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Drive

=4

Reach a set number of trips

Earn extra money if you complete a set number
of trips in a certain amount of time when the
offer is available.

Example: earn $30 extra for completing 20 trips
this week.

Overview ~ Requirements  Drivingbasics  Eamings ~ Safety  UberPro

K

o0e
b

Drive during busy times
Get paid extra for trips in certain areas at

busy times.

Example: earn an extra $6 for completing 3 trips
in a row with the first trip starting downtown
between 4pm and 6pm.

screen shot taken from Uber.com
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# Motivation

Naive modeling

$30 Earnings Guarantee
Ends Saturday

Simulation

Mean field
Your progress

Equilibrium
0of3
In Progress $30

POC
Mean field

Equilibrium
How it works

o Give a set number of rides (et BEies
Make sure you meet the minimum et (e
number of rides required.

o Get paid at the end of the week e
If your earnings for those rides are

Wrap-up
below the guaranteed amount, we'll
pay the difference.

screen shot taken from Lyft.com
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Bonus programs are geared towards increasing
the number of active drivers on the road.
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Improving Efficiency and Managing Growth in New York’s For-Hire Vehicle Sector

New York City Taxi and Limousine Commission and Department of Transportation

Final Report | June 2019 B
Mean field
Equilibrium

Executive Summary

Traffic congestion in New York City has grown steadily worse since 2010, with average weekday EoE

travel speeds in Midtown Manhattan dropping from 6.1 mph in November 2010 to 4.3 mph in ————

November 2018. Though not the only cause, the explosive growth of the for-hire vehicle (FHV) Equilibrium

sector, which tripled from fewer than 40,000 vehicles in 2010 to over 120,000 in 2019, is certainly an

important factor. As Uber, Lyft, Juno, and Via—app-based, high volume for-hire services—created

new, convenient travel options in the outer boroughs, they also added tens of thousands of Improvement bounds

additional hours of vehicle travel into the Manhattan core (south of 96" Street) each day. The Pickup time

companies saturated the market with vehicles to ensure low wait times and spur demand, causing
drivers to spend over 40% of total work time empty and cruising for passengers. Combined with

. . N — " . g . . : . Fut arch
decreasing per-trip pay, this underutilization led to significant declines in driver income. s e
Wrap-up
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What is the value of having more drivers on Motivation
the road?

...and if indeed there’s value:

Can “smart” matching policies increase the
equilibrium number of drivers?

“smart” = informed with drivers' opportunity costs
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case #2: 100% demand is filled

Many (much more complex) models build on this intuition:
Banerjee et al. (2016, 2017), Braverman et al. (2019), Iglesias et al. (2019),
Afeche et al. (2018), Ozkan & Ward (2020), Bimpikis et al. (2019)...
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Many (much more complex) models build on this intuition:

Banerjee et al. (2016, 2017), Braverman et al. (2019), Iglesias et al. (2019),
Afeche et al. (2018), Ozkan & Ward (2020), Bimpikis et al. (2019)...
Queueing models where drivers are short-lived:



. . The value of
MOdellng - the nailve approaCh knowing drivers’
opportunity cost in
. ide Sharin
(0. ¢] CapaCIty Riyst:ms ¢

- Ran Snitkovsky

traveling time > 0
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case #2: 100% demand is filled

Many (much more complex) models build on this intuition:

Banerjee et al. (2016, 2017), Braverman et al. (2019), Iglesias et al. (2019),
Afeche et al. (2018), Ozkan & Ward (2020), Bimpikis et al. (2019)...
Queueing models where drivers are short-lived:

Ozkan & Ward (2020), Ozkan (2020)
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Available drivers circulate the city
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Dependencies between drivers’ states impose difficulties...
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Q'(x; t) — The derivative of Q(x; t) w.r.t x
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Mean field — formulation

Q'(x; t) — The derivative of Q(x; t) w.r.t x
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Mean field — formulation

Q'(x; t) — The derivative of Q(x; t) w.r.t x

Loosely speaking, for large N at time t,

il. dri : /
4 { i:\\fli (6r/|\;e)r;X } ~ Poisson (Q'(x; t)64)

inflow - outflow

8( avail. drivers’
to [0, x) from [0, x)

avail. drivers’ avail. drivers’
ot in (0, x] > -
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#{ avail. drivers } ~ Poisson (Q'(x; t)64)
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Mean field — formulation

Q'(x; t) — The derivative of Q(x; t) w.r.t x

Loosely speaking, for large N at time t,

il. dri : /
4 { i:\\fli (6r/|\;e)r;X } ~ Poisson (Q'(x; t)64)

0Q(x;t)

HNT = inflow — outflow
t to [0, x) from [0, x)

avail. drivers’ avail. drivers’
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Loosely speaking, for large N at time t,

Mean field

il. dri : /
4 { i:\\fli (5r/|\;e)r;X } ~ Poisson (Q'(x; t)64)

8Q(X; t) _ . X / —Q'(s;t)06
ON = ON-(1-Q(L: 1) - —NA / (1-e ) ds
=0
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Loosely speaking, for large N at time t,

Mean field

il. dri : /
" { i:\\fli (5r/|\;e)r;X } ~ Poisson (Q'(x; t)64)
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Mean field — formulation

Ql(x; t) -

The derivative of Q(x;t) w.r.t x

Loosely speaking, for large N at time t,
“

0Q(x; t)
ot

avail. drivers
in x £ (6/2)dx

5/
0

s=0

— (1- o)

@—e

3I><

corresponding to the limit N — oo

} ~ Poisson(Q’(x;
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Assume potential intensities ©;  of drivers with OC
©y  of drivers with OC
such that
KL < KH

and denote
©:=0,+ 06y

Our goal: Characterize equilibrium participation rates:

0, <Oy, Oy < Op

with 6 := 0, + 0y
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Problem: Drivers are no longer symmetric

= Dynamics depend on revenue distribution within types

= Mean field system is difficult to formulate

Solution: Assume each type i € {L, H} works as a collective

= We keep track of a single value per type:

Ri(t) := % / r-(1- Qi(1; u))du, ie{l,H}
u=0



Mean field — MinWeightRev




. B H e value of
Mean field — MinWeightRev knowing drvers
P ide Shoring
systems

Given 0,0y, for each i,j € {L,H}, i # ],

Ran Snitkovsky

Simulation
Mean field

Equilibrium

POC
Mean field

Equilibrium

t bounds




Mean field — MinWeightRev

Given 0,0y, for each i,j € {L,H}, i # ],

Conclusion

Future research

Wrap-up



Mean field — MinWeightRev

Given 0,0y, for each i,j € {L,H}, i # ],

ot

where
e—ij(s;t)OjS’

O
-~
n
-+
N
Il

1,

if

The value of
knowing drivers’
opportunity cost in
Ride Sharing
systems

Ran Snitkovsky

oQi(x;t) (1- (1 t))% _ g / (1 _ e—é{(s;t)efa) by(s; t)ds
ls:O

Mean field




Mean field — MinWeightRev

Given 0,0y, for each i,j € {L,H}, i # ],

ot

where
e—ij(s;t)OjS’

1,

if =

The value of
knowing drivers’
opportunity cost in
Ride Sharing
systems

Ran Snitkovsky

oQi(x;t) (1- (1 t))% _ g / (1 _ e—é{(s;t)efa) by(s; t)ds
ls:O

Mean field




The value of
knowing drivers’

Mean field — MinWeightRev  drivers'

Ride Sharing
systems

Ran Snitkovsky

Given 0,0y, for each i,j € {L,H}, i # ],

oQi(x;t) (1- (1 t))% _ 3 / (1 _ e—é{(s;t)efa) by(s; t)ds

ot
where
by~ &8 S A
1, if R;ff) < Réf)
if A0 = B e
Di(s; t) = [e QGRS 1] (5, s servatuea)
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Qi (x; t
9QIXit) _ o yxeo.1), i€ (L H)
ot
with
i busy fraction R
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There's a unique steady-state {Q'*}ie{L,H}v for which

M:O, Vx €10,1), i € {L,H}

ot
with
i busy fraction R
R¥ =rx for type =r(1- Q7 (1))
ie{L H}
we show:
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There's a unique steady-state {Q'*}ie{L,H}v for which

Qi (x;t) _ 0, Vxel[0,1),ie{L H}

—
with
i busy fraction R
R¥ =rx for type =r(1- Q7 (1))
i€ {L,H}
we show:

R* *
L>_H >1
RH N~

in equilibrium
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Key takeaway # 2:

MinWeightRev diverts money from over-paid to
under-paid drivers

= It attracts the higher end of the market

= Equilibrium number of participating drivers
is increased!

Comparison
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Define

eq. participation
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eq. participation
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Key takeaway # 3:

Equilibrium participation is up to 2 times more
intense in MinWeightRev vs. MinRev

= Matching rate can be improved by up to
100%
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Pickup time improvement

For a system with

Rl = 2

K/H:.6

O, =2 Oy=1

and a matching-rate goal: \* =.

Goal obtained under:

MinRev
MinWeightRev

delta

by setting
by setting

6 =4.56
§=2.29

99- A

resulting in
resulting in

0=0,=2
6=0,+0y=3
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Pickup time improvement
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Ride Sharing
For a system with s, =.2 Kky =.6 systems
eL — 2 @H — 1 Ran Snitkovsky

and a matching-rate goal: A* =.99- )\

Goal obtained under:

MinRev by setting
MinWeightRev by setting § = 2.29

6 =4.56 resulting in 0=0,=2
resultingin =0, +04y =3

Pickup time

delta

i 2 3 4
theta

= Pickup standard decreased by 50% !
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General spatial pickup/drop-off distributions
+ dependencies

Two dimensional geometry
General OC distribution

Time varying arrival rate (per location)
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Future research directions

Proving convergence in process level
+ interchange-of-limits in the general setup

Designing truth-revealing mechanisms to learn drivers’
opportunity costs
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participate, improving spatial coverage and system
throughput.
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We capture the friction between drivers’ spatial coverage
and demand loss through novel modeling.

Smart matching policies attract more drivers to
participate, improving spatial coverage and system
throughput.

The improvement is quantifiable,
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We capture the friction between drivers’ spatial coverage
and demand loss through novel modeling.

Smart matching policies attract more drivers to

participate, improving spatial coverage and system
throughput.

The improvement is quantifiable, and we derive tight
bounds.
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Prob. of k;-driver available within the pickup region around
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0;NQi(1;t)
1 (1 _ Qi(s+ 2iit) — Qi(s — 2‘;,;t)>

Qi(1; 1)

a1 <1 ~ Qi(sit) + Qi(si t)oy — (Qi(s; t) — QI(s; t)ﬁ\[))@iNQi(l;t)
- Qi(1Lit)

_ Q/(s; t)0 NG —Q!(sit)0;6
‘1‘(1‘No,-(1;t) o le
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