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Motivation

Customer slowdown describes the phenomenon that a customer’s service
requirement increases with experienced delay



Motivation

In healthcare settings, delays in receiving appropriate care can result in
adverse effects, e.g., increased LOS in ICU



Motivation

The snowball effect: a delayed patient that requires a longer service time
increases the overall workload of the system, therefore causing longer delays
for other patients, who in turn might require longer service
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When proactive service is an option, we face the tension!



Motivation

Research questions:

Is it worth initiating proactive care for moderate patients?

How should we allocate resources to achieve good system performance?

Moderate Patients Urgent Patients
(Low Service Requirement) (High Service Requirement)

DegradationSelf-Cure
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The Model

A stochastic queueing network where two queues are served by c servers
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Delayed moderate patients become urgent at rate γ according to a
stationary point process
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Goal

Our goal is to find a service control (in staffing and scheduling) that
minimizes long run average costs (formal definition follows), assuming a
linear unit-time holding cost hi is incurred in queue i, and unit staffing cost s

We consider admissible controls that are

non-anticipatory

preemptive

non-idling
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Challenges

Overloaded regime: the cµ/θ rule is
optimal (Atar et al. (2011))

Limiting heavy-traffic regime:
the optimal control is the solution to the
associated Hamilton-Jacobi-Bellman
equation (Harrison and Zeevi (2003),
Atar et al. (2004))

Special Case: two-queue fluid system:
(Larrañaga et al. (2013))
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A Fluid Approximation to Simplify the Problem

Consider a piecewise affine dynamical system characterized by

dxu(t) = λu + γ(xm(t)− αm(t))+ − θu(xu(t)− αu(t))− µuαu(t)

dxm(t) = λm − (γ + θm)(xm(t)− αm(t))+ − µmαm(t)

where αi(t) is the amount of capacity devoted to serving type-i customers,
0 ≤ αi(t) ≤ xi(t), αu(t) + αm(t) ≤ c

Recast the problem to the fluid model:

min
{c,αu(t),αm(t)}

lim
T→∞

1
T

∫ T

0
(huqu(t) + hmqm(t) + sc)dt
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Strict Priority Rules

We limit to a subset of admissible controls and consider the strict priority
rules Pu and Pm, where Pi assigns strict priority to type-i customers.

What is the long-run behavior of the system under Pu and Pm? Can we
characterize the equilibria, if any?
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Strict Priority Rules

The equilibrium behavior of the system depends on two parameter cases

Case 1: µu >
γ

γ+θm
µm
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There is less work if a moderate
patient degrades
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patient does not degrade
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Strict Priority Rules

Fluid equilibrium in Case 1: µu >
γ

γ+θm
µm

Pu Pm

λu = 17, λm = 20, µu = 1.5, µm = 2.5, θu = 0.2, θm = 0.8, γ = 0.8



Strict Priority Rules

Fluid equilibrium in Case 1: µu >
γ

γ+θm
µm

Pu Pm

λu = 17, λm = 20, µu = 1.5, µm = 2.5, θu = 0.2, θm = 0.8, γ = 0.8



Strict Priority Rules

Fluid equilibrium in Case 2: µu <
γ

γ+θm
µm

Pu Pm

λu = 17, λm = 20, µu = 1, µm = 2.5, θu = 0.2, θm = 0.8, γ = 0.8
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Strict Priority Rules

Fluid equilibrium in Case 2: µu <
γ
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λu = 17, λm = 20, µu = 1, µm = 2.5, θu = 0.2, θm = 0.8, γ = 0.8



Strict Priority Rules

Minimizing the long-run average holding cost in Case 2: µu <
γ

γ+θm
µm

Scheduling

hu = 10, hm = 6
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Minimizing the long-run average holding cost in Case 2: µu <
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Strict Priority Rules

Minimizing the equilibrium holding cost in Case 1: µu >
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Strict Priority Rules
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Summary

We propose a two-class multi-server queueing model to study the
potential of proactive care with degrading class types

We consider a fluid approximation and obtain optimality results in
staffing and scheduling w.r.t. the long-run average cost

Ongoing work:
Relating the fluid optimality results to the stochastic system
Studying transient fluid dynamics

Future direction:
Diffusion control
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