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We study optimal pricing strategies for ride-sharing platforms, such as Lyft, Sidecar, and Uber. Analysis of pricing in

such settings is complex: On one hand these platforms are two-sided – this requires economic models that capture the

incentives of both drivers and passengers. On the other hand, these platforms support high temporal-resolution for data

collection and pricing – this requires stochastic models that capture the dynamics of drivers and passengers in the system.

In this paper we build a queueing-theoretic economic model to study optimal platform pricing. In particular, we focus

our attention on the value of dynamic pricing: where prices can react to instantaneous imbalances between available

supply and incoming demand. We find two main results: We first show that performance (throughput and revenue) under

any dynamic pricing strategy cannot exceed that under the optimal static pricing policy (i.e., one which is agnostic of

stochastic fluctuations in the system load). This result belies the prevalence of dynamic pricing in practice. Our sec-

ond result explains the apparent paradox: we show that dynamic pricing is much more robust to fluctuations in system

parameters compared to static pricing. Thus dynamic pricing does not necessarily yield higher performance than static

pricing – however, it lets platforms realize the benefits of optimal static pricing, even with imperfect knowledge of system

parameters.
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1. Introduction

In this paper we study ride-sharing platforms such as Lyft, Sidecar, and Uber. Since their founding in

the last several years, these platforms have experienced extraordinary growth. At their core, the platforms

reduce the friction in matching and dispatch for transportation. A typical transaction on these platforms is as

follows: a potential rider opens the app on her phone and requests a ride; the system matches her to a nearby

driver if one is available, else blocks the ride request. These platforms typically do not employ drivers, but

deliver a share of the earnings per ride to the driver, to incentivize driver participation.

Ride-sharing platforms are thus two-sided markets: drivers on one side, and passengers on the other. As

a consequence, a central goal of the platform’s intermediation is to calibrate supply and demand relative to

each other, while ensuring relatively high satisfaction to both sides. A key tool used by these platforms to

manage supply and demand is dynamic pricing – the platform can adjust ride prices in real-time, to react to
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changes in ride requests and available drivers. The central focus of this paper is in understanding how these

two features of ride-sharing platforms – their two-sided nature, and the ability to price based on real-time

state – influence the volume of trade and the revenue of the platform.

To capture the fast-timescale dynamics of ride-sharing platforms, we employ a queueing theoretic

approach. Our primary modeling contribution lies in combining this queueing model for the underlying

stochastic dynamics, with an equilibrium analysis that captures incentives of both drivers and passengers,

as well as throughput/revenue maximization by the platform. The general model we consider is one where

a geographic area is divided into regions. Each ride involves a driver picking up a passenger in one region,

and dropping her off in another. For simplicity, we analyze this model first for a single region; subsequently,

using tools from classical queueing theory, we generalize some of our results to networks of regions.

Key to our model is an intrinsic timescale separation in the behavior of drivers and passengers. In ride-

sharing platforms driven by mobile apps, passengers are typically sensitive to the immediate price of the

ride that they request. If this price is too high, price-sensitive customers will abandon. On the other hand,

drivers are typically sensitive to the average wages they earn over a longer period of time, usually several

days or a week. Thus, drivers often select certain periods of time when they are “active” during the week,

and adjust their activity levels based on their assessment of earnings during the last week. This timescale

separation has two implications on agent dynamics in our model:

1. We model passengers as living for one ride, while drivers (probabilistically) re-join the platform after

each ride. Thus, drivers have “long” lifetimes in our model, while passengers have “short” lifetimes.

2. We model passengers’ entry decisions as being based on the immediate price they are shown, which

is a function of the current state of the region where the passenger opens her app; if the price is below

a passenger-specific reservation value, then the passenger requests a ride. By contrast, we assume that

drivers’ entry decisions are made by comparing their expected lifetime earnings with their expected

lifetime; if this wage rate exceeds a driver-specific reservation wage rate, the driver chooses to enter

the platform.

Our model allows us to concisely describe the endogenously-determined equilibrium arrival-rates of

drivers and passengers, for a given pricing policy of the platform operator. Using this specification, we then

study the behavior of revenue under different pricing policies employed by the platform. We begin with a

seemingly basic question: is there value in dynamic pricing? In other words, does the platform benefit by

being able to adjust prices in response to changes in system state?

We focus in this paper on a class of dynamic pricing policies commonly used in practice: threshold

policies, where the platform raises the price whenever the number of available drivers in a region falls below

a threshold. Somewhat surprisingly, in our first main result, we find in a broad range of conditions that the

platform cannot increase throughput or revenue by employing threshold dynamic pricing.
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This result is counterintuitive, and belies the fact that dynamic pricing is prevalent in practice across most

ride-sharing platforms. Our second main result reveals a significant benefit that dynamic pricing holds over

static pricing: robustness. Specifically, suppose the system operator chooses the optimal threshold dynamic

(resp., static) pricing policy given fixed system parameters (arrival rates, service rates, and preference dis-

tributions of passengers and drivers). Now suppose the true parameters deviate from the original postulated

environment. We show that dynamic pricing maintains a much higher share of the optimal throughput rel-

ative to the optimal static pricing; in other words, it is much less brittle to lack of knowledge of system

parameters.

Intuitively, threshold dynamic pricing helps discover the “correct” static price, by mixing between the

high price (i.e., low driver availability) and low price (i.e., low driver availability) regimes. A similar robust-

ness phenomenon also holds for revenue in a supply-constrained regime, which arguably is the case for

ride-sharing platforms. Moreover, given a surfeit of drivers, we show that the platform can maximize its rev-

enue by charging a (static) marked-up price relative to the market-clearing price; dynamic pricing however

may perform poorly in this setting.

Finally, we generalize much of our analysis and results to networks of regions. Our model allows us to

capture geographical variations in driver availability/demand. Nevertheless, we demonstrate that the optimal

region-dependent threshold dynamic pricing policy cannot yield higher throughput than the optimal region-

dependent static pricing policy. We conjecture that a similar robustness result to that derived in the single

region setting holds for networks as well.

The remainder of the paper is organized as follows. We introduce our queueing model; the strategic model

of drivers and passengers; the pricing model of the platform; and our equilibrium definition in Section 2.

Next, in Section 3, we study the optimal static pricing policy of the platform for a single region. In Section

4, we show that the optimal threshold dynamic pricing policy cannot exceed the performance of the optimal

static pricing policy, whether we are optimizing for throughput or revenue. In Section 5, we establish that

dynamic pricing is much more robust to changes in system parameters than static pricing. In Section 6, we

extend our analysis to general networks. For ease of exposition, we defer the proofs of our theorems, along

with some supporting results, to the Appendix.

1.1. Related Work

Our paper sits at the intersection of several active areas of research; we briefly describe each of these below.

Matching queues. In most queueing models, servers are fixed, and jobs arrive and depart. By contrast, in

our model, both passengers (jobs) and drivers (servers) experience queueing phenomena. A recent literature

on matching queues has studied systems with this feature; see, e.g., [1, 15] for an example of this modeling

approach. However, these works do not consider any strategic behavior by the agents.
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Strategic queueing models. On the other hand, a long line of research in queueing theory has studied

strategic behavior in queueing systems; see [11] for early work in this area and [8] for an overview of

these models. Typically, these works consider systems with a fixed number of servers, who serve arriving

customers who are sensitive to price and delay. In such settings, dynamic pricing affects the instantaneous

arrival rates of customers; moreover, the Our work studies strategic behavior in a queueing system, but

where the servers (i.e., the drivers) are also strategic. In this respect our work is closest to the recent paper

of [7].

Large-scale matching markets. The combination of queueing and strategic behavior can be challenging

to analyze, and so in this paper we employ a large market limit to yield a tractable yet insightful model.

This approach has grown in importance in recent years; see, e.g., [10, 3] for early examples in the matching

market literature, and [2] for an example of this approach for dynamic matching markets.

Revenue management. The platform plays a key role in our paper: we analyze optimal pricing strategies

both for a monopolist, and to optimize social welfare. The comparison of static and dynamic pricing policies

is similar in spirit to revenue management; see, e.g., [14, 4] for an overview of pricing approaches, and [6]

for a study of dynamic pricing based on current inventory levels. Surprisingly, several of these works obtain

results which are similar in spirit to ours – in particular, the fact that static pricing policies are optimal in

a large-system limit. However, a critical feature of our work is in considering two-sided platforms, where

both sides react to the pricing, albeit on different timescales – thus, instead of a dynamic programming

formulation, we need to analyze the equilibrium of the resulting system.

Two-sided platforms. From an economic standpoint, our paper is closest to the literature on two-sided

platforms. See [12, 13] for a summary of this literature, and [16] for a unified approach to price struc-

ture for two-sided platforms. Our paper contributes to this literature by studying optimal pricing to match

dynamically changing supply and demand.

2. A Single Region Model

In this section we introduce our model of a ride-sharing platform. We begin by describing an underlying

queueing model that captures the stochastic dynamics of the system, assuming exogenously given behavior

of drivers and passengers. We then describe the platform’s choice of pricing policy, including both static

and dynamic policies. Next, we describe the strategic decisions of drivers and passengers. We conclude by

describing equilibrium in our system, taking into account incentives of the agents and the pricing policy

of the platform. For pedagogical reasons, the model and the initial analysis focusses on the special case of

a single geographic region; this approximates a setting where the platform provider does not set different

prices based on location within a city. In Section 6, we generalize our model and results to a network of

regions.
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2.1. Queueing Dynamics: A Single Region

Our queueing model requires three key components: (1) a network of regions (e.g., of a city); (2) dynamics

of drivers in the system; and (3) dynamics of passengers in the system. As noted above, we focus in this sec-

tion on a single region system. In this subsection we describe the queueing dynamics assuming exogenously

specified arrival-rates for drivers and passengers.

Drivers, passengers, and rides. The agents on a ride-sharing platform are drivers and passengers. The fun-

damental atomic unit of service in our system is a ride, which consists of a driver transporting a passenger.

We assume that drivers live in the system for a relatively large contiguous block of time (e.g., several hours

or a day), giving rides to several passengers. On the other hand, we assume each passenger is unique and

only lives in the system for the lifetime of their ride; therefore ride requests and passengers are equivalent

in our model. 1

The queue. We model the system as a continuous-time queueing process evolving over t≥ 0, which keeps

track of the number of drivers in the system. More specifically, at any time, each driver can be in one of two

states – available, i.e., free to be matched to a passenger, or busy, i.e., occupied in transporting a passenger

on a ride. We use A(t) to denote the number of available drivers at time t, while B(t) tracks the number of

busy drivers. Our analysis employs steady-state performance criteria of the queueing system describing the

platform. For convenience, we suppress dependence on time when clear from context.

Driver and passenger arrivals. We assume the arrival process of drivers to the available-drivers queue is

Poisson with rate λ > 0. New drivers immediately join the queue of available drivers at an exogenous rate

λe; drivers currently on the platform may also rejoin the queue after completing rides, as described below.

In addition, we assume that the arrival process of new ride requests is Poisson with rate µ(A)> 0 when the

number of available drivers A≥ 0. A passenger requesting a ride at time t is matched if A(t)> 0 (reducing

the number of available drivers by one), and is blocked if A(t) = 0. With respect to rides, all available

drivers within a region are assumed equal, and any of them can be matched to any ride-request originating

in that region. Below we discuss how both λ and µ arise from strategic interactions between the passengers,

drivers, and the platform.

Ride completion and driver departures. We assume that each ride lasts an exponential length of time,

with mean τ . When drivers complete service on a given ride, they can either exit the system, or become

available. We assume that after each ride, a driver signs out and departs from the system with probability

qexit > 0, else the driver returns to the queue of available drivers.

Analysis. The queueing system described in this way is fairly straightforward to analyze: the queue of

available drivers functions as anM/M/1 queue (more specifically, anM/M(k)/1 queue, where the service

rate can be state-dependent – cf. Section 2.2), and the queue of busy drivers functions as anM/M/∞ queue.

1 A potentially interesting extension involves modeling incentives for passengers to return to the platform, based on past experience.
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(a) Birth-death chain for available drivers (b) Flow of drivers in single-region model

Figure 1 Queueing model for (single-region) ride-sharing platform:

Figure 1(a) shows the birth-death chain for the number of available drivers in the region. In particular, we have shown

a single-threshold pricing policy (p`, ph, θ), wherein the platform uses a ‘base’ fare-multiplier p` when the number

of drivers is greater than a threshold θ (here θ = 2), else charges a ‘primetime’ price-multiplier ph > p` (hence the

queue drains slower when there are ≤ θ drivers. cf. Section 4 for an analysis of this policy).

Figure 1(b) shows the flow of drivers in the network: exogenous drivers arrive to the platform at rate λ and join the

available-drivers queue; when matched with a passenger, they transition from theM/M(k)/1 available-drivers queue

to an M/G/∞ busy-drivers queue; after completing a ride, they either exit the platform, or return to the available-

drivers queue.

All external arrivals (new drivers) enter the M/M(k)/1 queue. Departures from the M/M(k)/1 queue

(requested rides being picked up) enter the M/M/∞ queue. Departures from the M/M/∞ queue (drivers

completing service on a ride) either leave the system (with probability qexit) or return to the M/M(k)/1

queue (with probability 1− qexit).

This is a simple two-queue example of an open Jackson network [9]. Note that from standard flow-

balance constraints (cf. Figure 1), we have that the arrival-rate of drivers to the queue is related to their

exogenous arrival-rate as λe = λqexit. Moreover, the steady-state distribution of open Jackson networks

follows a product-form distribution: in steady-state, the two queue sizes are independent. We exploit this

simple characterization in our analysis below; moreover, this also allows us to extend the results to networks

of regions in Section 6.

2.2. Platform pricing

To model dynamic pricing, we allow the platform to choose prices that can vary based on the number of

available drivers A. Formally, a pricing policy for the platform is a function P (A) that maps the number

of available drivers A to a price. The function P (A) can be chosen depending on the system parameters.

As done in practice, we assume that the platforms define a base price, based on the distance/time, and

implements dynamic pricing by means of a multiplier for the base price. In particular, the base price is

sufficient to cover any per-ride costs to the platform and driver (which we can then subtract from it); thus,

for the remainder of the paper, we assume that both the platform’s and drivers’ costs per ride are zero.

Finally, throughout this work, we assume that the prices are non-increasing with number of available drivers

(i.e., p(A) ≥ p(A′)∀A < A′). This mirrors the economic intuition that prices rise when available drivers

drop, to better match incoming ride requests to available supply.
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Throughout the paper, we assume that from each ride at price p, the platform gives a fraction γp to the

driver, and retains (1− γ)p for itself. Crucially, we analyze the pricing behavior of the platform holding

γ constant. This assumption is motivated by the fact that most ride-sharing platforms manipulate their

revenues through the pricing policy itself, rather than by changing the percentage they share with drivers.

The latter quantity is fixed on very long timescales, to ensure transparency in communication with drivers

about the benefits of participation on the platform. However, our model can accommodate variations in γ,

and understanding the optimal revenue-sharing structure is an interesting avenue for future work.

Our work focusses on two important special cases of the platform’s pricing policy:

Static pricing. The first case we consider is where the platform sets a single price for all A. We refer to this

case as static pricing, because the price does not change based on instantaneous available service capacity.

In reality, this case might be viewed as “quasi-static”, in the sense that the price remains fixed as long as the

average platform parameters (rates of arrival, demand/supply elasticities) remain fixed. As these parameters

change at different times of day, the platform will likely change even fixed prices across the day. (Even most

taxicab services price evenings differently from daytime hours.) However, the important property of static

prices are that they only react to such coarse changes, and not to instantaneous state; we use static pricing to

understand the platform’s incentives during a temporal block where the exogenous system parameters are

constant. These policies are analyzed in detail in Section 3.

Threshold dynamic pricing. The second case we consider is a class of dynamic pricing policies, where

the platform does in fact set the price based on the number of available drivers. In Section 4, we consider

a particular class of dynamic pricing policies, that we refer to as single-threshold pricing. These policies

are characterized by three parameters: a low price p`, a high price ph > p`, and a threshold θ > 0. The

platform charges P (A) = p` when A > θ, and P (A) = ph when A ≤ θ. In Appendix 10, we extend the

analysis to consider more general threshold policies, and show that in large-markets, under some mild

scaling assumptions, multiple threshold policies in fact reduce to some equivalent single-threshold policies.

2.3. Driver and passenger incentives

Given the space of pricing policies, we next want to model the strategic incentives of both drivers and

passengers. A key assumption we make is that drivers and passengers are sensitive to price on different

timescales. Informally, passengers respond instantaneously to the posted price they are shown for a ride

(e.g., when they open a ride-sharing app on their phone). On the other hand (cf. the Introduction), we

presume that drivers are sensitive to their earnings within a given time period (e.g., several hours, a day, or

a week). This is motivated by the fact that most drivers in ride-sharing platforms approximately commit to

their schedules on these longer timescales, and moderate their level of activity on the basis of the overall

earnings they expect to receive while actively driving.
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We take the perspective that steady-state behavior in our queueing model is representative of the longer

timescale that drivers use in making their participation decisions. In particular, we assume that drivers are

sensitive to their expected earnings on the platform over their lifetime, assuming they arrive to the system

in steady-state.

The second component of the specification of passenger and driver utility is by considering their sensi-

tivity to system performance. Passengers obtain disutility if their ride request goes unserved (i.e., if they are

blocked). Drivers obtain disutility if they spend time idling in the system, because this decreases the overall

earning rate. Both passengers and drivers are heterogeneous in their reservation utility for participation on

the platform. Formally, we specify agents’ utility as follows.

Passengers. Recall that passengers only live for at most one ride request in our model of the system. Each

passenger has a reservation value V , drawn independently from a distribution FV . Confronted with a price

p for a ride (potentially dependent on the number of available drivers), an arriving passenger requests a ride

if V ≥ p, and abandons otherwise. If she requests a ride, she is matched to an available driver – however, if

none are present, then she remains unmatched and exits the system (blocking). The utility to the passenger

is V − p if she is served, and zero if she is blocked.

We assume the rate of potential ride requests is µ0. Thus if the price is currently pi, then the arrival

process of actual ride requests is Poisson with rate µ0F V (p) = (1−FV (p))µ0. Recall that the platform only

sets prices on the basis of available drivers in the system. In particular, when the number of available drivers

is A, the price is P (A), and therefore the arrival rate of passengers is:

µ(A) = µ0F V (P (A)), A≥ 0. (1)

This yields the passenger arrival process µ as a function of the number of available drivers. Such a queueing

model with state-dependent service rates is often referred to as a M/M(k)/1 queue [5].

Drivers. Drivers have reservation wages (measured in earnings per unit time) drawn independently from

a distribution FC . A driver with reservation wage C will only enter and participate in the platform if their

expected earnings exceeds C times their expected life in system. Drivers evaluate their earnings and life in

the system assuming they arrive to the system (with fixed parameters λ, µ) in steady-state. This assumption

is justified by the PASTA property (Poisson arrivals see time averages).

Note that since we have fixed qexit; for fixed λ and µ the system functions as an open Jackson network;

and the platform uses a pricing policy that depends only on the state of the network, the dynamics of a single

driver are easy to describe. The driver arrives to find the M/M(k)/1 queue describing available drivers in

steady-state. His idle time is equivalent to the waiting time in this queue; then, after picking up a passenger,

he is busy for an exponential length of time with mean τ . After completing a ride, with probability 1− qexit

the driver returns to the available queue and again finds it in steady-state (by standard results for open

Jackson networks); and with probability qexit, the driver leaves the system.
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From this discussion, it follows that the number of rides given by an arriving driver is independent of

either the earnings on each ride, or the length of each ride. In particular, for a given driver, let K denote

the number of rides she gives while in the system; let P1, . . . , PK denote the prices charged to passengers

on each of these rides (note that these are i.i.d. random variables, and depend on the state of the available

queue at the time the driver is matched); let T1, . . . , TK denote the ride times of each of the K rides (these

are i.i.d. exponential random variables); and let I1, . . . , IK denote the idle time prior to each ride (these are

also i.i.d. random variables, distributed as the waiting time of an arriving driver into the available queue in

steady-state). All these quantities are independent of each other.

It follows by Wald’s lemma that the expected total earnings for the driver is E[K]E[P1]; the expected

total idle time is E[K]E[I1]; and the expected total time spent driving is E[K]E[T1] = E[K]τ . A driver

with reservation wage C participates on the platform if E[K]E[p1] exceeds E[K](E[I1] + τ) C. For later

reference, for a driver arriving to the system in steady-state, we define η = E[p1] as the expected earnings

per ride, and define ι=E[I1] as the expected idle time per ride. Drivers participate if η/(ι+ τ)≥C.

We let the rate of potential new drivers entering the system be Λ0. Thus the rate of exogenous driver-

arrivals to the queue (assuming the queue is stable) is:

λe = λqexit = Λ0FC

(
η

ι+ τ

)
. (2)

Note that η and ι each depend in turn on λ and µ; for ease of notation, we suppress this dependence. The

following section discusses how equilibrium conditions ensure consistency of these system parameters.

We conclude with an observation: note that in our model, qexit is independent of the earnings of the driver.

This is the key modeling point that captures our assumptions that drivers do not react to earnings on a

per-ride basis. Instead they determine participation on a longer timescale, averaging over the length of their

time in system. This modeling choice is what leads to Equation (2).

2.4. Equilibrium

In this section we combine our model of driver and passenger incentives with the platform’s pricing strategy

to produce a set of equilibrium conditions that determine λ and µ, for a fixed pricing policy P (A).

First we define a quartet λ,µ = {µ(A)}A≥0, η, ι to be an equilibrium for a fixed P (A) if the following

conditions hold:

1. Given the pricing policy P (A), µ is determined by Equation (1).

2. η is the expected earnings per ride, and ι is the expected idle time of a driver arriving in steady-state

to a system with fixed λ and µ.

3. λ is determined by Equation (2), given µ,η and ι.
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To specify an equilibrium, therefore, we need expressions for η and ι in terms of λ and µ(A). We now

provide these in this section assuming a general pricing policy P (A) (with prices which are non-increasing

with A). In subsequent sections, we specialize it to static pricing (cf. Section 3), single-threshold dynamic

pricing (cf. Section 4) and multi-threshold dynamic pricing (cf. Appendix 10).

Given exogenous λ and µ0, and a pricing policy P (A), this results in an M/M(k)/1 available-driver

queue. For the associated Markov chain to be positive recurrent, we require ∃A∗ ≥ 0 such that:

µ(A∗) = µ0FV (P (A∗))>λ. (3)

Since P (A) is non-increasing, we have µ(A) > λ∀A > A∗. Assuming Equation (3) holds, the resulting

Markov chain has a steady-state distribution π(A), given by:

π(0) =

(
∞∑
i=0

(λ/µ)
i

Πi−1
j=1FV (P (j))

)−1

, π(i) =
π(0)(λ/µ)i

Πi−1
j=1FV (P (j))

. (4)

We can now compute the performance metrics under steady-state as follows:

Proposition 1 Given exogenous λ,µ and pricing policy {P (i)}i≥1 obeying Equation (3), and assuming the

M/M(k)/1 queue has steady-state as in Equation (4), the average earnings and idle-time per ride obey:

η= γ
∞∑
i=0

π(i) ·P (i+ 1) , ι=

∑∞
i=1 π(i) · i
λ

. (5)

Proof. From the PASTA property [9] we have that a typical driver (i.e., arriving to the queue according

to a Poisson process) sees the queue in steady-state. Now, the formula for the average idle-time is a direct

consequence of Little’s Law, i.e., E[ι] = E[A]/λ. To calculate the average per-ride earnings, we want to

find the amount earned by a typical departing driver from the queue (i.e., one who was just matched to

a passenger). Note that the M/M(k)/1 queue is reversible, and a typical departing driver is an arrival to

the reverse queue. Moreover if an arrival to the reverse queue sees it in state i≥ 0, then the corresponding

departing driver must have received P (i+ 1) (as there are i drivers plus the departing driver at the moment

when the match was made). Thus E[η] =
∑∞

i=0 π(i)P (i+ 1). �

Equations (1), (2), (3), (4) and (5) thus together define the equilibrium of the system.

Lemma 2 Given (Λ0, µ0) ∈R2
+, (γ, qexit) ∈ (0,1)2, continuous distributions FC ,FV and a non-increasing

pricing policy P (A), the equilibrium defined by Equations (1), (2), (3), (4) and (5) always has a solution

λ≥ 0. Moreover, the equilibrium is unique if ι is non-decreasing in λ.

Proof. Fix Λ0, µ0 ∈R2
+, continuous distributions FC ,FV and a pricing policy P (A). Now the existence

of the equilibrium defined by Equation 2 along with Equations (1), (3), (4) and (5) follows from the Brouwer

fixed-point theorem, since FC is continuous and λ is constrained to lie in the compact set [0,Λ0].
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For uniqueness, let f(λ) = λqexit−Λ0FC (γη/(τ + ι)). Then for the given p we have f(0)≤ 0 and also

lim
λ→(µ0FV (p))

− f(λ) = µ0FV (p)qexit > 0. Provided P (A) is non-increasing with A, we have that the per-

ride earning η(λ) is continuous and non-increasing w.r.t. λ, keeping all other parameters fixed. This follows

from a standard coupling argument to show that the number of drivers in queue is sample-pathwise higher

when λ is higher. Now if in addition we have that ι(λ) is non-decreasing w.r.t. λ, then the average earning

rate γη/(τ + ι) is overall non-increasing with λ. Finally, since FC is continuous and non-decreasing, we

have that f(λ) is continuous and strictly increasing in λ – thus f(λ) = 0 has a unique solution λ≥ 0. �

2.5. Throughput and Revenue

Given the space of pricing policies and the associated equilibrium, as described in the previous sections,

we are now in a position to design pricing policies for specific objectives. A first order target of pricing is

to maximize the volume of trade, i.e., the rate of successful matches in steady-state. Provided the queue is

stable under pricing policy P (A), the rate of matches is given by the equilibrium λ(P ).

An alternate target for the platform is to maximize its own revenue. Under any pricing policy P (A), the

platform earns a (1− γ) fraction of each ride’s value. Thus, the revenue-rate Π(P ) is given by:

E[Π(P )] = (1− γ)λ(P )η(P ) (6)

This follows from the fact that η(P ) is the per-ride expected payment, while, assuming queue stability, the

rate of successful matches is λ(P ). Note again that we assume γ is held fixed by the platform; the pricing

policy alone is used to optimize the performance.

2.6. The Large-Market Limit

Though Equations (1), (2), (3), (4) and (5) fully define the equilibrium of the ride-sharing platform, and

Equations (6) the associated platform revenue, analyzing the system presents two challenges. First, although

Lemma 2 guarantees the existence of the equilibrium, it does not guarantee its uniqueness. More signif-

icantly, though we can numerically solve for the equilibrium, it is difficult to use these solutions to get

qualitative insights into throughput/revenue maximization. To circumvent this, we study the ride-sharing

platform under an appropriate large-market limit. The scaling we consider is identical to the fluid scaling

in queueing systems. However, we require the scaling not to simplify the queueing dynamics (as we have

closed-form expressions for the queueing metrics), but rather, to simplify the equilibrium computations.

We henceforth assume that all prices lie in the compact interval [0, pmax] (for some given maximum price

pmax). For static pricing policies (i.e., P (A) = p), we define the large-market limit as follows: We consider

a sequence of systems parametrized by n, wherein Λ0(n) = Λ0n and µ0(n) = µ0n, and all other parameters

(τ, γ, qexit,FC ,FV , p) are held fixed. We then let n go to∞, and study the normalized equilibrium state, i.e.

limn→∞ λ(n)/n, of the limiting system. For dynamic pricing policies, in addition to scaling Λ0 and µ0, we
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also let P (A) to scale with n. In particular, for threshold dynamic pricing under large-market scaling, we

keep the price vector fixed, but allow the thresholds to scale with n.

The large-market scaling allows us to get insights into first-order effects on the platform’s perfor-

mance metrics. For a system parametrized by ‘size’ n (i.e., with Λ0(n) = Λ0n,µ0(n) = µ0n and pric-

ing policy P chosen appropriately), we can define normalized versions of the above quantities as

λ(P,n)/n,E[Π(P,n)]/n and E [W (P,n)]/n. In the large-market limit, we are thus interested in the limit-

ing normalized rates, given by:

λ̂(P ) = lim
n→∞

λ(P,n)

n
, E[Π̂(P )] = lim

n→∞

E[Π(P,n)]

n
, E[Ŵ (P )] = lim

n→∞

E [W (P,n)]

n
.

The large-market scaling corresponds to studying a ride-sharing platform where the potential pool of

drivers and passengers scale up together. An alternate viewpoint is that scaling Λ0 and µ0 together is equiv-

alent to fixing Λ0, µ0, but compressing the timescale on which the processes operate. In the case of static

pricing, as long as the queue is stable, it is thus clear that the idle-time between rides goes to 0 in the limit.

A similar property can be shown to hold for threshold pricing policies, provided the thresholds scale in an

appropriate manner (cf. Section 4). It is this vanishing idle-time property which makes the large-market

regime more amenable to analysis.

3. The Single Region under Static Pricing

We first consider the ride-sharing platform operating in a single region under static pricing with price p.

For ease of notation, we parametrize all quantities in this section by price p, suppressing the dependence on

other system parameters (Λ0, µ0, etc.).

To summarize this setting in brief: we have a single available-driver queue, where the potential rate of

exogenous driver-arrivals is Λ0, the actual realized rate of driver-arrivals at equilibrium is denoted λe(p)

(where 0≤ λe(p)≤Λ0). Each driver waits in the queue until she is matched to a passenger. After each ride,

a driver departs from the platform with probability qexit, else returns to the queue of available drivers – thus

the effective arrival-rate of drivers to the queue is λ(p) = λe(p)/qexit. On the other hand, we assume the

potential rate of passenger arrivals (or ‘unique app-opens’) is µ0. Now, solving Equations (4) and (5), we

get that η(p) = γp (where γ is the fraction of the price going to the drivers), and ι(p) = 1/(µ0FV (p)−λ(p))

if µ0FV (p)>λ(p), and∞ otherwise. Substituting in Equation (2), we get the equilibrium condition as:

λe(p) = λ(p)qexit = Λ0FC

(
γp

τ + (µ0FV (p)−λ(p))−1

)
1{µ0FV (p)>λ(p)}, (7)

where 1A is the indicator function of event A, and we define λ(p) = 0 if FV (p) = 0.

Now note that the available-drivers queue is M/M/1 in this setting – thus, for fixed µ, the average idle-

time ι is increasing in the arrival-rate λ. Lemma 2 now guarantees both existence and uniqueness of the

equilibrium λ(p); further, under the large-market scaling, we get the following equilibrium expressions:
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Theorem 3 We are given (Λ0, µ0) ∈ R2
+, (γ, qexit) ∈ (0,1)2 and continuous distributions FC ,FV . Let

λ(p,n) denote the equilibrium driver arrival-rate at fixed price p in nth system (i.e., with Λ0(n) =

nΛ0, µ0(n) = nµ0). Then:

λ(p,n) = n ·min
[
Λ0 FC(γp/τ)/qexit, µ0 FV (p)

]
− o(n).

Moreover, we have λ(p,n)

n
→min

[
Λ0 FC(γp/τ)/qexit, µ0 FV (p)

]
, λ̂(p) uniformly as n↗∞.

Theorem 3 characterizes the first-order equilibrium behavior under a fixed price as the market

grows large. Moreover, it shows that the limiting normalized driver-arrival rate is given by λ̂(p) =

min
[
Λ0 FC(γp/τ)/qexit, µ0 FV (p)

]
. Due to space constraints, the proof is deferred to Appendix 7. How-

ever, we provide a visual depiction of Theorem 3 in Figure 2, where we have shown the normalized rates

λ(p,n)/n converge to λ̂(p) in the large-market limit. Note how λ̂(p) decomposes into two parts:

i. Supply-bottleneck: For low prices, λ̂(p) is determined by supply considerations – the potential driver

arrival-rate Λ0 and reservation-earning distribution FC .

ii. Demand-bottleneck: For high prices, λ̂(p) is determined by demand considerations – the potential

passenger arrival-rate µ0 and ride-value distribution FV .

Next, we want to use the large-market limit to understand the platform’s choice of price p in order to

maximize throughput/revenue. Given the sequence of systems parametrized by n under the large-market

scaling, we would ideally like to perform this optimization for a given parameter n – this though appears

difficult as we do not have closed form expressions for the equilibrium state. However, the fact that λ(p,n)

n

converges to λ̂(p) uniformly also allows us to interchange the limits and optimization, and therefore study

performance optimization under the large-market limit. This is encoded in the following result:

Corollary 4 Given (Λ0, µ0) ∈ R2
+, (γ, qexit) ∈ (0,1)2 and continuous distributions FC ,FV , let λ∗(n) =

maxp∈[0,pmax] λ(p,n) denote the maximum equilibrium driver arrival-rate in the nth system, and p∗(n)

denote the corresponding price. Moreover, let λ̂∗ = maxp∈[0,pmax] λ̂(p), and p∗ = arg maxp∈[0,pmax] λ̂(p).

Then limn→∞
λ∗(n)

n
= λ̂∗ and limn→∞ p

∗(n) = p∗. Furthermore, the operations commute even if we choose

prices to maximize revenue (i.e., p∗(n) = arg maxp∈[0,pmax] E[Π̂(p,n)]).

Getting an explicit characterization for λ(p), the normalized driver arrival-rate at equilibrium in the

large-market limit, allows us to set a price to maximize the platform’s throughput and/or revenue.From

Section 2.5, we have that in the large-market limit, the platform’s normalized average revenue-rate is given

by E [Π(p)] = λ(p)p(1− γ).Before stating our results, we need two additional definitions. We define the

balance-price pbal to be the one satisfying the following implicit equation:

µ0 FV (pbal) =
Λ0

qexit
FC

(γ
τ
.pbal

)
. (8)



14 Riquelme, Banerjee, Johari: Pricing in Ride-share Platforms

Figure 2 Scaling behavior of the normalized equilibrium driver-arrival rate and revenue rate (i.e., λ(p,n)/n and E[Π(p,n)]/n)

vs. static price p, for n = 1 (the bottom-most dashed curve in either plot), 10,100 and 1000 (the topmost dashed

curve). The solid green curves depict the normalized driver-arrival rate λ̂(p) and normalized revenue-rate E[Π̂(p)] in

the large-market limit (c.f. Theorem 3). The solid black vertical line marks out the balance price pbal, while the dotted

black vertical line marks the demand-optimal price pd−opt. We use Λ0/qexit = 2, µ0 = 4, τ = 1 and distributions

FC ∼Gamma(2,1) and FV ∼Gamma(2,1)

Intuitively, pbal is the price at which the effective demand for rides equals the effective supply of drivers

assuming the idle time between rides is zero 2. Assuming FV ,FC have continuous CDFs, it is easy to check

that pbal exists and is unique.

In addition, we also define the demand-optimal price pd−opt as:

pd−opt = arg max
p>0

{
p ·FV (p)

}
, (9)

As the name suggests, pd−opt is the price that maximizes the platform’s revenue rate if considering the

demand profile alone, i.e., if the drivers were not strategic. We assume that this maximum exists (this can

be guaranteed by assuming p ∈ [0, pmax] for some chosen pmax). Note though that the above optimization

need not yield a unique solution – moreover, there could be multiple local maxima. To make our subsequent

results more concise and transparent, we assume throughout this work that pFV has a unique maxima pd−opt

and also that pFV (p) is decreasing for p≥ pd−opt 3.

We now show that in the large-market limit, the revenue is maximized at the greater of pbal and pd−opt.

Formally, we have the following result:

2 This intuition is exact in the large-market limit. To see this, note that in any equilibrium state, the queue must be stable (as
otherwise the expected idle-time blows up); moreover, in a stable queue, scaling Λ0 and µ0 together is equivalent to fixing Λ0, µ0,
but speeding up time, thereby driving the idle-time to 0.
3 Note that this is not a very restrictive assumption – it holds if FV has a monotone (increasing or decreasing) hazard-rate hF (x) =
fV (x)/FV (x) (where pd−opt is the unique price satisfying pd−opthF (pd−opt) = 1), or FV is Pareto distributed, i.e., FV (x) =
1−

(
xmin
x

)α
, x≥ xmin > 0, with α> 1.
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Theorem 5 Let prev−opt(n) = arg maxpE [Π(p,n)] be the revenue-optimal price. Then, in the large-market

regime, we have: limn→∞ prev−opt(n) = max [pbal, pd−opt]

The proof follows from analyzing the revenue under the equilibrium λ(p) in large-market limit. Due to lack

of space, we defer the details to Appendix 7.

To summarize: the limiting normalized throughput (match-rate) λ̂(p) is maximized at the balance price

– moreover, as long as pbal ≥ pd−opt, static-pricing with pbal also maximizes the platform’s revenue. Note

that this condition corresponds to a supply-limited regime, where the potential request-rate for rides is much

greater than the potential driver pool. We return to this assumption in later results.

4. The Single Ride-Share Queue under Dynamic Pricing

We next consider the single-region ride-share platform under dynamic pricing. In particular, we consider the

single-threshold pricing policy (p`, ph, θ), as described in Section 2.2. We consider the case of generalized

threshold policies in Appendix 10. Note that the queueing model for available drivers in this setting is the

same as that in Section 3, except that we now have state-dependent service rates (cf. Section 2.1).

As before, the potential rate of drivers is Λ0, the actual exogenous rate of driver-arrivals is λe, and the

effective arrival-rate of drivers to the queue is λ= λe/qexit (conditional on the queue stability). The potential

rate of passenger arrivals is µ0; the actual rate of matches now depends on the price. In particular, the rate is

µ0FV (p`) when there are more than θ available drivers, but falls to µ0FV (ph) when there are less or equal.

At equilibrium, the arrival-rate of drivers again must satisfy λqexit = Λ0FC (γη/(ι+ τ)) (cf. Equation (2)).

As before, the average ride-time τ is independent of pricing; the average per-ride earning η and the average

idle-time ι are however different from the static pricing setting, as is the blocking probability pblock , π[0].

Suppose the net arrival-rate of drivers to the queue is fixed at λ. For notational convenience, we define

φh = 1/FV (ph), φ` = 1/FV (p`) and ρ= λ/µ0. For stability (cf. Equation (3)), we now need λ< µ0FV (p`)

(i.e. ρφ` < 1) – if this holds, then substituting the steady-state probabilities in Equation (5) and simplifying,

we get:

pblock =
(ρφh− 1)(1− ρφ`)

(ρφh− ρφ`)(ρφh)θ− 1
, η=

((ρφh)θ− 1)(1− ρφ`)ph + (ρφh− 1)(ρφh)θp`
(ρφh− ρφ`)(ρφh)θ− (1− ρφ`)

,

ι=
(pblock

λ

)(φhρ(1 + (ρφh)θ(θ(ρφh− 1)− 1))

(φhρ− 1)2
+
ρφ`(φhρ)θ(1 + θ(1− ρφ`))

(1− ρφ`)2

)
. (10)

On the other hand, if λ> µ0FV (p`) (i.e., ρφ` > 1), we have pblock = 0, η= p` and ι=∞.

To get qualitative insights into different dynamic-pricing policies, we consider the scaled system

parametrized by n (with Λ0(n) = Λ0n and µ0(n) = µ0n), and consider the large-market limit n→∞. We

assume all other exogenous system parameters remain fixed. We first consider the large-market limit for

fixed values of p` and ph; we have the following proposition.
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Proposition 6 Fix system parameters Λ0, µ0, τ, γ, qexit, distributions FC ,FV , and prices p`, ph. For each n,

let θ∗(n,p`, ph) be the throughput-optimal choice of θ. Then θ∗(n)↗∞ as n↗∞, with θ∗(n) = o(
√
n).

Furthermore, the same scaling holds if θ∗(n) is chosen as the revenue-optimal choice of θ for each n with

fixed (p`, ph).

The preceding proposition demonstrates that regardless of our objective of interest, the optimal θ∗(n) scales

as ω(1) but o(
√
n). The lower bound follows from the observation that the average per-ride earnings are

monotone in θ; moreover, as n→∞, the per-ride earnings converge to a constant independent of θ. However

this is not sufficient to maximize the performance metrics as the average idle-time also increases with θ.

Optimality requires the average idle-time goes to 0 as n→∞, and this is guaranteed by the upper bound

on θ∗(n). (See Theorem 13 for details).

Motivated by the preceding result, we consider a limiting regime where p` and ph are fixed, and the

platform’s choice of θ(n) behaves as ω(1) and o(
√
n). Given these assumptions, we have the following

characterization of the large-market limit of the platform under dynamic pricing:

Theorem 7 Consider a system with (Λ0, µ0) ∈ R2
+, (γ, qexit) ∈ (0,1)2 and continuous distributions

FC ,FV . Let λ(n,p`, ph) denote the equilibrium arrival-rate of drivers in the nth system under dynamic

pricing with parameters (p`, ph) and θ= θ∗(n,p`, ph). Then we have:

λ(n,p`, ph)

n
→ λ̂(p`, ph) uniformly as n↗∞

Moreover, the limiting normalized driver arrival-rate λ̂(p`, ph) obeys:

(1) If p` > pbal: λ̂(p`, ph) = µ0FV (p`); (2) If ph < pbal: λ̂(p`, ph) = Λ0
qexit

FC
(
γph
τ

)
;

(3) If p` ≤ pbal ≤ ph: λ̂(p`, ph) satisfies the fixed-point equation:

λ̂(p`, ph) =
Λ0

qexit
FC

(
γ

τ

(
p`(φh−µ0/λ̂(p`, ph)) + ph(µ0/λ̂(p`, ph)−φ`)

φh−φ`

))
. (11)

Due to lack of space, the proof is deferred to Appendix 8. Figure 3(a) shows an example of the conver-

gence to large-market limits under dynamic pricing policies. We fix one price below pbal, and vary the other

one, while scaling θ(n) as θ0 logn (note that θ(n) is ω(1) but o(
√
n)). As long as both prices are below

pbal, the platform’s performance is dictated by the higher price (as in case (1) in Theorem 7). The inter-

esting scenario is when the second price is greater than pbal, in which case we are in case (3) of Theorem

7. In this setting, in the large-market limit, the number of available drivers in the n’th system concentrates

around the threshold θ(n). The resultant per-ride earning is thus a convex combination of (p`, ph), with the

coefficients corresponding to the probability of the number of drivers being above and below (and equal

to) θ respectively. Note though that the resulting normalized arrival-rate λ̂(p`, ph) of drivers is not a convex

combination of the extreme values (λ̂(p`), λ̂(ph)) – rather, it is determined by the (non-linear) fixed-point

condition arising from equilibrium considerations (Equation (2)).
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Now we can turn to optimizing revenue under single-threshold dynamic pricing. First, as in the static

pricing setting, we again show that the limit and maximization operations commute:

Corollary 8 Given (Λ0, µ0) ∈ R2
+, (γ, qexit) ∈ (0,1)2 and continuous distributions FC ,FV , let λ∗(n) =

max0≤p`≤ph≤pmax λ(n,p`, ph) denote the maximum equilibrium driver arrival-rate in the nth system, and

let λ̂∗ = max0≤p`≤ph≤pmax λ̂(p`, ph). Then limn→∞
λ∗(n)

n
= λ̂∗. Moreover, this commutativity holds if we

choose prices to maximize revenue.

We focus on the setting where we scale θ(n) = ω(1) and θ(n) = o(
√
n). The platform’s average revenue-

rate is now given by E[Π̂(p`, ph)] = (1− γ)λ̂(p`, ph)η(p`, ph).4 Also, from the discussion on static pricing

(Section 3), we have λ̂(pbal) = (Λ0/qexit)FC (γpbal/τ) and E[Π̂(pbal)] = λ̂(pbal)pbal as the normalized

throughput and revenue under static price pbal. We now have the following characterization of system under

single-threshold dynamic pricing:

Theorem 9 Given (Λ0, µ0)∈R2
+, (γ, qexit)∈ (0,1)2 and continuous distributions FC ,FV . We also choose

p` < pbal and θ(n) = o(
√
n). Then we have:

1. If ph = pbal, then λ̂(p`, ph) = λ̂(pbal), and E
[
Π̂(pbal)

]
= λbal(1− γ)pbal.

2. For any p≥ pbal > p` with FV (p)> 0, suppose FV (·) satisfies:

FV (p)−FV (p`)

fV (p)(p− p`)
<

1−FV (p`)

1−FV (p)
. (12)

Then λ̂(p`, ph)≤ λ̂(pbal) and E
[
Π̂(p`, ph)

]
≤E

[
Π̂(pbal)

]
.

Theorem 9 shows that as long as FV satisfies Equation (12), then, in the large-market limit, no dynamic

pricing is strictly better than the optimal static pricing policy in terms of volume of trade (i.e., rate of

successful matchings).Moreover, in the case of revenue, Theorem 9 shows that the platform revenue under

dynamic pricing is always bounded by the revenue under static pricing with pbal. In case pbal ≥ pd−opt, this

is the optimal revenue. If on the other hand pbal < pd−opt, then static pricing can get a higher revenue than

any single-threshold

The proof of Theorem 9 involves differentiating the implicit expression for λ̂(p`, ph) (Equation (11))

w.r.t. ph while keeping p` fixed, and studying its behavior around pbal – the revenue characterization is

handled similarly. The formal proof is provided in Appendix 8. Note that the condition only depends on the

distribution of passengers’ ride values, and not on the drivers’ reservation values. Moreover, we prove that

it is satisfied by the two canonical distribution classes we referred to before (cf. Appendix 8 for details):

Corollary 10 The condition in Equation (12) is satisfied if:

4 Note that the limiting function is computed by taking the limit of the revenue-rate in the n’th system as n→∞, cf. Section 2.6;
θ(n) implicitly scales to∞ in this limit
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(a) Scaling behavior of Dynamic-Pricing Policies

(b) The Large-Market Limits under Static and Dynamic Pricing

Figure 3 Figure 3(a) shows the scaling behavior of λ(p`, ph, θ(n), n)/n and E[Π(p`, ph, θ(n), n)]/n with n, for n = 1 (the

bottom-most solid curve in either plot), 10,100 and 1000 (the topmost solid curve); Figure 3(b) plots the large-

market limiting functions. In both, θ is scaled as θ(n) = θ0 logn. We keep one price fixed (indicated by the dotted

yellow vertical line), while the second is varied as p; the dotted blue curves indicate the equilibrium values for the

corresponding static-pricing policy at price p. The dashed green curves indicate the normalized large-market limiting

values. The dashed black vertical line marks out the balance price pbal. We use Λ0/qexit = 2, µ0 = 4, γ/τ = 1 and

distributions FC ∼Gamma(2,1),FV ∼Gamma(2,1), choose the fixed price as 0.75 · pbal and use θ0 = 3.

1. FV is an MHR distribution, i.e., with increasing hazard rate hV (x) = fV (x)

FV (x)
.

2. FV is a Pareto distribution, i.e., FV (x) = 1−
(
xmin
x

)α
, x≥ xmin > 0, with α≥ 1.
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Dynamic Pricing with Multiple Thresholds: A more general dynamic-pricing policy can allow multiple

thresholds θ1 > θ2 > . . . > θk (for some k ∈ N+) and prices p1 < p2 < . . . < pk+1. Characterizing the

performance for a general threshold policy can be challenging even in the large-market limit. However,

in Theorem 14 in Appendix 7, we now show that the behavior of a wide range of pricing policies in the

large-market limit reduces to that of an appropriate single-threshold policy. In particular, we show that in

the large-market limit, the only states with non-zero mass involve only the two prices (pj∗ , pj∗+1) which

bracket pbal.

5. Robustness of Dynamic Pricing

The results in the previous section, in particular, Theorem 9, suggest that in the large-market limit, there are

no benefits to using dynamic pricing policies over static pricing policies. This seems to run counter to the

perception that dynamic pricing policies perform very well in practice. One potential reason is that the effect

of dynamic pricing gets washed out under the large-market scaling. In particular, though our results expose

first-order scaling effects, there could be significant second-order benefits of dynamic pricing. Simulating

the system for small values of n provides some support for this hypothesis: For example, in Figure 3(a),

we can see that for smaller n, the optimal value for the normalized revenue-rate under dynamic pricing (the

solid lines in the plot) are higher than the corresponding optima for the static pricing curves (the dotted

lines). In this section, however, we advance an alternate hypothesis for the success of dynamic pricing –

that dynamic-pricing policies are significantly more robust to uncertainty in the underlying parameters.

A natural way to characterize the robustness of different pricing policies is to consider a setting where the

platform does not have exact knowledge of the underlying passenger and/or driver arrival rates, but knows it

lies in some uncertainty set. In this setting, we can then compare the equilibrium performance under a fixed

policy (static/dynamic) to the optimal pricing-policy (i.e., with perfect knowledge of system parameters).

For example, in Figure 4, we compare the performance of fixed static and dynamic pricing policies when the

underlying parameters (in this case, µ0) exhibit some uncertainty. Visually, it appears that the performance

of the static price falls of sharply with changes in Λ0 and µ0, while dynamic pricing seems to perform

well when compared to the optimal static price 5. We now develop a novel geometric way to formalize this

robustness property of dynamic-pricing policies.

As in previous sections, we restrict ourselves to static and two-price dynamic pricing policies (with

θ(n) = ω(1)), and consider the system performance in the large-market limit. For notational conve-

nience, henceforth in this section we use Λ∗ and µ∗ to denote the true underlying normalized potential

driver/passenger arrival rates in the large-market limit. We also restrict ourselves to supply-constrained

5 Note that we choose FV to be a Gamma distribution, which is MHR; hence, from Theorem 9, we know that the static balance
price is optimal even when compared to any single threshold dynamic-pricing policy.
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Figure 4 Performance (in large-market limit) of static and dynamic pricing under uncertainty in µ0. We fix Λ0 = 3, and vary the

potential arrival-rate of passengers µ0 as 4± 10%. We then compare a static-pricing with pbal based on (Λ0, µ0) =

(3,4), and a dynamic-pricing policy with p` set as the pbal for (Λ0, µ0) = (3,3.6), and ph set as the the pbal

for (Λ0, µ0) = (3,4.4). We plot the normalized metrics (λ̂,E[Π̂]), using distributions FV ∼ Gamma(2,1),FC ∼

Lognormal(1,1). The dashed green curve shows the performance of the system under static-pricing with the correct

pbal corresponding to the actual Λ0, µ0. The the dotted black vertical line indicates the µ0 which was used to fix the

static-pricing policy, while the dotted red vertical lines mark the µ0 for which the balance price is p` and ph.

regimes, wherein pbal > pd−opt, and assume throughout that FV obeys Equation (12). Under these assump-

tions, Theorem (9) shows that using static pricing with the appropriate pbal (corresponding to system param-

eters) is optimal. Before establishing our robustness result, we first present a simple characterization of this

benchmark optimal policy:

Lemma 11 Let pbal(Λ, µ) denote the balance price of the system with parameters Λ and µ. Similarly, let

λ̂bal(Λ, µ) denote the corresponding equilibrium value of λ̂ under static pricing with pbal(Λ, µ). Then, for

every β ≥ 0, we have:

pbal(Λ, µ) = pbal(βΛ, βµ), λ̂bal(βΛ, βµ) = βλ̂bal(Λ, µ).

Lemma 11 captures two important geometric facts regarding the system. First, we see that the locus of

points (Λ, µ)∈R2
+ that share the same pbal are lines through the origin. Moreover, we see that the manifold

(Λ, µ, λ̂bal(Λ, µ)) is a cone – given any point on the manifold, all points on the line passing through the

origin and the given point also lie on the manifold.

Suppose now we are given two points Γ1 = (Λ1, µ1),Γ2 = (Λ2, µ2) in the (Λ, µ) parameter space, and

we know that the true system parameters lie on the line connecting these two points. More formally, given

Γ1,Γ2 ∈ R2
+, we know that (Λ∗, µ∗) lies on the line Γ(α) = (αΛ1 + (1 − α)Λ2, αµ1 + (1 − α)µ2) ,
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(Λ(α), µ(α)), for some α ∈ [0,1]. Now we have the following result (whose proof we defer to Appendix

9):

Theorem 12 Consider the dynamic-pricing policy (p1, p2, θ(n)), where p1 := pbal(Γ1), p2 := pbal(Γ2), and

θ(n) = ω(1) but o(n). Let the true system parameters (Λ∗, µ∗) = (Λ(α∗), µ(α∗)) for some α ∈ [0,1], and

define λ̂1 and E[Π̂1] to be the normalized throughput and revenue in the large-market limit under static

pricing with pbal(Γ1) (similarly for pbal(Γ2)). Now, if FC is a log-concave distribution, then:

λ̂(Λ∗, µ∗)≥ α∗λ̂1 + (1−α∗)λ̂2,

Further, if p1, p2 > pd−opt, we have E[Π̂(Λ∗, µ∗)]≥ α∗E[Π̂1] + (1−α∗)E[Π̂2].

Theorem 12 provides a geometric characterization of the robustness of dynamic pricing policies. Recall

that from Lemma 11, we have that the manifold (Λ, µ, λ̂bal(Λ, µ)) is a cone. Moreover, any fixed static price

corresponds to a ray of the cone. Theorem 12 shows that given a dynamic pricing policy with two prices

p1, p2, the resulting throughput is bounded below by the hyperplane defined by the rays corresponding to

the static policies using each of the two prices. As a special case, when Λ0 is fixed, but µ0 varies, then the

throughput due to the dynamic pricing policy is at least as much as the linear interpolation between the two

static pricing policies; this is the case in Figure 4. Moreover, we get a similar result for revenue.

6. Networks

This section presents a generalization of our model to a network of regions. We now generalize the queueing

model to a network of regions. We present only the salient features of our model here – cf. Appendix 12 for

details.

Queueing model. We assume the platform operates in a geographic area which is partitioned into a number

of non-overlapping regions. Each region corresponds to a node in a graph G(V,E), with edges between

nodes representing direct roads between two regions. As before, a driver who is currently driving is either

available (i.e., free to be matched to a passenger), or busy (i.e., giving a ride to a passenger) – however, now

the driver is associated with the available/busy queue (denoted Ai and Bi) of his current region. Passengers

arrive at each region i according to a Poisson process at rate µi. As before, a passenger lives for at most

one ride – she requests a ride if V >Pi(Ai) (where Pi(Ai) denotes the current price in her region i), and is

successfully matched if Ai > 0.

Driver dynamics. The main difference in the network model is in how we handle driver dynamics. We

assume that the potential rate of driver-arrivals is Λ0, while the actual exogenous rate is Λ. Next, when a new

driver enters the system, we assume he chooses an initial region according to distribution σ= (σi)i∈G – thus

the exogenous arrivals to region i is λei = σiΛ
e. To determine the destination of a ride and the ride time, we

assume busy drivers perform a random walk on graph G in order to serve the ride; we discuss the technical
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details of this approach in Appendix 12. This random walk gives rise to tij = P [dest = j|source = i]; the

matrix T = {tij} is henceforth referred to as the traffic matrix. When a driver completes a service at node

i, we assume that the driver signs-out and departs from the system with probability qexiti > 0; alternatively,

he chooses to stay in the system, and becomes available at j as an available driver with probability qij .

Analysis. The queueing model described above is an open Jackson network consisting of M/M(k)/1

queues for the available drivers, and M/M/∞ queues for the busy drivers. Since all the queues are

reversible, the resulting steady-state distribution is product-form (i.e., the queue-length distributions are

independent; cf. Appendix 12). This allows us to generalize most of our results for the single region to net-

works (modulo some differences arising from the variation in demand/supply across regions). Due to lack

of space, we only sketch our results here; the precise statements and their proofs can be found in Appendix

11.

First, we consider pricing policies where the platform charges a different static price in each region. We

define an equivalent concept to the static balance-price policy studied for a single region (cf. (8)). Theorem

15 shows the extended characterization for this localized static policy and that an appropriate balance-price

vector pbal that maximizes Λ among all localized static policies. Moreover, analogously to Theorem 5 for

a single region, Theorem 16 shows that revenue is maximized among localized static policies either at the

balance-price vector pbal or – when the system is not supply-constrained – at a component-wise marked-up

price pd−opt.

Next, in the single region setting, Theorem 9 showed that no dynamic pricing policy outperforms static

pricing with pbal. We get an equivalent result for the network setting in Theorem 17. Note that, as in Theorem

9, we require FV at each region to satisfy Equation (12). Moreover, we show that pricing policies with

multiple thresholds also reduce to single-threshold policies (Theorems 18 and 19).

Given that the steady state distribution of the network model obeys a product-form distribution, it is

reasonable to conjecture that our robustness result (cf. Theorem 12) generalizes to networks as well. This is

an important direction of ongoing work.
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7. Additional proofs for single queue with static pricing

In this appendix, we provide complete proofs for the results in Section 3. We start with the proof for

Theorem 3:

Proof of Theorem 3. From Equation (7), we have that:

λ= λ(p,n) =
nΛ0

qexit
FC

(
γp

τ + 1
nµ0FV (p)−λ

)
1{nµ0FV (p)>λ},

Note that λ(p,n)≤ nΛ0
qexit

FC
(
γp
τ

)
and also, at equilibrium, we must have λ(p,n)≤ nµ0FV (p). Furthermore,

we can assume w.l.o.g that FV (p)≥ 0 (else the only equilibrium solution is λ(p,n) = 0). Hence we have

that either λ(p,n) = nµ0FV (p)− o(n), or limn→∞ λ/n< µ0FV (p).

If λ(p,n) = nµ0FV (p) − o(n), then as n → ∞, we have λ
n
→ µ0FV (p). However, since λ(p,n) ≤

nΛ0
qexit

FC
(
γp
τ

)
, so we have that Λ0 FC(γp/τ)/qexit ≥ µ0 FV (p).

If on the other hand limn→∞ λ/n < µ0FV (p), then for any g(n)> 1 such that g(n) = ω(1) and g(n) =

o(n) (i.e., g(n) goes to∞ at a sublinear rate), we have:

λ>
nΛ0

qexit
FC

(
γp

τ + g(n)

nµ0FV (p)−λ

)

=
nΛ0

qexit
FC

(γp
τ

)
− nΛ0

qexit

FC

(γp
τ

)
−FC

γp
τ
· 1

1 + τ−1 g(n)

nµ0FV (p)−λ


=
nΛ0

qexit
FC

(γp
τ

)
− o(n).

For the last equality, we use the fact that as n→∞, we have:

FC

(γp
τ

)
−FC

γp
τ
· 1

1 + τ−1 g(n)

nµ0FV (p)−λ

 → 0,

which follows from the continuity of FC , and the fact that τ−1 g(n)/n

µ0FV (p)−λ/n → 0. Thus, we have that λ(p,n) =

nΛ0
qexit

FC
(
γp
τ

)
− o(n) when Λ0 FC(γp/τ)/qexit < µ0 FV (p).

Combining both cases, we get the proposed result. �

We also provide the full proof for Theorem 5:

Proof of Theorem 5. The normalized platform revenue is given by:

Ep[Π(p,n)]

n
= p

(
min

[
Λ0 FC(γp/τ)/qexit, µ0 FV (p)

]
− o(n)

n

)
⇒ lim

n→∞

Ep[Π(p,n)]

n
= p ·min

[
Λ0FC(γp/τ)/qexit, µ0FV (p)

]
.

For prices p≤ pbal, we have from definition that Λ0FC(γp/τ)/qexit ≤ µ0FV (p). Thus, to maximize revenue,

we need to maximize pFC(γp/τ). This however is clearly increasing, and so the maximum is reached at

the balance price pbal.
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On the other hand, for prices p > pbal, we have Λ0FC(γp/τ)/qexit ≥ µ0FV (p), and so we now want to

maximize pFV (p). Recall though that we defined pd−opt be the (highest) price that maximizes pFV (p). If

pd−opt < pbal, then for p= pd−opt the objective function is actually pFC(γp/τ), as Λ0FC(γpd−opt/τ)/qexit ≤
µ0FV (pd−opt). Further, pFV (p) is decreasing for p > pd−opt (since we defined it to be the highest

revenue-maximizing price), so we conclude the global maximum is reached at pbal. On the other hand, if

pd−opt ≥ pbal, it follows that the price maximizing revenue is precisely pd−opt. Hence, limn→∞ popt(n) =

max [pbal, pd−opt].

�

8. Proofs for the single region with dynamic pricing

In this appendix, we provide complete proofs, along with some additional results, for the results in Section

4.

To get qualitative insights into different dynamic-pricing policies, we again consider the scaled system

parametrized by n (with Λ0(n) = Λ0n and µ0(n) = µ0n), and consider the large-market limit n→∞. We

assume all other parameters remain fixed (including prices p` and ph), but allow the threshold θ to scale

as θ(n) = g(n) (for some suitable function g(n)). In particular, suppose g(n) = ω(1) and invertible – then

we can re-parametrize the system in terms of θ (i.e., Λ0(θ) = Λ0g
−1(θ), µ0(θ) = µ0g

−1(θ)). This lets us

characterize the dependence of the platform metrics (cf. Equation (10)) on θ:

Theorem 13 Consider a system with fixed λ,µ0, distributions FC ,FV and prices p`, ph satisfying ρφl < 1.

Then the blocking probability pblock(θ) is monotonically decreasing, while the average earning-per-ride η

and the average idle-time between rides ι are monotonically increasing in θ. Moreover, suppose we scale θ

to∞, and λ(θ), µ(θ) also scale to∞ with θ but in a manner such that ρ, λ(θ)/µ(θ) stays constant. Then:

1. If ρφ` <ρφh < 1:

pblock(θ) = (1− ρφh)(1 + o(1)) , η(θ) = ph− o(1) , ι(θ) =
1

µ(θ)

(
φh

1− ρφh

)
(1 + o(1)).

2. If ρφ` < 1<ρφh:

pblock(θ) = e−θ log(ρφh)+o(θ), η(θ) =
(1− ρφ`)ph + (ρφh− 1)p`

(ρφh− ρφ`)
− o(1), ι(θ) =

θ

λ
(1 + o(θ)) .

Proof of Theorem 13. The change in blocking probability and idle time can be derived via a coupling

argument. Consider the queue with the original θ, and couple it with a queue with threshold θ + 1 by

modifying the departure process when there are θ available drivers – it is easy to see that the queue length in

the latter queue is sample-pathwise greater, and hence the blocking probability is stochastically lesser and

idle time stochastically greater. For the earnings-per-ride, we can re-write the expression as:

E[η] = p` + (ph− p`)

 (ρφh)θ− 1(
ρφh−ρφ`

1−ρφ`

)
(ρφh)θ− 1


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Note that ph ≥ p` by definition, and also φh = (FV (ph))−1 ≥ (FV (p`))
−1 = φ`. Let a= ρφh, b= 1−ρφ` >

0, and define g(θ) = aθ−1
(1+(a−1)/b)aθ−1

. If a> 1, we have g′(θ) = (a−1)aθ loga

b((1+(a−1)/b)aθ−1)2
which is positive ∀θ > 0.

Similarly, if a< 1, we have g′(θ) = a−θ(− loga)(1−a)

b((1−(1−a)/b)−a−θ)2
, which again is positive ∀θ > 0. This completes the

first claim in the Theorem.

For the scaling behavior of the metrics with θ, first note that the second case corresponds to an unsta-

ble queue for all θ, and hence the corresponding metrics follow immediately. Similarly, in the first case,

observe that for large values of θ, the queue essentially behaves as anM/M/1 queue with arrival-rate λ and

departure-rate µ0/φh. For the third case, the limits can be obtained via straightforward algebraic manipula-

tions of the expressions in Equation (10). As an example, we derive the expression for the idle-time.

First recall that for fixed values of λ,µ0, φh, φ` and θ, we have:

E[ι] =

(
πdyn[0]

λ

)(
ρφh(1 + (ρφh)θ(θ(ρφh− 1)− 1))

(ρφh− 1)2
+
ρφ`(ρφh)θ(1 + θ(1− ρφ`))

(1− ρφ`)2

)
Let us denote α= ρφh and β = ρφ`, and consider the case where β < 1<α. Then, using the expression for

πdyn[0], we can write the idle-time E[ι] as a function I(θ) of θ as:

λI(θ) =
(α− 1)(1−β)

(α−β)αθ− (1−β)

(
α(1−αθ + θαθ(α− 1))

(α− 1)2
+
βαθ(1 + θ(1−β))

(1−β)2

)
⇒ λI(θ)

θ
=
α(1−β)((α− 1) + θ−1α−θ− θ−1)

(α− 1)((α−β)− (1−β)α−θ)
+

β(α− 1)((1−β) + θ−1)

(1−β)((α−β)− (1−β)α−θ)

=
α(1−β)(α− 1)

(α− 1)(α−β)
+
β(α− 1)(1−β)

(1−β)(α−β)
+ o(θ) = 1 + o(θ)

The expressions for the blocking probability and earning-per-ride follow in a similar manner. �

We are now in a position to understand the large-market limit of the ride-share platform under dynamic

pricing. First, note that in both cases, average per-ride earnings are monotone in θ – moreover, as n→∞,

the per-ride earnings converge to a constant independent of θ. On the other hand, although the average idle-

time increases with increase in θ, if we scale θ with n, then ι goes to 0 as n→∞ for any choice of θ(n) in

the first case, and as long as θ(n) = o(
√
n) in the second case. Thus, to maximize either the throughput or

the revenue, the platform needs to scale θ as ω(1), but in a manner such that ι goes to 0 (i.e., θ(n) = o(
√
n)).

Moreover, Theorem 13 also shows that under such a scaling, the resulting limit is independent of θ. In

light of this, we henceforth consider dynamic-pricing policies (p`, ph, θ(n)), where θ(n) = ω(1) but o(
√
n).

Also, since the effect of θ disappears in the limit, we parametrize the limiting expressions for λ̂,E[Π̂],E[Ŵ ]

in terms of (p`, ph).

Next, we have the proofs for Theorem 9 and Corollary 10:

Proof of Theorem (9). To characterize the performance of dynamic pricing when p` < pbal ≤ ph, we

need to characterize the solution to the fixed-point equation:

λ=
Λ0

qexit
FC

(
γ

τ

(
p` +

ph− p`
φh−φ`

(µ0

λ
−φ`

)))
(13)
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First, note that for λ∈ [0,Λ0/qexit], Equation (13) always has a unique fixed-point – to see this, observe that

the LHS is strictly increasing in λ, with range [0,Λ0/qexit], while the RHS is non-increasing, with range

⊆ [0,Λ0/qexit].

Next, for p` < ph = pbal, we claim that λbal = Λ0
qexit

FC
(
γpbal
τ

)
= µ0FV (pbal) is a fixed-point of Equation

(13). To see this, setting φh , φbal = 1/FV (pbal), we get:

Λ0

qexit
FC

(
γ

τ

(
p` +

pbal− p`
φbal−φ`

(
µ0

λbal
−φ`

)))
=

Λ0

qexit
FC

(
γ

τ

(
p` +

(
pbal− p`
φbal−φ`

)
(φbal−φ`)

))
=

Λ0

qexit
FC

(γ
τ

(p` + pbal− p`)
)

= λbal

In addition, the above proof also shows that E[η] = pbal whenever p` ≤ pbal and ph = pbal – this gives us the

claim regarding the platforms revenue in the large-market limit.

Next, we want to show that if p` < pbal < ph, then λ≤ λbal. Note that we can always define F−1
C (y), y ∈

[0,1] as the inverse of FC(x). Now, setting ph = p and φ(p) = 1/FV (p), we can re-write Equation (13) as:

τ

γ
F−1
C

(
qexitλ(p)

Λ0

)
= p` +

(
p− p`

φ(p)−φ`

)(
µ0

λ(p)
−φ`

)
Assuming that F−1

C is differentiable, we can differentiate both sides w.r.t p to get:

λ′(p)
qexit

Λ0

d

dλ

(
τ

γ
F−1
C

(
qexitλ(p)

Λ0

))
=

(
µ0

λ(p)
−φ`

)(
φp−φ`− (φp)

2fV (p)(p− p`)
(φ(p)−φ`)2

)
− µ0

λ(p)2

(
p− p`

φ(p)−φ`

)
λ′(p)

⇒ λ′(p) =

(qexitτ

Λ0γ

) dF−1
C

(
qexitλ(p)

Λ0

)
dλ

+
µ0

λ(p)2

(
p− p`

φ(p)−φ`

)−1

·

. . .

(
µ0

λ(p)
−φ`

)(
φp−φ`− (φp)

2fV (p)(p− p`)
(φ(p)−φ`)2

)
(14)

Now note that
dF−1
C

(
qexitλ(p)

Λ0

)
dλ

≥ 0 as F−1
C (x) is non-decreasing for x∈ [0,1]. Also, if p > p`, we have φ(p)≥

φ` and so the coefficient of λ′(p) in the LHS is positive. Next, by stability requirements, we have λ(p)≤
µ0/φ`, which implies

(
µ0
λ(p)
−φ`

)
≥ 0. Finally, consider the function g(p) = φp−φ`− (φp)

2fV (p)(p−p`).

We can write:

g(p) = φ(p)−φ`−φ(p)2fV (p)(p− p`)

= φ(p)2φ`

[
FV (p`)FV (p)−FV (p)2−FV (p`)fV (p)(p− p`)

]
= φ(p)2φ`

[
FV (p) (FV (p)−FV (p`))− fV (p)(p− p`)FV (p`)

]
Thus, for g(p) < 0, we need FV (p) (FV (p)−FV (p`))− fV (p)(p− p`)FV (p`) < 0. This however is pre-

cisely the condition we stated in Equation (12). Now, substituting back in Equation (14), we have that

λ′(p)≤ 0∀p > pbal. Since we already have that λ(pbal) = λbal, thus we get that λ(p)≤ λbal ∀ph > pbal
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Revenue: Next, we want to show that the platform revenue under dynamic pricing is also bounded by that

under static pricing with p= pbal. Now we have E[Πdyn(p)] = (1−γ)λ(p)E[η(p)]. From above, we already

know that λ(p) is decreasing for p≥ pbal – thus, it is sufficient to show that E[η(p)] is also decreasing in p

in the same range. Now we have:

dE[η(p)]

dp
=

d

dp

(
p` +

(
p− p`

φ(p)−φ`

)(
µ0

λ(p)
−φ`

))
= λ′(p)

qexitτ

Λ0γ

d

dλ

(
F−1
C

(
qexitλ(p)

Λ0

))
,

where the last line follows from the derivation of Equation (14). Now, as before, we have that
d
dλ

(
F−1
C

(
qexitλ(p)

Λ0

))
> 0, and also from Equation (14), we know that dλ(p)/dp < 0 – thus we have that

E[η(p)] is decreasing in p, and hence so is E[Πdyn(p)]

�

Proof of Corollary 10. Rewriting Equation (12), we have that we want to show g(p) ,

FV (p) (FV (p)−FV (p`))− fV (p)(p− p`)FV (p`)< 0:

1. Suppose the hazard-rate of FV is given by hV (x) – this implies FV (x) = exp
(
−
∫ x

0
hV (t)dt

)
and

fV (x) = hV (x)FV (x). Substituting in the above condition, we get:

g(p) =FV (p) (FV (p)−FV (p`))− fV (p)(p− p`)FV (p`)

=FV (p)FV (p`)

(
1− FV (p)

FV (p`)
− fV (p)(p− p`)

FV (p)

)
≤ 1− exp

(
−
∫ p

p`

hV (t)dt

)
− (p− p`)hV (p)

≤ 1− (p− p`)hV (p)− exp (−(p− p`)hV (p)) (By the MHR condition)

≤ 0 (Since (1−x)< e−x ∀x> 0)

2. Let FV (p) =
(
pmin
p

)α
, with p` ≥ pmin > 0 and α ≥ 1. Consider p = p` + ∆p, for some ∆p > 0.

Substituting in g(p), we get:

g(p) =FV (p)FV (p`)

(
1− FV (p)

FV (p`)
− fV (p)(p− p`)

FV (p)

)
=FV (p)FV (p`)

(
1−

(
p`
p

)α
− α(p− p`)

p

)
=FV (p)FV (p`)

((
1−α∆p

p

)
−
(

1− ∆p

p

)α)
≤ 0 (Since (1−x)α ≥ (1−αx) ∀x∈ [0,1], α > 1)

This completes verifying Equation (12) in both the cases. �

9. Additional Details on Robustness of Dynamic Pricing

In this appendix, we provide proofs for the results in Section 5, and some additional numerical demonstra-

tions of the robustness of dynamic pricing policies. We start with the proof for Lemma 11
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Proof of Lemma 11 The proof directly follows from the definition of balance price pbal:

ΛFC (γpbal/τ) = µFV (pbal) = λbal(Λ, µ). From the first equality, we get the locus of (Λ, µ) for a given

pbal; the second shows that λbal(Λ, µ) scales linearly with (Λ, µ). �

Finally, we have the proof of Theorem 12:

Proof of Theorem 12 For ease of notation, in this proof we use λ to denote the normalized large-market

limit, i.e., λ= λ̂ := limn→∞ λ(n)/n, where λ(n) corresponds to the rate of incoming drivers to the n−th

system (with Λ(n) = nΛ and µ(n) = nµ).

First, note that since (Λ∗, µ∗) lies on the line connecting Γ1 and Γ2, then we have that pbal(Λ∗, µ∗) ∈
[p1, p2] – this follows from the geometric characterization in Lemma 11. Next w.l.o.g, we assume p1 < p2;

furthermore, we can also set qexit = 1 and γ/τ = 1 (since otherwise we can re-scale the Λ, µ axes). Finally

recall that φi = 1/Fv(pi), i∈ {1,2}, and also, from Equation (8), we have that λ1 = µFV (p1) = ΛFC(p1).

Our goal is to show that, under dynamic-pricing policy (p1, p2, θ(n)), the normalized driver arrival-rate

in the large-market limit λ(Λ∗, µ∗)>α∗λ1 +(1−α∗)λ2. Let λ= λ(Λ∗, µ∗); modifying Equation (11) using

the above assumptions, we have:

λ= Λ FC

(
p`

(
φ2−µ0/λ

φ2−φ`

)
+ ph

(
µ0/λ−φ1

φh−φ1

))
= Λ FC

p1

(
µ2
λ2
− µ

λ

)
+ p2

(
µ
λ
− µ1

λ1

)
µ2
λ2
− µ1

λ1

 .

To characterize the properties of the equilibrium λ under dynamic pricing, we define the gap function g as

g(λ,Λ, µ) = λ−Λ FC

(
p1

(
µ2
λ2
−µλ

)
+p2

(
µ
λ−

µ1
λ1

)
µ2
λ2
−µ1
λ1

)
. Now we have:

g(λ(α),Λ(α), µ(α))

Λ(α)
=
λ(α)

Λ(α)
−FC

p1

(
µ2
λ2
− µ(α)

λ(α)

)
+ p2

(
µ(α)

λ(α)
− µ1

λ1

)
µ2
λ2
− µ1

λ1


=
λ(α)

Λ(α)
−FC

p1

(
µ2
λ2
− tµ1+(1−α)µ2

αλ1+(1−α)λ2

)
+ p2

(
tµ1+(1−α)µ2
αλ1+(1−α)λ2

− µ1
λ1

)
λ1µ2−λ2µ1

λ1λ2


=
αλ1 + (1−α)λ2

αΛ1 + (1−α)Λ2

−FC

(
αλ1

αλ1 + (1−α)λ2

p1 +
(1−α)λ2

αλ1 + (1−α)λ2

p2

)
.

Note that for a fixed value of (Λ, µ), the second term of g(λ,Λ, µ) is non-increasing in λ, hence, it follows

that g(λ,Λ, µ) is non-decreasing in λ. Also, by definition, we know that g(λ(Λ, µ),Λ, µ) = 0. We conclude

that λ(α)<λπ(Λ(α), µ(α)) if and only if g(λ(α),Λ(α), µ(α))< 0 or, equivalently, if and only if:

tαΛ1FC(p1) + (1−α)Λ2FC(p2)

tΛ1 + (1−α)Λ2

=
αλ1 + (1−α)λ2

αΛ1 + (1−α)Λ2

≤FC

(
αλ1

αλ1 + (1−α)λ2

p1 +
(1−α)λ2

αλ1 + (1−α)λ2

p2

)
Since both sides are positive, proving the above identity is equivalent to showing:

log

(
tΛ1FC(p1) + (1−α)Λ2FC(p2)

tΛ1 + (1−α)Λ2

)
≤ log

(
FC

(
αλ1

αλ1 + (1−α)λ2

p1 +
(1−α)λ2

αλ1 + (1−α)λ2

p2

))
.

(15)



30 Riquelme, Banerjee, Johari: Pricing in Ride-share Platforms

Note that by the log-concavity of FC , the RHS satisfies:

log

(
FC

(
αλ1

αλ1 + (1−α)λ2

p1 +
(1−α)λ2

αλ1 + (1−α)λ2

p2

))
≥ αλ1

αλ1 + (1−α)λ2

log(FC(p1)) +
(1−α)λ2

αλ1 + (1−α)λ2

log(FC(p2))

=
αΛ1FC(p1) log(FC(p1)) + (1−α)Λ2FC(p2) log(FC(p2))

αΛ1FC(p1) + (1−α)Λ2FC(p2)
.

Finally, applying the log-sum inequality 6, with a= [αΛ1FC(p1), (1−α)Λ2FC(p2)], b= [αΛ1, (1−α)Λ2],

we get:

αΛ1FC(p1) log(FC(p1)) + (1−α)Λ2FC(p2) log(FC(p2))

αΛ1FC(p1) + (1−α)Λ2FC(p2)

≥ log

(
αΛ1FC(p1) + (1−α)Λ2FC(p2)

αΛ1 + (1−α)Λ2

)
,

which is the LHS of (15). This completes the proof of robustness for λ̂(Λ∗, µ∗).

The above robustness argument also extends to revenue robustness, under the additional assump-

tion that p2 > p1 > pd−opt. First, recall that Π(λ̂i) = piλ̂i and Π(λ̂) = Eπ[P ]λ̂. For fixed µ∗, assume

that Λ∗ ∈ [Λ2,Λ1]. Again, let π be the dynamic-pricing policy π = (p1, p2, θ(n)), where (p1, λ̂1) :=

(pbal(Λ1, µ), λ̂bal(Λ1, µ)), (p2, λ̂2) := (pbal(Λ2, µ), λ̂bal(Λ2, µ)), and θ(n) = ω(1) but o(n). Note that p1 <

p2, so that λ̂1 > λ̂2. We write ᾱ∗ = 1− α∗. Let λ̂= λ̂(Λ∗, µ∗) be the rate of incoming drivers induced by

policy π under parameters Λ∗, µ∗. By the robustness result with respect to λ̂, we know that:

λ̂(Λ∗, µ∗)>α∗λ̂1 + ᾱ∗λ̂2. (16)

We want to show a similar statement for revenue, i.e.,

E[Π(λ̂)]>α∗E[Π(λ̂1)] + ᾱ∗E[Π(λ̂2)].

Equivalently, by the definition of revenue, we want to show:

λ̂Eπ [P ]>α∗λ̂1p1 + ᾱ∗λ̂2p2.

In the limit n→∞, π(p1) = ρφ2−1
ρ(φ2−φ1)

, π(p2) = 1−ρφ1
ρ(φ2−φ1)

. Therefore, we expand the expressions to find that:

Eπ[P ] = π(p1)p1 +π(p2)p2 =
ρφ2− 1

ρ(φ2−φ1)
· p1 +

1− ρφ1

ρ(φ2−φ1)
· p2

6 Let ai, bi > 0 for i= 1, . . . , n and define a=
∑
i ai, b=

∑
i bi. Then

∑
i ai log(ai/bi)≥ a loga/b.
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Recall that λ̂i = µ/φi. It follows that:

E[Π(λ̂)]−α∗E[Π(λ̂1)]−ᾱ∗E[Π(λ̂2)]

=

(
λ̂

ρφ2− 1

ρ(φ2−φ1)
−α∗λ̂1

)
p1 +

(
λ̂

1− ρφ1

ρ(φ2−φ1)
− ᾱ∗λ̂2

)
p2

=

(
λ̂φ2−µ
φ2−φ1

−α∗λ̂1

)
p1 +

(
µ− λ̂φ1

φ2−φ1

− ᾱ∗λ̂2

)
p2

=

(
λ̂/λ̂2− 1

1/λ̂2− 1/λ̂1

−α∗λ̂1

)
p1 +

(
1− λ̂/λ̂1

1/λ̂2− 1/λ̂1

− ᾱ∗λ̂2

)
p2

=
1

1/λ̂2− 1/λ̂1

[(
λ̂

λ̂2

− 1−α∗
(
λ̂1

λ̂2

− 1

))
p1 +

(
1− λ̂

λ̂1

− ᾱ∗
(

1− λ̂2

λ̂1

))
p2

]

=
1

1/λ̂2− 1/λ̂1

[(
λ̂−α∗λ̂1

λ̂2

− 1 +α∗

)
p1 +

(
ᾱ∗λ̂2− λ̂

λ̂1

+ 1− ᾱ∗
)
p2

]

=
1

1/λ̂2− 1/λ̂1

[(
λ̂−α∗λ̂1− ᾱ∗λ̂2

λ̂2

)
p1 +

(
α∗λ̂1 + ᾱ∗λ̂2− λ̂

λ̂1

)
p2

]

=
λ̂−α∗λ̂1− ᾱ∗λ̂2

1/λ̂2− 1/λ̂1

[
p1

λ̂2

− p2

λ̂1

]
=
λ̂−α∗λ̂1− ᾱ∗λ̂2

1/λ̂2− 1/λ̂1

µ

[
p1/φ1− p2/φ2

λ̂1λ̂2

]
.

By (16), we know that λ̂− α∗λ̂1 − ᾱ∗λ̂2 > 0 and, as λ̂1 > λ̂2, it follows that 1/λ̂2 − 1/λ̂1 > 0. Moreover,

the value of pF̄V (p) = p/φp decreases for values of p larger than p= pd−opt, which implies that p1/φ1 −

p2/φ2 > 0. We conclude that E[Π(λ̂)]>α∗E[Π(λ̂1)] + ᾱ∗E[Π(λ̂2)]. �

10. Dynamic Pricing with Multiple Thresholds

In Section 4, we discussed a dynamic-pricing policy with two prices (p`, ph) and a threshold θ. A more

general dynamic-pricing policy can allow multiple thresholds θ1 > θ2 > . . . > θk (for some k ∈ N+) and

prices p1 < p2 < . . . < pk+1. The highest price pk+1 is charged if the number of available drivers is less

than or equal to the minimum threshold θk, the lowest price p1 charged if the number of available drivers

(strictly) exceeds the maximum threshold θ1, and price pi , 1< i< k+ 1 charged if the number of available

drivers lies in (θi, θi−1]. Characterizing the performance for a general threshold policy can be challenging

even in the large-market limit. However, we now show that the behavior of a wide range of pricing policies

in the large-market limit reduces to that of an appropriate single-threshold policy.

Theorem 14 Given a pricing schedule (θ,p) such that:

pi ≤ pi+1 ∀ i∈ {1,2, . . . , k}, θi(n)− θi+1(n) = ω(1)∀ i∈ {1,2, . . . , k− 1}

Suppose pbal ≤ pk+1. Then there exists a unique j∗ ∈ {1, . . . , k} s.t.:

1. pbal ∈ [pj∗−1, pj∗ ].
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(a) Robustness to Supply Variability

(b) Robustness to Demand Variability

Figure 5 Performance (in large-market limit) of static and dynamic pricing under changes in Λ0 and µ0. In Figure 5(a), we fix

µ0 = 4, and vary the potential arrival-rate of drivers Λ0 as 3±10%. We then compare a static-pricing with pbal based

on (Λ0, µ0) = (3,4), and a dynamic-pricing policy with p` set as the pbal for (Λ0, µ0) = (3.3,4), and ph set as the

the pbal for (Λ0, µ0) = (2.7,4). Similarly, in Figure 5(a), we set Λ0 = 3, vary the potential arrival-rate of passengers

µ0 as 4± 10%, and design the static and dynamic pricing policies as before. In both plots, we plot the normalized

metrics (λ̂,E[Π̂]), using distributions FV ∼Gamma(2,1),FC ∼Lognormal(1,1). The dashed green curve shows

the performance of the system under static-pricing with the correct pbal corresponding to the actual Λ0, µ0. The the

dotted black vertical line indicates the Λ0 (respectively, µ0) which was used to fix the static-pricing policy. The dotted

red vertical lines mark the Λ0 (correspondingly, µ0) for which the balance price is p` and ph.

2. For any function c(n) = ω(1), we have:

π ([θj∗ − c(n), θj∗ + c(n)])→ 1, as n→∞.

[ of Theorem 14]
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We first prove the second statement of the theorem, and then we show the first one. So we start showing

that, under the assumptions of the theorem, for any function c(n) = ω(1), we have:

π ([θj∗ − c(n), θj∗ + c(n)])→ 1, as n→∞.

We start by noting that due to the monotonicity of F̄V we have that

p1 < p2 < · · ·< pk, φ1 <φ2 < · · ·<φk.

For convenience, we define m(i) = θi− θi+1, and m(k− 1) = θk−1.

After fixing the pricing schedule, the rate at which new drivers enter the system is determined and, say,

equal to λ. We define ρ to be the ratio λ/µ, where µ is the rate at which potential passengers arrive to the

system. The number of available drivers at time t is then distributed as a birth–death process where the birth

rate is independent of the state —and equal to λ— but the death rate depends on the price that was charged

to passengers arriving at that state of the system. In particular, at those states charging p, the death rate is

precisely µ/φp. We can now compute the steady-state distribution π to find that it is given by

π(i) = (ρφk)
i π(0), i≤ θk−1,

π(i) = ρi
[ k∏
s=j+1

φm(s−1)
s

]
φ
i−θj
j π(0), θj < i≤ θj−1,

π(i) = ρi
[ k∏
s=2

φm(s−1)
s

]
φi−θ11 π(0), i > θ1.

We can safely assume that 1>ρφ1, as otherwise the queue would be unstable. Further, if 1>ρφk then π(0)

is the most likely state, and the system will tend to spend all the time in the highest price regime. So we

assume ρφk > 1. We are mainly interested in finding the pair of prices (pj∗−1, pj∗) such that

ρφj∗−1 < 1<ρφj∗ . (17)

The reason is that, in order to see how π behaves as a function of the state, it is useful to compute the ratio

among consecutive states. Formally, if θj < i≤ θj−1 —think of θk = 0 and θ0 =∞—, then

π(i)

π(i− 1)
= ρφj =

{
> 1, j ≥ j∗,
< 1, j < j∗.

(18)

We conclude that π reaches its maximum value at π(θj∗−1) and it exhibits an exponential decay of mass for

states greater and smaller than θj∗−1. In particular,

π(θj∗−1) = ρθj∗−1

[ k∏
s=j∗+1

φm(s−1)
s

]
φ
θj∗−1−θj∗
j∗ π(0) = ρθj∗−1

[ k∏
s=j∗

φm(s−1)
s

]
π(0).
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Let us compute the normalizing constant π(0). In this case, we need to do some laborious work:

π(0)−1 = π(0)−1
∑
i

π(i) = π(0)−1

θk−1∑
i=0

π(i) +
k−1∑
j=2

θj−1∑
i=θj+1

π(i) +
∞∑

i=θ1+1

π(i)


=

θk−1∑
i=0

(ρφk)
i +

k−1∑
j=2

θj−1∑
i=θj+1

ρi
[ k∏
s=j+1

φm(s−1)
s

]
φ
i−θj
j +

∞∑
i=θ1+1

ρi
[ k∏
s=2

φm(s−1)
s

]
φi−θ11

=
1− (ρφk)

θk−1+1

1− ρφk
+

k−1∑
j=2

[ k∏
s=j+1

φm(s−1)
s

]
φ
−θj
j

θj−1∑
i=θj+1

(ρφj)
i +

[ k∏
s=2

φm(s−1)
s

]
φ−θ11

∞∑
i=θ1+1

(ρφ1)i

=
1− (ρφk)

θk−1+1

1− ρφk
+

k−1∑
j=2

[ k∏
s=j+1

φm(s−1)
s

]
φ
−θj
j (ρφj)

θj+1 1− (ρφj)
θj−1−θj

1− ρφj
+

[ k∏
s=2

φm(s−1)
s

]
φ−θ11

(ρφ1)θ1+1

1− ρφ1

=
1− (ρφk)

θk−1+1

1− ρφk
+

k−1∑
j=2

[ k∏
s=j+1

φm(s−1)
s

]
ρθj (ρφj)

1− (ρφj)
θj−1−θj

1− ρφj
+

[ k∏
s=2

φm(s−1)
s

]
ρθ1(ρφ1)

1− ρφ1

=
(ρφk)

θk−1+1− 1

ρφk− 1
+

j∗−1∑
j=2

w(j)ρθj (ρφj)
1− (ρφj)

θj−1−θj

1− ρφj
+

k−1∑
j=j∗

w(j)ρθj (ρφj)
(ρφj)

θj−1−θj − 1

ρφj − 1
+w(1)

ρθ1(ρφ1)

1− ρφ1

.

where we defined w(j) =
∏k

s=j+1 φ
m(s−1)
s . As φs > 1 for all s, we see that w(j) is decreasing in j. Further,

w(j)

w(j+ t)
=

∏k

s=j+1 φ
m(s−1)
s∏k

s=j+t+1 φ
m(s−1)
s

=

j+t∏
s=j+1

φm(s−1)
s .

Note that θj =
∑k−1

t=j m(t). It follows that w(j)ρθj =
∏k

s=j+1(ρφs)
m(s−1). We are interested in exploring

the asymptotic behavior of π(θj∗−1) =w(j∗− 1) ρθj∗−1 π(0) = 1/(π(0)−1/w(j∗− 1)ρθj∗−1), and to do so

we consider the terms of π(0)−1 separately, according to whether they correspond to j < j∗ or j ≥ j∗.
Firstly, for terms j < j∗, we see that, as m(j− 1, n) = θj−1(n)− θj(n)→∞ when n→∞,

1

w(j∗− 1) ρθj∗−1

(
j∗−1∑
j=2

w(j)ρθj (ρφj)
1− (ρφj)

θj−1−θj

1− ρφj
+w(1)

ρθ1(ρφ1)

1− ρφ1

)

∼ 1

w(j∗− 1) ρθj∗−1

j∗−1∑
j=1

w(j)ρθj
ρφj

1− ρφj

=

j∗−1∑
j=1

∏k

s=j+1(ρφs)
m(s−1)∏k

s=j∗(ρφs)
m(s−1)

ρφj
1− ρφj

=
ρφj∗−1

1− ρφj∗−1

+

j∗−2∑
j=1

j∗−1∏
s=j+1

(ρφs)
m(s−1) ρφj

1− ρφj
→ ρφj∗−1

1− ρφj∗−1

,

when n→∞, as ρφs < 1 when s < j∗.

On the other hand, when j ≥ j∗,

1

w(j∗− 1) ρθj∗−1

(
k−1∑
j=j∗

w(j)ρθj (ρφj)
(ρφj)

m(j−1)− 1

ρφj − 1
+

(ρφk)
θk−1+1− 1

ρφk− 1

)
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=
k−1∑
j=j∗

w(j)ρθj

w(j∗− 1) ρθj∗−1
(ρφj)

(ρφj)
m(j−1)− 1

ρφj − 1
+

(ρφk)
m(k−1)+1− 1

w(j∗− 1) ρθj∗−1(ρφk− 1)

=
k−1∑
j=j∗

∏k

s=j+1(ρφs)
m(s−1)∏k

s=j∗(ρφs)
m(s−1)

(ρφj)
(ρφj)

m(j−1)− 1

ρφj − 1
+

(ρφk)
m(k−1)+1− 1∏k

s=j∗(ρφs)
m(s−1)(ρφk− 1)

=
k−1∑
j=j∗

(ρφj)
m(j−1)− 1∏j

s=j∗(ρφs)
m(s−1)

ρφj
ρφj − 1

+
ρφk

ρφk− 1

(ρφk)
m(k−1)− 1/(ρφk)∏k

s=j∗(ρφs)
m(s−1)

=

(
1− 1

(ρφj∗)m(j∗−1)

)
ρφj∗

ρφj∗ − 1
+

k−1∑
j=j∗+1

(ρφj)
m(j−1)− 1∏j

s=j∗(ρφs)
m(s−1)

ρφj
ρφj − 1

+
ρφk

ρφk− 1

(ρφk)
m(k−1)− 1/(ρφk)∏k

s=j∗(ρφs)
m(s−1)

→ ρφj∗

ρφj∗ − 1
,

when n→∞, as ρφs > 1 when s≥ j∗. It follows that as n→∞

π(θj∗−1)→ 1
ρφj∗−1

1−ρφj∗−1
+

ρφj∗
ρφj∗−1

> 0. (19)

Our goal is to show that when n grows the measure π strongly concentrates around θj∗−1 = θj∗−1(n).

Moreover, π does concentrate around states on which passengers are charged either pj∗−1 or pj∗ . In order

to prove such result, we will consider intervals of the form [θj∗−1− c, θj∗−1 + c] for some suitable c. Let us

choose any positive integer function c= c(n) such that c(n)→∞ as n→∞ and c(n) = o(m(j∗− 1)) and

c(n) = o(m(j∗ − 2)), that is, both pricing gaps grow faster. Actually, c could grow in an arbitrarily slow

fashion.

Note the interval dependance on n. Then, by (18), we see that

π([θj∗−1− c, θj∗−1]) = π(θj∗−1)
c∑
i=0

(ρφj∗)
−i = π(θj∗−1)

1− (ρφj∗)
−(c+1)

1− (ρφj∗)−1
. (20)

Similarly,

π([θj∗−1, θj∗−1 + c]) = π(θj∗−1)
c∑
i=0

(ρφj∗−1)i = π(θj∗−1)
1− (ρφj∗−1)c+1

1− ρφj∗−1

.

Taking into account the double counting of θj∗−1, it follows that the mass of [θj∗−1− c, θj∗−1 + c] is

π([θj∗−1− c, θj∗−1 + c]) = π(θj∗−1)

[
1− (ρφj∗)

−(c+1)

1− (ρφj∗)−1
+

1− (ρφj∗−1)c+1

1− ρφj∗−1

− 1

]
= π(θj∗−1)

[
ρφj∗ − (ρφj∗)

−c

ρφj∗ − 1
+
ρφj∗−1− (ρφj∗−1)c+1

1− ρφj∗−1

]
. (21)

We conclude by (17), (19) and (21) that as n→∞

π([θj∗−1− c, θj∗−1 + c])→ 1.

Now, let us consider the first statement of the theorem. We claim that

pbal ∈ [pj∗−1, pj∗ ].
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Recall that by the second part of the theorem, we know that there exists a unique j∗ ∈ {2, . . . , k} such

that for any sequence c= c(n)→∞ as n→∞, we have that

π([θj∗−1− c, θj∗−1 + c])→ 1, as n→∞.

Further, j∗ satisfies ρφj∗−1 < 1<ρφj∗ . By taking c(n) = o(m(j∗− 1)) and c(n) = o(m(j∗)), we conclude

that the system is always around θj∗−1 and only two prices (pj∗−1, pj∗) are charged to passengers.

Now we consider two different systems, while both share Λ0(n) and µ0(n). In the first one, say system A,

we apply the k-price policy πA = (θ,p). System B uses a two-price policy, namely πB = (pj∗−1, pj∗ , θj∗−1).

Note that the Markov Chains induced by πA and πB are not equal, however, we claim that in the limit

(n→∞) their behavior is identical in a way that we now formally describe.

We claim that

λA = lim
n→∞

λA(n) = lim
n→∞

λB(n) = λB. (22)

By definition, λA and λB are the solutions to the following fixed-point equations:

λA = Λ0 FC

(
EλA [R]

τ

)
, λB = Λ0 FC

(
EλB [R]

τ

)
.

Let us denote by pπ(i) the price at state i when using policy π. We also define πn(p) to be the sum of π over

all states with price p for fixed n. Then, π(p) = limn→∞ πn(p). For system A, we have that

λA = Λ0 FC

(
EλA [R]

τ

)
= Λ0 FC

(∑∞
i=0 pπA(i)πA(i)

τ

)
= Λ0 FC

(∑k

i=1 pi πA(pi)

τ

)
= Λ0 FC

(
pj∗−1 πA(pj∗−1) + pj∗ πA(pj∗)

τ

)
, (23)

as for i 6∈ {j∗− 1, j∗} we have that πA(i) = 0. On the other hand, system B only uses two prices.

It follows that

λB = Λ0 FC

(
EλB [R]

τ

)
= Λ0 FC

(
pj∗−1 πB(pj∗−1) + pj∗ πB(pj∗)

τ

)
. (24)

We want to show that λA is, in fact, a fixed-point solution for equation (24). We do the following: we first

consider system B assuming λ = λA, we compute πB(pj∗−1) and πB(pj∗) in such a system, and then we

show that the right-hand side of (24) actually equals λA. In order to complete the last step, we will use

equation (23) —note that under system A. Finally, by uniqueness it follows that λA = λB .

The key point of using λA for system B is that we actually know that ρφj∗−1 < 1 < ρφj∗ , where ρ =

λA/µ0, and that also holds when applied to system B. Recall that πB = (pj∗−1, pj∗ , θj∗−1).

Therefore, the steady-state distribution is given by

πB(i) = (ρφj∗)
i
πB(0), for i≤ θj∗−1,

πB(i) = ρiφ
θj∗−1

j∗−1 φ
i−θj∗−1

j∗ πB(0), for i > θj∗−1.
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Let us find πB(0),

1 =
∞∑
i=0

πB(i) = πB(0)

θj∗−1∑
i=0

(ρφj∗)
i
+πB(0)

∞∑
i=θj∗−1+1

ρiφ
θj∗−1

j∗−1 φ
i−θj∗−1

j∗

= πB(0)

[
(ρφj∗)

θj∗−1+1− 1

ρφj∗ − 1
+

(ρφj∗−1)(ρφj∗)
θj∗−1

1− ρφj∗−1

]
.

Hence,

πB(0) =

[
(ρφj∗)

θj∗−1+1− 1

ρφj∗ − 1
+

(ρφj∗−1)(ρφj∗)
θj∗−1

1− ρφj∗−1

]−1

.

We conclude that

πB(pj∗−1) = lim
n→∞

(ρφj∗−1)(ρφj∗ )
θj∗−1

1−ρφj∗−1

(ρφj∗ )
θj∗−1+1−1

ρφj∗−1
+

(ρφj∗−1)(ρφj∗ )
θj∗−1

1−ρφj∗−1

= lim
n→∞

ρφj∗−1

(1− ρφj∗−1)
ρφj∗−(ρφj∗ )

−θj∗−1

ρφj∗−1
+ ρφj∗−1

=
φj∗−1

1−ρφj∗−1

ρφj∗−1
φj∗ +φj∗−1

.

Similarly, we have that

πB(pj∗) =

1−ρφj∗−1

ρφj∗−1
φj∗

1−ρφj∗−1

ρφj∗−1
φj∗ +φj∗−1

.

Now, let us go back to System A. By equation (19), we know that

πA(θj∗−1)→ 1
ρφj∗−1

1−ρφj∗−1
+

ρφj∗
ρφj∗−1

> 0. (25)

If we take c(n) =m(j∗− 1) = θj∗(n)− θj∗−1(n) in (10), we conclude that

πA(pj∗−1) = lim
n→∞

πA(θj∗−1)

c(n)∑
i=1

(ρφj∗−1)i

= lim
n→∞

πA(θj∗−1)

(
1− (ρφj∗−1)c(n)+1

1− ρφj∗−1

− 1

)
= lim

n→∞
πA(θj∗−1)

ρφj∗−1− (ρφj∗−1)c(n)+1

1− ρφj∗−1

=

ρφj∗−1

1−ρφj∗−1

ρφj∗−1

1−ρφj∗−1
+

ρφj∗
ρφj∗−1

=
φj∗−1

φj∗−1 +
1−ρφj∗−1

ρφj∗−1
φj∗

= πB(pj∗−1).
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Similarly, we have that

πA(pj∗) = 1−πA(pj∗−1) =

1−ρφj∗−1

ρφj∗−1
φj∗

φj∗−1 +
1−ρφj∗−1

ρφj∗−1
φj∗

= πB(pj∗).

Therefore, it directly follows that λA satisfies the fixed-point equation for system B:

λB = Λ0 FC

(
pj∗−1 πB(pj∗−1) + pj∗ πB(pj∗)

τ

)
= Λ0 FC

(
pj∗−1 πA(pj∗−1) + pj∗ πA(pj∗)

τ

)
= λA.

Note that Markov Chains A and B are not equal. However, informally speaking, their behavior in equilib-

rium is effectively identical: they always remain in regions where prices are pj∗−1 and pj∗ , and they do so

with equal probability in both systems.

Recall that in system B, we have that ρφj∗−1 < 1<ρφj∗ . Suppose now that pbal 6∈ [pj∗−1, pj∗ ]. Then there

are two possible cases, either pbal > pj∗ > pj∗−1 or pbal < pj∗−1 < pj∗ .

By Theorem 7, in the first case, System B would lead to λB = Λ0 FC(pj∗/τ), which directly implies that

EB[R] = pj∗ . However, we know that the expected price —in equilibrium— of System B is precisely

EB[R] = pj∗−1 πB(pj∗−1) + pj∗ πB(pj∗)< pj∗ .

In the second case, again by Theorem 7, system B would lead to λB = µ0F̄V (pj∗−1) = µ0/φj∗−1. But then,

ρφj∗−1 =
λB
µ0

φj∗−1 =
µ0/φj∗−1

µ0

φj∗−1 = 1,

which is a contradiction with the fact that ρφj∗−1 < 1<ρφj∗ for system B. It follows that pbal ∈ [pj∗−1, pj∗ ].

11. Results and proofs for Networks of Ride-share Queues

In this appendix, we provide complete proofs for the results in Section 6. We start with the proof for

Theorem 15:

Theorem 15 The static localized policy pbal maximizing limn→∞Λ(n)/n satisfies

Λ0 FC

(
σT

τ

∞∑
k=0

W k p

)
= min

i
βi(pi) = βj(pj), for all j ∈G, (26)

where βi(pi) = µ0(i)

(σTB)i
F̄V (pi) and W = TQ.

[ of Theorem 15]

For ease of notation, in this proof we use λ to denote the normalized large-market limit λe =

limn→∞ λ
e(n)/n, where λe(n) corresponds to the vector of rates of incoming drivers to the n−th system,

with Λ0(n) = nΛ0 and µ(n) = nµ0. Similarly, we define Λe = limn→∞Λ(n)/n, where Λ(n) is the total
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rate of incoming drivers to the n−th system. We add subscripts and parameters to λ and Λ when several

different systems are being considered.

Suppose that we fix some static localized prices (pi)i∈G. Then, the rates at which passengers arrive at

each region i are totally determined:

µ(i) = µ0(i) F̄V (pi), i∈G.

For simplicity, we assume that the distribution of V does not change from one region to another. One could

think of users from different neighborhoods having distinct utility functions, or being willing to pay different

amounts of money for the same ride. However, as long as distributions Vi satisfy the same conditions as V

does, the analysis could be easily extended.

Let λe ∈ Rn be the rate at which new drivers arrive at each region, and let Λe ∈ R be the total rate at

which drivers enter the system. We have that λe = Λeσ. Further, we know that the effective rate of available

drivers is given by —see appendix 12—

λ= λeT (I −QT )−1 = λeTB,

where we defined B := (I −QT )−1 =
∑∞

k=0(QT )k. Note that bij ≥ 0.

We would like to find the value of λ as a function of the pricing policy p = (pi)i∈G. Firstly, we need to

satisfy the stability conditions at each queue i∈G: λ(i)≤ µ(i). Equivalently, for all i∈G, we need

(λeTB)i = Λe(σTB)i ≤ µ0(i)F̄V (pi),

which implies that

Λe ≤min
i∈G

µ0(i)

(σTB)i
F̄V (pi) = min

i∈G
βi(pi),

where we defined βi(pi) = µ0(i)

(σTB)i
F̄V (pi). Further, we also define Ci = µ0(i)

(σTB)i
, an exogenous constant —as

long as no control is introduced on Q. So, we have that βi(pi) =Ci F̄V (pi).

On the other hand, each potential driver will sample his reservation priceC so that, if the system is supply

constrained, Λ will be the fixed-point solution to

Λe = Λ0 FC

(
Ep,Λ[R]

Ep,Λ[I] + τ

)
,

where τ is the expected time taken by a ride and R is the revenue per ride.

Let us compute Ep,Λ[R] now. Denote by wij the probability that a driver starts a ride from j given that

he started his last ride from i. We see that wij =
∑

k∈G tikqkj , and it follows that W = TQ. Consider the

Markov Chain M over G with transition matrix W and initial distribution σ. We add a new state sm+1

which represents when a driver has already exited the system. Note that for any i ∈G, we have wi,m+1 =∑
k∈G tikq

k
exit > 0 and wm+1,i = 0. Finally, wm+1,m+1 = 1. Assume we add the new row and column to W .
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If prices pi are fixed, then a random walk on M will determine the amount of money earned by a new driver

—more formally, the amount of money earned by a driver follows the same distribution as the total reward

on M of a random walk. Then,

Ep,Λ[R] = σT
∞∑
k=0

W k p.

When scaling the system with n, if we meet the stability conditions, we conclude that E[I]→ 0 —note that

Ep,Λ[I] can be computed in a similar fashion to the way we computed Ep,Λ[R]. Therefore, we find that Λ in

the supply constrained setting satisfies

Λe = Λ0 FC

(
σT

τ

∞∑
k=0

W k p

)
.

It follows that

Λe = min

(
min
i
βi(pi),Λ0 FC

(
σT

τ

∞∑
k=0

W k p

))
.

Let us find p maximizing Λe = Λ(p). Note that βi(pi) is a decreasing function of pi. On the other

hand, Λ0 FC

(
σT

τ

∑∞
k=0W

k p
)

is increasing in pi. Let j = arg mini βi(pi), and suppose there is some

i such that βj(pj) < βi(pi). Clearly, by increasing pi, Λ will not decrease, but it could increase in case

Λ0 FC

(
σT

τ

∑∞
k=0W

k p
)
<βj(pj). It follows that for each vector p, there exists p∗ such that Λ(p)≤Λ(p∗)

and βj(p∗j ) = βi(p
∗
i ) for all i, j ∈G, under the assumption that prices pi can take any value and FV ,FC are

well-behaved (strictly monotone, for example).

If Λ0 FC

(
σT

τ

∑∞
k=0W

k p
)
<mini βi(pi), by increasing p we will increase Λ. In this case, the system

was supply constrained. Also, if mini βi(pi) < Λ0 FC

(
σT

τ

∑∞
k=0W

k p
)

, then by decreasing p we will

increase Λ, as the system was demand constrained. We conclude that there exists p ∈ arg maxpΛ(p) such

that

Λ0 FC

(
σT

τ

∞∑
k=0

W k p

)
= min

i
βi(pi) = βj(pj), for all j ∈G. (27)

By fixing p1, we write all other prices pi as a function of p1 as follows (Ci > 0 for all i):

βi(pi) = β1(p1), CiF̄V (pi) =C1F̄V (p1), pi = F̄−1
V

(
C1

Ci
F̄V (p1)

)
, (28)

and p1 ∈R+ satisfies

β1(p1) =C1F̄V (p1) = Λ0 FC(Z p),

where Z = σT

τ

∑∞
k=0W

k p and pi = F̄−1
V

(
C1
Ci

F̄V (p1)
)

.

With respect to revenue maximization, we proved that each region behaves as an independent queue in

equilibrium, hence, for a static policy p= (pi)i∈G,

E[R] =
∑
i∈G

E[R(i)] =
∑
i∈G

piλ(i) = Λe
∑
i∈G

pi(σ
TB)i,
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where we defined B := (I −QT )−1 =
∑∞

k=0(QT )k (see Appendix 12).

In order to compare two policies, we say p1 > p2 if p1(i)≥ p2(i) for all i∈G and the inequality is strict

at least for one region. Then we have the following result,

Theorem 16 The optimal localized static pricing policy p with respect to revenue in the large-market limit

is given by

p= max(pbal,pd−opt),

where pbal satisfies (26) and pd−opt is the maximum policy satisfying for every i∈G

Ci F̄V (pi) =

∑
j∈G pj(σ

TB)j∑
j∈G

(σTB)j
CjfV (pj)

.

Proof of Theorem 16 For ease of notation, in this proof we use λ to denote the normalized large-market

limit λe = limn→∞ λ
e(n)/n, where λe(n) corresponds to the vector of rates of incoming drivers to the n−th

system, with Λ0(n) = nΛ0 and µ(n) = nµ0. Similarly, we define Λe = limn→∞Λ(n)/n, where Λ(n) is

the total rate of incoming drivers to the n−th system. We add subscripts and parameters to λ and Λ when

several different systems are being considered.

As
∑

i∈G pi(σ
TB)i is non-decreasing in every pi —note that (σTB)i ≥ 0— we directly conclude that we

can restrict our search of optimal prices p to those satisfying

βi(pi) = βj(pj), for all i, j ∈G. (29)

Let p= arg maxpEp[R] = arg maxp Λe
∑

i∈G pi(σ
TB)i. We take the maximum over the set of policies

satisfying (29). Suppose Λe = Λ0 FC(Z p) < mini∈G βi(pi), then by increasing the prices, both Λ and

Ep[R] will increase. So it follows that Λ0 FC(R p)≥mini∈G βi(pi) = Λ. If they are equal, we recover the

balance prices pbal.

On the other hand, we could have Λ0 FC(Z p)>mini∈G βi(pi) = Λ, with p still leading to the maximum

expected revenue maxpEp[R]. Let us denote this vector of prices —which may not be unique— by pd−opt.

Note that, in such a case, we have pd−opt(i)> pbal(i) for all i, as Λd−opt < Λbal by Theorem 15, implying

βi(pd−opt(i)) < βi(pbal(i)) by (29). Recall that βi is strictly decreasing in pi as long as FV is strictly

monotone, which is assumed.

In particular, for each pi, by (29) we need

∂E[R]

∂pi
=
∂Λe

∂pi

∑
j∈G

pj(σ
TB)j + Λe

∑
j∈G

∂pj
∂pi

(σTB)j

=
∂βi(pi)

∂pi

∑
j∈G

pj(σ
TB)j +βi(pi)

∑
j∈G

∂F̄−1
V

(
Ci
Cj
F̄V (pi)

)
∂pi

(σTB)j
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=Ci
∂F̄V (pi)

∂pi

∑
j∈G

pj(σ
TB)j −Ci F̄V (pi)

∑
j∈G

(F̄−1
V )′

(
Ci
Cj

F̄V (pi)

)
Ci
Cj
fV (pi)(σ

TB)j

=−CifV (pi)
∑
j∈G

pj(σ
TB)j +Ci F̄V (pi)

∑
j∈G

1

fV (pj)

Ci
Cj
fV (pi)(σ

TB)j.

Hence, ∂E[R]

∂pi
= 0 if and only if

∑
j∈G

pj(σ
TB)j =Ci F̄V (pi)

∑
j∈G

(σTB)j
CjfV (pj)

.

Or equivalently,

Λe =Ci F̄V (pi) =

∑
j∈G pj(σ

TB)j∑
j∈G

(σTB)j
CjfV (pj)

.

Note that when G has only one region, we recover the characterization we found in Section 3.

�

Theorem 17 Let G be a network of regions and p = (pi`, p
i
h, θ

i)i∈G a localized dynamic pricing policy.

Assume that FV is common to all regions, and that it satisfies (12). Denote by pb the balance localized

static policy, which satisfies (26). Then, we have that in the large-market limit Λe
d ≤ Λe

b, where Λe
d denotes

the rate at which drivers sign-in into the system under the dynamic pricing policy.

In particular, if pih = pib for all i∈G, then Λe
d = Λe

b.

[ of Theorem 17]

For ease of notation, in this proof we use λ to denote the normalized large-market limit λe =

limn→∞ λ
e(n)/n, where λe(n) corresponds to the vector of rates of incoming drivers to the n−th system,

with Λ0(n) = nΛ0 and µ(n) = nµ0. Similarly, we define Λe = limn→∞Λ(n)/n, where Λ(n) is the total

rate of incoming drivers to the n−th system. We add subscripts and parameters to λe and Λe when several

different systems are being considered.

The structure of the proof is actually very similar to that of Theorem 9. Let p = (pi`, p
i
h, θ

i)i∈G be any

localized dynamic pricing policy. Once the policy is fixed, both (λi)i∈G and (λi)i∈G are determined. We

also consider the static balance policy, which we denote by pb. Recall that pb satisfies (26). We denote by

Λe
d and Λe

s the values of Λe for p and pb respectively.

For stability, p needs to satisfy at each location λi ≤ µ0(i)F̄V (pi`). Equivalently, (λeTB)i = Λe
d(σ

TB)i ≤

µ0(i)F̄V (pi`). As the above inequality holds at each i∈G, we conclude that

Λe
d ≤min

i∈G

µ0(i)

(σTB)i
F̄V (pi`) = min

i∈G
βi(p

i
`).
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So, we either assume that Λe
d ≤ Λe

b —and the proof is complete— or we assume that Λe
d > Λe

b. Hence,

suppose the latter. By (26), we need that

βj(p
j
`)≥min

i∈G
βi(p

i
`)≥Λe

d >Λe
b = min

i∈G
βi(p

i
b) = βj(p

j
b), for all j ∈G. (30)

We conclude that pj` < pjb for every j ∈ G. In words, the low price at each region has to be lower than

the balance price for the region. Let us compute the expected revenue R per ride under p. Recall that,

by independence of the queues, Ep[R] = Ep

[∑
i∈GRi

]
=
∑

i∈GEp[Ri]. As derived in Theorem 7, the

expected revenue per ride at region i∈G is given by

vi :=Ep[R(i)] = pi` +
pih− pi`
φih−φi`

(
µ0(i)

λi
−φi`

)
= pi` +

pih− pi`
φih−φi`

(
µ0(i)

Λe
d(σ

TB)i
−φi`

)
= pi` +

pih− pi`
φih−φi`

(
Ci
Λe
d

−φi`
)
. (31)

Write v = (vi)i∈G. Recall that we assumed Λe
d >Λe

b = Λ0FC(Z pb), where Z = σT

τ

∑∞
k=0W

k = σT

τ
S. We

defined S = (I −W )−1, and it follows that sij ≥ 0 as wij ≥ 0. In particular, we need Λ0FC(Z v)≥ Λe
d >

Λ0FC(Z pb), which implies FC(Z v)>FC(Z pb). We denote by si the i-th row of S. Then,

Zv =
σT

τ
Sv =

σT

τ

 sT1 v
...

sTmv

=
1

τ

m∑
i=1

σis
T
i v

=
1

τ

m∑
i=1

σi

m∑
j=1

sijvj =
1

τ

m∑
j=1

(
m∑
i=1

σisij

)
vj =

1

τ

m∑
j=1

αjvj. (32)

Similarly, we have that Zpb = 1
τ

∑m

j=1αjp
j
b. Note that αj ≥ 0 for all j.

Assume that pih ≤ pib for all i ∈G with at least one j such that pjh < pjb. Then, we see that vi ≤ pib for all

i, with strict inequality for some j:

vi = pi`

(
φih−Ci/Λe

d

φih−φil

)
+ pih

(
Ci/Λ

e
d−φil

φih−φil

)
≤ pih ≤ pib.

so that Zv<Zpb and it directly follows that Λe
d <Λe

s.

Now, we assume that for some i∈Gwe have pib < p
i
h. Let Y be the set of those indices and assume Y 6= ∅.

Analogously to the proof of Theorem 9, we proceed as follows: we start by assuming Λe
d = Λ0FC(Zv).
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Recall that Λe
d = min(Λ0FC(Zv),mini∈G βi(p

i
`)), but if Λe

d = mini∈G βi(p
i
`), then ∂Λe

d/∂p
i
h = 0 for i ∈ Y

until we, eventually, have that Λe
d = Λ0FC(Zv). By taking F−1

C on both sides of Λe
d, we see that

F−1
C

(
Λe

d

Λ0

)
=Zv =

1

τ

m∑
j=1

αjvj.

Let i∈ Y and take the partial derivative of the above equation with respect to pih

τ

Λ0

∂Λe
d

∂pih

∂F−1
C

∂Λe
d

(
Λe
d

Λ0

)
=
∑
j 6=i

αjCj

(
pjh− p

j
`

φjh−φ
j
`

)
∂

∂pih

(
1

Λe
d

)
+αi

∂

∂pih

[(
pih− pi`
φih−φi`

)(
Ci
Λe

d

−φi`
)]

=
∂

∂pih

(
1

Λe
d

)∑
j 6=i

αjCj

(
pjh− p

j
`

φjh−φ
j
`

)
+αi

(
Ci
Λe

d

−φi`
)

∂

∂pih

(
pih− pi`
φih−φi`

)
+αiCi

(
pih− pi`
φih−φi`

)
∂

∂pih

(
1

Λe
d

)
=− 1

Λe2
d

∂Λe
d

∂pih

∑
j∈G

αjCj

(
pjh− p

j
`

φjh−φ
j
`

)
+αi

(
Ci
Λe

d

−φi`
)
φih−φi`− (pih− pi`)∂φih/∂pih

(φih−φi`)2

=− 1

Λe2
d

∂Λe
d

∂pih

∑
j∈G

αjCj

(
pjh− p

j
`

φjh−φ
j
`

)
+αi

(
Ci
Λe

d

−φi`
)
φih−φi`− (pih− pi`)fV (pih)φih

2

(φih−φi`)2
.

Therefore,

∂Λe
d

∂pih
=

(
τ

Λ0

∂F−1
C

∂Λe
d

(
Λe

d

Λ0

)
+

1

Λe2
d

∑
j∈G

αjCj

(
pjh− p

j
`

φjh−φ
j
`

))−1(
αi

(
Ci
Λe

d

−φi`
)
φih−φi`− (pih− pi`)fV (pih)φih

2

(φih−φi`)2

)
.

We see that 1
Λe2
d

∑
j∈GαjCj

(
p
j
h
−pj

`

φ
j
h
−φj

`

)
> 0. Further, F−1

C (x) is increasing, by the Inverse Function Theorem.

By stability, we know that Ci/φi` >Λe
d. Hence, by assumption, as FV is such that

φih−φi`− (pih− pi`)fV (pih)φih
2
< 0, (33)

we conclude that ∂Λed
∂pi
h
< 0. Clearly, as we said before, as long as pi` < p

i
h, changing the value of pih does not

affect the value of mini∈G βi(p
i
`), so for i∈ Y , we always have ∂Λed

∂pi
h
≤ 0.

We now consider the policy p′ where pih = pib for all i∈G. We show that in this case Λe′
d = Λe

s. We start

by noticing that for all i∈G

Λe
s = βi(p

i
b) =

Ci
φpi

b

=
Ci
φih
.

Let us show that Λe
s is a fixed-point solution of Λe = Λ0FC(Zv′). Take Λe

d
′ = Λe

s. In this case, the expected

revenue per ride at location i∈G for the dynamic pricing policy is

v′i =Ep′ [R(i)] = pi` +
pih− pi`
φih−φi`

(
Ci
Λe′

d

−φi`
)

= pi` +
pih− pi`
φih−φi`

(
Ci
Λe
s

−φi`
)

= pi` +
pih− pi`
φih−φi`

(
φih−φi`

)
= pih = pib.
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It follows that v′ = pb, so that Zv′ = Zpb and Λ0FC(Zv′) = Λ0FC(Zpb). As pi` ≤ pih —with at least one

strict—,

min
i∈G

βi(p
i
`)>min

i∈G
βi(p

i
b) = Λe

s = Λ0FC(Zpb) = Λ0FC(Zv′),

then Λe′
d = min(Λ0FC(Zv′),mini∈G βi(p

i
`)) = Λ0FC(Zv′) so we conclude that Λe′

d = Λe
s.

But at this point, we can go from p′ back to our original policy p. So that we increase the value of those

pih for which i ∈ Y—, and as ∂Λed
∂pi
h
≤ 0 it follows that taking pih > pib decreases —not necessarily strictly—

the value of Λe for all i∈ Y . Similarly, for those regions where pih < p
i
b, we showed that vi < pib, so Λe also

decreases.

We conclude that Λe
d ≤Λe

s.

Theorem 18 Given a localized pricing schedule π= {(θi,pi)i : i∈G} such that:

pij ≤ pij+1 ∀ j ∈ {1,2, . . . , ki}, θij(n)− θij+1(n) = ω(1)∀ j ∈ {1,2, . . . , ki− 1},

for all regions i ∈ G. Then, for each region i ∈ G, there exists a unique j∗i ∈ {1, . . . , ki − 1} s.t. for any

sequence c(n) = ω(1), we have:

πi

(
[θij∗i
− c(n), θij∗i

+ c(n)]
)
→ 1, as n→∞,

where πi represents the marginal steady state distribution of region i.

Moreover, the equilibrium λi satisfies µ0(i) FV (pj∗i +1)<λi <µ0(i) FV (pj∗i ).

[ of Theorem 18] For ease of notation, in this proof we use λ to denote the normalized large-market

limit λe = limn→∞ λ
e(n)/n, where λe(n) corresponds to the vector of rates of incoming drivers to the n−th

system, with Λ0(n) = nΛ0 and µ(n) = nµ0. Similarly, we define Λe = limn→∞Λ(n)/n, where Λ(n) is the

total rate of incoming drivers to the n−th system. We add subscripts and parameters to λ and Λe when

several different systems are being considered.

Assume we fix policy π and let the system run. Then the policy induces some (λi)i∈G. Further, we know

that λ= λeTB or, equivalently, λi = Λe(σTB)i. Hence, π induces some value of Λe. But once these λis are

fixed, each region behaves as an independent queue, as the system is an open Jackson Network. For each

i∈G, we have a system identical to the one studied in the proof of Theorem 14.

We can apply the exact same reasoning now: for each i compute πi(j+1)/πi(j) to see that it is unimodal

as a function of j as prices are monotone. It then follows that the queue will concentrate around the two

prices pj∗i , pj∗i +1 satisfying

ρ̂φpj∗
i

=
λi
µ0(i)

φpj∗
i
< 1<

λi
µ0(i)

φpj∗
i

+1
= ρ̂φpj∗

i
.
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Theorem 19 Under the assumptions of Theorem 18 and assuming that FV is common to all regions and

that it satisfies (12), if pibal ∈ (p1, pki) for all i∈G, then at every region i

pibal ∈ [pj∗i , pj∗i +1].

[ of Theorem 19] For ease of notation, in this proof we use λ to denote the normalized large-market

limit λe = limn→∞ λ
e(n)/n, where λe(n) corresponds to the vector of rates of incoming drivers to the n−th

system, with Λ0(n) = nΛ0 and µ(n) = nµ0. Similarly, we define Λe = limn→∞Λ(n)/n, where Λ(n) is the

total rate of incoming drivers to the n−th system. We add subscripts and parameters to λ and Λe when

several different systems are being considered.

Analogously to the proof of Theorem 14, we consider two different policies. On the one hand, the original

policy πA = {(θi,pi)i : i∈G}. On the other, we consider policy πB = {(pj∗i , pj∗i +1, θ
i
j∗i

)i : i∈G}, where we

reduced the original vector of prices to the two prices around which πA will oscillate according to Theorem

18. We want to show that λA(i) = λB(i) for every i ∈G. As λA(i) = Λe
A(σTB)i and λB(i) = Λe

B(σTB)i,

that will be the case if and only if Λe
A = Λe

B . We know that in the limit n→∞,

Λe
A = Λ0 FC

(EΛe
A

[R]

τ

)
= Λ0 FC

(∑
i∈GEΛe

A
[Ri]

τ

)
= Λ0 FC

(∑
i∈G
∑∞

j=0 pi(j+ 1)πAi (j)

τ

)

= Λ0 FC

(∑
i∈G
∑ki

j=0 p
i
jπ

A
i (pij)

τ

)

= Λ0 FC

(∑
i∈G pj∗i π

A
i (pj∗i ) + pj∗i +1π

A
i (pj∗i +1)

τ

)
,

as πAi (pj) = 0 for all j 6= j∗i , j
∗
i + 1.

On the other hand, for system B, we see that

Λe
B = Λ0 FC

(EΛe
B

[R]

τ

)
= Λ0 FC

(∑
i∈GEΛe

B
[Ri]

τ

)
= Λ0 FC

(∑
i∈G
∑∞

j=0 pi(j+ 1)πBi (j)

τ

)

= Λ0 FC

(∑
i∈G pj∗i π

B
i (pj∗i ) + pj∗i +1π

B
i (pj∗i +1)

τ

)
.
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We want to show that Λe
A is a fixed-point solution of the above equation for System B. But, at this point, this

follows by computations identical to those in the proof of Theorem 14. Further, for system A, by Theorem

18, we know that for each i∈G,

Λe
A

(σTB)i
µ0(i)

φpj∗
i

=
λi
µ0(i)

φpj∗
i
< 1<

λi
µ0(i)

φpj∗
i

+1
= Λe

A

(σTB)i
µ0(i)

φpj∗
i

+1
.

As Λe
A = Λe

B , it directly follows that for every i∈G,

Λe
B

(σTB)i
µ0(i)

φpj∗
i
< 1<Λe

B

(σTB)i
µ0(i)

φpj∗
i

+1
. (34)

We can rewrite the equation as

βj∗i +1(pj∗i +1)<Λe
B <βj∗i (pj∗i ).

Hence,

max
i∈G

βj∗i +1(pj∗i +1)<Λe
B <min

i∈G
βj∗i (pj∗i ). (35)

We argument by contradiction. Assume there exists some region i∈G for which pibal 6∈ [pj∗i , pj∗i +1]. There

are two possible cases, as in Theorem 14.

Either pibal > pj∗i +1 > pj∗i or pibal < pj∗i < pj∗i +1.

By (26), we know that Λe
b = βi(p

i
bal) =CiF̄V (pibal) =Ci/φpi

bal
. It follows that

Λe
b

(σTB)i
µ0(i)

φpi
bal

= 1.

We apply Theorem 17 to System B to conclude that Λe
B ≤Λe

b, which implies

Λe
B

(σTB)i
µ0(i)

φpi
bal
≤Λe

b

(σTB)i
µ0(i)

φpi
bal

= 1<Λe
B

(σTB)i
µ0(i)

φpj∗
i

+1
.

It immediately follows that pibal < pj∗i +1. So we discard the case pibal > pj∗i +1 > pj∗i .

Assume then that pibal < pj∗i < pj∗i +1.

For i∈G such that pi` < pbal(i)< p
i
h, we have that

βi(p
i
`)>Λe

b = βi(pbal(i))>βi(p
i
h).

For i∈G such that pbal(i)< pi` < p
i
h —call this set Y— we have that

Λe
b = βi(pbal(i))>βi(p

i
`)>βi(p

i
h).

We conclude by (35) that

max
i∈G

βj∗i +1(pj∗i +1)<Λe
B <min

i∈Y
βj∗i (pj∗i )<max

i∈Y
βj∗i (pj∗i )<Λe

b < min
i∈G/Y

βj∗i (pj∗i ).
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We know that

Λe
B = min

(
Λ0FC

(
E[R]

τ

)
,min
j∈G

βj(p
B
` (j))

)
. (36)

Let us define j̄ such that j̄ = arg minj∈G βj(p
B
` (j)). Note that j̄ ∈ Y.

So, it follows that

Λe
B = Λ0FC

(
E[R]

τ

)
<βj̄(p

B
` (j̄)). (37)

In other words, the system is supply constrained while, at least in one region, the prices seem to be too high.

Let us now consider a third system, say, system C. In this case, the policy we consider is a variation of B.

Let U ⊆ Y be the set of regions j for which βj(pB` (j)) = βj̄(p
B
` (j̄)). Note that j̄ ∈U .

For i ∈ U , we take pC` (i) = pCh (i) = pB` (i). We do not change the rest of prices, that is, for i ∈G/U , we

have that pC` (i) = pB` (i) and pCh (i) = pBh (i). Note that we have not decreased any low price, but only some

high prices —those in U .

It then follows that

Λe
C = min

(
Λ0FC

(
E[R]

τ

)
,min
j∈G

βj(p
C
` (j))

)
= min

(
Λ0FC

(
E[R]

τ

)
, βj̄(p

C
` (j̄))

)
≤ βj̄(pC` (j̄)) = βj̄(p

B
` (j̄)).

Recall that, by (31) and (32), we have that

vi = pi` +
pih− pi`
φih−φi`

(
Ci
Λe
d

−φi`
)
,

E[R]

τ
=

1

τ

m∑
j=1

αjvj.

We first claim that Λe
C ≥ Λe

B . This follows by the proof of Theorem 17 as ∂Λe/∂ph ≤ 0. Note that we

can take any policy in-between C and B, that is ph(j) ∈ [pB` (j), pBh (j)] for j ∈ U and keeping p` fixed, as

pB` (i) = pC` (i)> pbal(i) for i∈U , and the stability condition holds by assumption for B.

For regions k ∈G/U , the prices are identical, so we conclude that

vCk = pk` +
pkh− pk`
φkh−φk`

(
Ck
Λe
C

−φk`
)

≤ pk` +
pkh− pk`
φkh−φk`

(
Ck
Λe
B

−φk`
)

= vBk .

On the other hand, for j ∈U , we see that

vCj = pC` (j) = pCh (j)< vBj ,

as vBj is a convex combination of pB` (j) and pBh (j), given that the system spends a positive fraction of time

at each pricing state.

As E[R] =
∑m

j=1αjvj , we conclude that

Λe
C ≤Λ0FC

(
EC [R]

τ

)
<Λ0FC

(
EB[R]

τ

)
= Λe

B, (38)

which is a contradiction with the fact that Λe
C ≥Λe

B .
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12. Analyzing our Model: Steady-State and Performance Metrics

To complete a service, a driver naturally follows the shortest-delay route to the destination. To make these

dynamics more tractable, we assume instead that a busy driver follows a random walk through the nodes of

G, with a different random delay at each node. More formally, if a busy driver s is at some node i at time

t (i.e., in queue Bi(t)), then s incurs a random delay with an Exponential(ηi) distribution. Subsequently,

the driver either finishes the service with probability pii (i.e., the passenger gets dropped off at vertex i), or

remains busy and transits to vertex j 6= i with probability pij , while continuing serving the same passenger.

Naturally, we impose
∑

j∈V pij = 1. We call P the routing matrix. Furthermore, the routing matrix P can

be related to the traffic matrix T via the following fixed-point relations:

tij =

{∑
k∈V,k 6=i pik · tkj if i 6= j,∑
k∈V,k 6=i pik · tki + pii if i= j.

We can write the above equations in matrix form as T = (P −D)T +D, where D= Diag(pii). Hence, we

have that T = (I−(P−D))−1D. Note that (I−(P−D)) is diagonally-dominated, and hence non-singular.

Summarizing the model described above, the state space S is defined as:

S = {ai ≥ 0, bi ≥ 0 : i∈ V }, (39)

where ai and bi are the number of available and busy drivers at vertex i. Further, owing to our model

specification, we can represent the system as a collection of M/M(k)/1 queues of available drivers (i.e.,

Ai(t)) and M/M/∞ queues of busy drivers (i.e., Bi(t)) at each node, with appropriate (probabilistic)

routing between the queues. Note that the routing is state-independent by our assumptions.

12.1. Flow-Balance Equations

Suppose that the Markov-chain describing the system is ergodic – then this would correspond to an effective

rate of arrival {λAi , λBi } to the available and busy queues. Furthermore, the effective rates must satisfy the

following flow-balance equations: for each i∈ V

λAi = λei +
∑
j 6=i

pjj · qji ·λBj ,

λBi = λAi +
∑
j 6=i

pji ·λBj .

Let λe = {λei}i∈V be the 1 × n vector of driver sign-in rates at different nodes, and similarly we define

effective-rates vectors λA = {λAi }i∈V , λB = {λBi }i∈V . As before, we have D = Diag(pii); now we can

rewrite the above equations as:

λA = λe +λBDQ, λB = λA +λB(P −D).
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Recall that the traffic matrix can be written in terms of the routing matrix as T = (I − (P − D))−1D.

Solving the above equations, and simplifying via the matrix inversion lemma 7, we get:

λA = λe +λeT (I −QT )−1Q

Equivalently, and again by the matrix inversion lemma, we find that λA = λe(I − QT )−1. Note that if

qexiti > 0∀ i ∈ V , then (I −QT ) is diagonally-dominant (since QT is a sub-stochastic matrix), and hence

non-singular.

12.2. Steady-State Distribution

The previous section characterized the flow-balance equations assuming that the underlying system is

ergodic. We now have the following characterization of the conditions under which the system is ergodic,

as well as the corresponding steady-state distribution:

Theorem 20 If for every i ∈ V , we have λAi < µi – then the Markov-chain S(t) is ergodic. Further, for

state x= {ai, bi}ni=1 ∈ S , the steady-state probability is given by:

π(x) =
∏
i∈V

1

bi!

(
λAi
µi

)ai (λBi
ηi

)bi
π(∅), (40)

where ∅ is the state where all queues are 0, and π(∅) =
∏n

i=1

(
1− λAi

µi

)
exp

(
−λBi

ηi

)
.

Note that the steady-state distribution has product-form – each vertex i ∈G behaves as an independent

system of two consecutive queues, an M/M/1 queue of parameter µi and an M/M/∞ queue of parameter

ηi. Further, the arrivals to the first queue (of available drivers) follow a Poisson process of parameter λAi ,

while the arrivals to the second queue (of busy drivers) follow a Poisson process of parameter λBi .

One way to understand this is via Burke’s Theorem, which shows that the output from an M/M/1 or an

M/M/∞ queue is a Poisson process with appropriate rate, and which is independent of the input. In our

system, we are essentially taking these outputs, and then probabilistically splitting and feeding them back

as inputs to other queues. Such a system of queues is known as a Jackson network.

To prove the above result, we use the following result (from Kelly [9], Theorem 1.13):

Theorem 21 Let X(t) be a stationary Markov process with transition rates q(j, k), j, k ∈ S . If we can find

a collection of numbers q′(j, k), j, k ∈ S , such that

q′(j) = q(j), j ∈ S

7 For matrices A,B,C, we have (I −BC)−1 = I +B(I −CB)−1C
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and a collection of positive numbers π(j), j ∈ S , summing to unity, such that

π(j) q(j, k) = π(k) q′(k, j), j, k ∈ S (41)

then q′(j, k), j, k ∈ S, are the transition rates of the reversed process X(τ − t) and π(j), j ∈ S, is the

equilibrium distribution of both processes.

We now return to the proof of Theorem 20:

T o apply Theorem 21, we define the rates of the reversed process for each i, j ∈ V :

q [(ai, bi), (ai + 1, bi)] = λi, q′ [(ai + 1, bi), (ai, bi)] =
λi
λAi

µi,

q [(ai, bi), (ai− 1, bi + 1)] = µi, q′ [(ai− 1, bi + 1), (ai, bi)] =
λAi
λBi

(bi + 1)ηi,

q [(ai, bi), (bi− 1, bj + 1)] = bi ηi pij, q′ [(bi− 1, bj + 1), (ai, bi)] =
pij λ

B
i

λBj
(bj + 1)ηj,

q [(ai, bi), (ai + 1, bi− 1)] = bi ηi pii, q′ [(ai + 1, bi− 1), (ai, bi)] =
pii λ

B
i

λAi
µi,

q [(ai, bi), (ai, bi− 1)] = bi ηi pi0, q′ [(ai, bi− 1), (ai, bi)] = pi0 λ
B
i .

It can now be easily checked that for any two states x,y ∈ S , Eqn. (41) is satisfied.

12.3. Performance Metrics

Given the steady-state distribution, we can now study various performance metrics of the system. First,

we consider the blocking rate, i.e., the rate at which passengers are denied service when the system is in

equilibrium.

Corollary 22 The blocking rate Rblk in equilibrium is given by:

Rblk =
∑
i∈V

µi−λAi .

F rom Theorem 20, assuming λAi <µi, we have:

P[Ai(t) = 0] =
∑

s∈S:ai=0

π(s)

=
1∑∞

ai=0

(
λAi
µi

)ai = 1− λ
A
i

µi
.

Furthermore, requests arrive at region i at rate µi. Thus, the overall blocking probability Rblk is

Rblk =
∑
i∈V

µi−λAi .
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Blocking results in a loss of welfare for passengers. On the other hand, drivers experience a loss of

welfare due to idle-time – when they are not busy, and hence not earning. Two relevant metrics for this are

the number of available drivers in the system, and the average delay in different regions.

Corollary 23 The expected number of available drivers E[A(t)] in equilibrium is given by:

E[A(t)] =
∑
i∈V

λAi
µi−λAi

.

Furthermore, in region i, the expected delay experienced by a driver is:

E[Di(t)] =
1

µi−λAi
.

Proof. First, we have E[A(t)] =
∑

i∈V E[Ai(t)]. Next, using the product-form of the stationary distri-

bution, we have:

E[Ai(t)] =
∑
s∈S

ai(s) π(s)

=

(
1− λ

A
i

µi

) ∞∑
ai=0

ai

(
λAi
µi

)ai
=

λAi
µi−λAi

.

Finally, the expression for the expected delay follows from Little’s Law. �

Finally, to estimate the welfare of agents, we need to know the rate of requests served between any source

and destination nodes (which we denote φij), and also the rate of idle-driver traffic between any two nodes

(which we denote as ψij). From Theorem 20, we have:

φij = λAi tij, ψij = qij

(∑
k∈V

φki

)
.

Further, we define φini =
∑

k∈V φki to be the net rate of busy drivers finishing service at node i (and similar

for ψini ) – note also that
∑

j∈V φij = λAi ,
∑

j∈V ψij = (1− qexiti )φini . This completes the description of the

system dynamics given (λ,µ,B,Q). We now consider how these parameters can be made endogenous as a

function of prices and information-displays (i.e., heat-maps), and how they affect the welfare of the agents.

13. Counter-examples

In this section we show that when the conditions of Theorems (9) and (12) on distributions FV and FC are

not satisfied, the results may not hold.
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13.1. Optimality of best static policy

We consider the case where the reservation value of users V is distributed as a mixture of independent

Gaussian random variables. In particular, we take

FV (x) =
5∑
t=1

π(t)Ft(x),

where π(t) = 1/5 for all t and

Ft ∼N
(
µ(t), σ2(t)

)
, µ= (0.1,0.15,0.3,0.5,0.85), σ2 = (0.01,0.05,0.02,0.01,0.02).

Clearly, FV is not MHR and it does not satisfy equation (12).

Further, we take λ0 = 7, µ0 = 4, τ = 1, θ= 3 and prices ranging in [0,1]. The reservation value for drivers

is given by C ∼Exp(1/4).

We show in Figure 6 that dynamic pricing policies lead to higher λ and revenue.

13.2. Robustness

In this case, consider the situation where C ∼FC and FC is given by the following mixture of Gaussians:

FC(x) = π1F1(x) +π2F2(x) +π3F3(x), (42)

where

F1 ∼N (0.2,0.1), F2 ∼N (0.5,0.2), F3 ∼N (0.7,0.05) (43)

and π(1) = 0.3 while π(2) = π(3) = 0.35. One can easily check that FC is not log-concave.

We take λ0 = 3, µ0 = 4, τ = 1, θ = 3 and prices range in [0,1]. The reservation value for drivers is

given by V ∼ U(0,1). The balance price is pbal = 0.593 and the dynamic pricing policy is π = (p`, ph) =

(0.568,0.616).

We show in Figure 7 that the performance of dynamic pricing policy π lies below the linear interpolation

between the performance of the static policies of their extreme points p` and ph when they are optimal (in

other words, when these prices are actually the balance price).
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(a) Static optimality does not hold when FV violates the assumptions of Theorem 9.

Figure 6 When FV is not well-behaved, the results of Theorem 9 need not to be true. We see that —in the large-market limit—

we can find dynamic pricing policies leading to values of λ higher than λbal —left picture— and also higher revenue

than the optimal one in the static case —right picture.

(a) Robustness does not hold when FC violates the assumptions of Theorem 12.

Figure 7 When FC is not well-behaved, the results of Theorem 12 need not to be true. We see that —in the large-market limit—

dynamic pricing policies π = (p1, p2, θ) enclosing the balance price may not be robust, that is, the performance of

these policies lie strictly below the linear interpolation between that of optimal static policies corresponding to p1 and

p2 when these prices correspond to the balance price of the system. In the left, we show λ and, in the right, we show

revenue.
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