The Value of Knowing Drivers’ Opportunity Cost in Ride Hailing Systems
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Research Purpose The Mean Field Model

A ride hailing platform has knowledge about potential drivers’ outside opportunities. We analyze two mean field (m.f.) systems, one for each policy, corresponding to a large
How is this knowledge beneficial? Can its value be quantified? market of drivers (N — o)

Understanding this is crucial for designing bonus programs and maintaining drivers’ The formulation builds on the intuition that when N and t are large:

commitment towards the platform. * Drivers’ scaled locations along the city form a Spatial Poisson process (Fig 3)

The Motivating Discrete Model * Long-run revenue rates of all drivers coincide under MinRev (Fig 4), and the same

holds for all dri f th t der MinWeightRev.
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Which policy performs better in Equilibrium? values of N. Type Lin blue, type H in red.
In equilibrium (eq.) : Each driver participates iff it’s profitable to them (compared to OC).  Key Findings — Improvement Bounds
In this example (Fig 2), MinWeightRev attracts x2 more drivers in eq. relative to MinRey, Equilibrium participation profile of drivers is unique for each policy.
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and increases the matching rate by roughly x * MinWeightRev eq. is always better than MinRev eq. in terms of drivers’ participation rates
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