,

1− q̂H = λm · (1− e−q̂HθHδ)/θH .
(25)

or solves 
θLq̂L + θH q̂H = θq̂,

1− q̂H = (1− q̂L)κH/κL.

(26)

Assume that q̂ is fixed, and consider System (25). We show that this system has a unique solution

in [0,1]2: By Lemma 2, the second equation of (25) possesses a unique solution in the interval

[0,1]. Denote this solution by aH , and define aL = θq̂−θHaH
θL

, then (aL, aH) uniquely solve (25). By

substituting q̂ = 1− λm · (1− e−q̂θδ)/θ and aH = 1− λm · (1− e−aHθHδ)/θH in the definition of aL

we get, after rearranging,

aL = 1− λm
θL

(e−aHθHδ − e−q̂θδ).

By Lemma 3 and the fact that θH < θ, it must hold that aH < q̂, and therefore e−aHθHδ > e−q̂θδ,

thus, aL < 1. Moreover, q̂ is a convex combination of aL and aH , thus aH < q̂ < aL, therefore

aL ∈ [0,1].

Consider now System (26) given q̂. System (26) is linear and non-singular, thus the existence of

a unique solution (bL, bH) trivially follows. Since κH/κL > 1 and since q̂ is a convex combination

of bL and bH , this solution satisfies bH < q̂ < bL. Thus, bH < 1, and so bL = 1− (1− bH)κL/κH < 1,

meaning that bL ∈ [0,1].

From System (15), a solution (q̂L, q̂H , q̂) must satisfy q̂H = max{aH , bH} which is positive due to

the fact that aH > 0, and less than unity because both aH < 1 and bH < 1. As both (aL, aH) and

(bL, bH) satisfy the first equation in (15) with the same value q̂, it follows that aH ≥ bH iff aL ≤ bL.
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Therefore q̂L = min{aL, bL} ∈ [0,1]. We conclude that a unique solution (q̂L, q̂H , q̂) to System (15)

exists, and lies in [0,1]3.

We now confirm that the two functions Q̂∗i (x) = q̂ix, i∈ {L,H} satisfy the mean field steady-state

equation (14): First we note that if aH > bH , then aL < bL, therefore q̂i = ai, i∈ {L,H}. In this case

we have that

R̂H
κH

=
1− q̂H
κH

r <
1− bH
κH

r=
1− bL
κL

r <
1− q̂L
κL

r=
R̂L
κL

,

meaning that ŝH = 1, and therefore D̂H(x) = 1− e−q̂HθHδ. Equation (14) with i=H then becomes

x · (1− q̂H)
θH
m
−λx · (1− e−q̂HθHδ) = 0 (27)

which, when substituting q̂H = aH , is clearly satisfied by definition of aH . For i=L, we have that

ŝL = 0, thus D̂L(x) = (1−e−q̂LθLδ)e−q̂HθHδ. Note from the definition of q̂ we have, for every x∈ (0,1],

x · (1− q̂) θ
m
−λx · (1− e−q̂θδ) = 0. (28)

Subtracting (27) from the equation above we arrive at

x

m
· (θ− θH − θq̂+ θH q̂H)−λx ·

(
1− e−q̂θδ − 1 + e−q̂HθHδ

)
= 0,

and with θL = θ− θH and θLq̂L = θq̂− θH q̂H this becomes equivalent to

x · (1− q̂L)
θL
m
−λx · (1− e−q̂LθLδ)e−q̂HθHδ = 0,

which coincides with Equation (14) for i=L, therefore proving that (Q̂∗L(x), Q̂∗H(x)) is the unique

steady-state solution under the assumption that aH > bH .

On the other hand, if aH ≤ bH , then q̂i = bi, i∈ {L,H}. Under this assumption,

R̂H
κH

=
1− q̂H
κH

r=
1− q̂L
κL

r=
R̂L
κL

,

and therefore, for i, j ∈ {L,H} s.t. i 6= j, ŝi can be written as

ŝi =
βi

1− e−q̂iθiδ
+

βje
−q̂jθjδ

1− e−q̂jθjδ
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where βi = θiκi/(θLκL + θHκH), noting that βj = 1− βi. Basic algebraic manipulations then yield

Di(x) = (1− e−q̂θδ)βi, and so, the drift term at each point x∈ [0,1) is given by

dQ̂∗i
dt

= x · (1− q̂i)
θi
m
−λx · (1− e−q̂θδ)βi

=
x

m
· ((1− q̂i)θi− (1− q̂)θβi)

= xθi ·
(1− q̂i)(θiκi + θjκj)− (1− q̂i)θiκi− (1− q̂j)θjκi

m · (θiκi + θjκj)

= xθi ·
(1− q̂i)(θiκi + θjκj)− (1− q̂i)θiκi− (1− q̂i)θjκj

m · (θiκi + θjκj)
= 0

for each i, j ∈ {L,H}, i 6= j. The second equality follows from (28), the third from (1 − q̂)θ =

(1− q̂L)θL + (1− q̂H)θH , and the forth from (1− q̂L)κH = (1− q̂H)κL which is an implication of

q̂i = bi, i∈ {L,H}. Hence Equation (14) is satisfied.

APX-G. Proof of Lemma 6

Our characterization of the participation intensities implies that for any θ ∈ (0,ΘL+ ΘH ], the type

dependent participation intensities are given by θL = min{θ,ΘL} and θH = {θ −ΘL}+. Suppose

θ ∈ (0,ΘL], thus, θL = θ and θH = 0. In this case the two policies are equivalent and therefore it

follows by Lemma 3 that the proportion of available drivers is increasing in θ. We therefore focus

on θ >ΘL, in which case θL = ΘL is constant w.r.t to θ, and θH = θ−ΘL.

First, we note from Lemma 3, that q̂(θ) is increasing. Given θ ∈ (ΘL,ΘL+ΘH ], let (aL(θ), aH(θ))

be the solution of 
ΘLaL + (θ−ΘL)aH = θq̂(θ),

1− aH = λm ·
(
1− e−aH ·(θ−ΘL)δ

)
/(θ−ΘL),

(29)

and let (bL(θ), bH(θ)) be the solution of
ΘLbL + (θ−ΘL)bH = θq̂(θ),

1− bH = (1− bL)κH/κL.

(30)

It is shown in APX-F that each solution pair (aL(θ), aH(θ)) and (bL(θ), bH(θ)) exists uniquely and

that q̂L(θ) = min{aL(θ), bL(θ)} and q̂H(θ) = max{aH(θ), bH(θ)}. In addition, for every θ, aH(θ)<
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q̂(θ)< aL(θ), and similarly, bH(θ)< q̂(θ)< bL(θ). We show that aL(θ), aH(θ), bL(θ) and bH(θ) are

all increasing in θ.

We start with the monotonicity of aL(θ) and aH(θ). Consider the second equation of (29). From

Lemma 3 we have that aH(θ) is increasing. In order to show that aL(θ) is increasing we show first

that the function g(θ) = θq̂(θ) is increasing and convex. That g(θ) is increasing trivially follows

from θ and q̂(θ) being positive increasing (see Lemma 3). By Equation (12) it holds that

g(θ) = θ− 1

λm
(1− e−δg(θ)),

and simple algebraic manipulations yield

d

dθ
g(θ) =

(
1 +

δ

λm
e−δg(θ)

)−1

.

Note that e−δg(θ) is decreasing and positive and therefore the RHS of the latter equation is increas-

ing, meaning that g(θ) is convex. Now note from (29) that aH(θ) = q̂(θ−ΘL) and that

aL(θ) =
θq̂(θ)− (θ−ΘL)aH(θ)

ΘL

=
g(θ)− g(θ−ΘL)

ΘL

.

Because g(θ) is convex, aL(θ) is increasing.

We now turn our attention to the pair (bL(θ), bH(θ)). Denote α= κH/κL, thus from the second

equation in (30) we have bH(θ) = 1−α+αbL(θ), by which bH(θ) is increasing iff bL(θ) is increasing.

Substituting this in the first equation of (30) we get, by rearranging,

(ΘL +α(θ−ΘL))bL(θ) = θq̂(θ) + (α− 1)(θ−ΘL).

Taking derivative w.r.t θ, after algebra we obtain

d

dθ
bL(θ) =

θ d
dθ
q̂(θ) +α(1− bL(θ))− (1− q̂(θ))

ΘL +α(θ−ΘL)
.

Note first that bH(θ) < q̂(θ), which implies 1 − q̂(θ) < 1 − bH(θ) = α(1 − bL(θ)), and secondly,

(d/dθ)q̂(θ)> 0 which is from Lemma 3, hence (d/dθ)bL(θ)> 0. Thus, bL(θ) is increasing, and so is

bH(θ).

Finally, because aL(θ) and bL(θ) are increasing, q̂L(θ) = min{aL(θ), bL(θ)} is increasing, and

because aH(θ) and bH(θ) are increasing, q̂H(θ) = max{aH(θ), bH(θ)} is increasing.
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APX-H. Proof of Proposition 3

From Lemma 6, R̂∗L(θ) and R̂∗H(θ) are decreasing in θ, and we further have that R̂∗L(θ)< R̂∗H(θ) for

all θ. Then exactly one of the following two cases must hold:

� If R̂∗H(ΘL)<κH , then for all θ >ΘL, R̂∗H(θ)≤ κH , therefore type-H drivers do not participate

in equilibrium. In addition,

— if R̂∗L(ΘL)>κL, then ΘL is the unique equilibrium participation intensity, and

— if R̂∗L(ΘL)≤ κL, then there exists a unique θ ∈ (0,ΘL] such that R̂∗L(θ) = κL, and this value

θ is a unique equilibrium participation intensity.

� If R̂∗H(ΘL)>κH , then either

— R̂∗H(ΘL + ΘH)≥ κH , and ΘL + ΘH = Θ is the unique equilibrium participation intensity, or

— if R̂∗H(ΘL+ΘH)<κH , and therefore there exists a unique equilibrium participation intensity

θ ∈ (ΘL,ΘL + ΘH ], which satisfies R̂∗H(θ) = κH .

APX-I. Proof of Lemma 7

As explained, under both policies, participation of any type-H drivers implies that all type-L

drivers participate. Therefore it suffices to show that in equilibrium under MinWeightRev, more

type-H drivers participate than under MinRev. To show this, we shall prove that for every θ,

R̂∗H(θ)>R∗(θ). From the proof of Lemma 5, we have that q̂H(θ)< q̂(θ), thus,

R̂∗H(θ) = (1− q̂H(θ))r > (1− q̂(θ))r= (1− q(θ))r=R∗(θ)

From our equilibrium condition (9), it follows that θ̂e ≥ θe.

APX-J. Proof of Proposition 4

To prove the first item, first note that Φ≥ 1 is a direct implication of Lemma 7. Assume by way

of contradiction that θ̂e > 2θe. Because the equilibrium participation of type-L drivers is the same

under both policies, it must be that the surge in participation is due to increased participation of

type-H drivers, i.e.,

θ̂eH = θ̂e−ΘL > 2θe−ΘL = 2θeH + 2ΘL−ΘL = 2θeH + ΘL ≥ θe.
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It also implies that under MinRev, not all type-H drivers participate in equilibrium, namely

R∗(θe)≤ κH .

Recall the definition of (aL(θ), aH(θ)) and (bL(θ), bH(θ)) from APX-G, which satisfy q̂H(θ) =

max{aH(θ), bH(θ)}, for all θ. It follows that

q̂H(θ̂e)≥ aH(θ̂e) = q(θ̂e−ΘL)> q(θe)

where q(θ) is defined in (12).

R̂∗H(θ̂e) = (1− q̂H(θ̂e))r < (1− q(θe))r=R∗(θe)≤ κH

which is a contradiction to the assumption that θ̂e induces equilibrium under MinWeightRev.

To show the second item we first note that

λ∗(θ) = λ · (1− e−δθq(θ)) =
θ− θq(θ)

m

which, given the participation intensity θ, is independent of the policy. The second equality fol-

lows from Equation (12). It has been proven in APX-G that the function g(θ) = θq(θ) is positive

increasing and (strongly) convex in θ, therefore λ∗(θ) is concave. In addition, λ∗(θ) is increasing

as it is a composition of increasing functions, f(x) = 1− e−δx over g(θ). It follows that for any

φ∈ (1,2] and for any θ, λ∗(φ−1θ)>φ−1λ∗(θ), and therefore

1≤ λ∗(θ)

λ∗(φ−1θ)
<

λ∗(θ)

φ−1λ∗(θ)
= φ.

Thus, whenever Φ > 1 we have that Ψ ∈ [1,Φ) ⊂ [1,2), and because for every φ ∈ [1,2],

limθ→0 λ
∗(θ)/(λ∗(φ−1θ)) = φ, we have that limΘ→0 Ψ = 2 iff limΘ→0 Φ = 2.

APX-K. Different formulation for mean field equations under MinRev

A different formulation of the mean field equations can be regarded for the MinRev that neither

requires any knowledge of driver’s revenues or employing a prioritization scheme:

For all x∈ [0,1), t∈ [0,∞), and i∈ {L,H},

∂Qi(x; t)

∂t
=
x

m
(1−Qi(1; t))− λ

θi

∫ x

s=0

(
1− e−Q

′(s;t)θδ
)
Di(s; t)ds, (31)
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where

Di(s; t) =


θiQ
′
i(s;t)

θQ′(s;t) if Q′(s; t)> 0,

0 otherwise.

The interpretation is that when all drivers are symmetric in the eyes of the platform, the type of a

matched drivers is determined by a random draw of a driver among all candidates. The probability

of the number of the total number candidates being non-zero corresponds to 1− e−Q′(s;t)θδ, and

conditioned on this event, the probability of the type of the matched driver being i is given by

θiQ
′
i(s;t)

θQ′(s;t) . More intuition is generated by Lemma 8 below. In this formulations the drift is Lipschitz

continuous.

Lemma 8. Consider an urn with a random non-negative integer number B of blue balls and a

random non-negative integer number R of red balls. Assume that B ∼Pois(b) and R∼Pois(r) for

some r, b > 0. Conditioned on the urn being non empty, we pick a ball uniformly at random. Then

the probability of picking a blue ball is b
b+r

.

Before proving the result algebraically, we provide and intuitive explanation: Assume for simplicity

that r and b are rational numbers, so that there exists some λ > 0 such that λb and λr are both

integers. Then B can be written as a sum B = B1 + · · ·+Bλb and similarly R = R1 + · · ·+Rλr,

where {Bi},{Rj} are all i.i.d Poisson random variables with parameter λ−1. Imagine now that the

urn contains a random number Bi of blue balls with the number i on them, i = 1, . . . , λb, and

Rj red balls with the number j on them, j = 1, . . . , λr, and given the urn is not empty we draw

one uniformly at random. It is clear from symmetry that the chances of drawing any possible

combination of color and number is the same for all combination, and is equal 1
λ·(b+r) . Since exactly

λb of the combinations contain the color blue, it follows that the probability of drawing a blue ball

is λb
λ·(b+r) = b

b+r
.

A straightforward algebraic proof can be provided: conditioning on the urn having exactly one

ball in it, from the branching property of Poisson, the probability of its color being blue is b
b+r

.
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When the number of balls is n > 1, the colors of two different balls are independent, hence the

probability of a randomly chosen ball having the color blue is invariant of n.
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