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Abstract

This is an overview of my papers in the last few years on the time-varying single-server queue.

1 Stabilizing Performance in Single-Server Queues

There is a long history of staffing (choosing a time-varying number of servers) to stabilize performance
in many-server queues with time-varying arrival-rate functions, beginning with Jennings et al. [1996]
and continuing with Feldman et al. [2008], Liu and Whitt [2012],Li et al. [2015] and He et al. [2016].
These draw on infinite-server approximations and the modified-offered load approximation, as reviewed
in Whitt [2013].

Until recently, there were no corresponding results for single-server queues. An initial result for
the single-server queue appears in Whitt [2015]. Since there is only one server, the method proposed
for stabilization is a service-rate control, assuming that the service requirements come from an i.i.d.
sequence, but the rate that the server works remains to be determined. Several methods are investi-
gated. Strong positive results are obtained for the rate-matching control, which lets the service rate at

time ¢ be proportional to the arrival rate function, i.e.,

u(ty = 29, (1.1)

p
where A(t) is the given arrival rate function, while p is the target traffic intensity; see (2.1) of Whitt
[2015]. The rate-matching control is shown to stabilize the mean queue length, but not the mean
waiting time. Confirming simulation experiments were conducted by Ni Ma, also reported in Ma and

Whitt [2015a]. The simulation algorithm is discussed there and in Ma and Whitt [2015b].

Two other “square-root” controls are also considered. The first in (2.3) of Whitt [2015] is an analog



of the square-root-staffing formula used for many-server queues, i.e.,

w(t) = At) + €/ A(t), t>0. (1.2)

The second emerges from a fixed-point equation based on the pointwise-stationary approximation

(PSA). Using the steady-state approximation for the GI/GI/1 queue, namely,

TV
1—p

E[W] ~ , (1.3)

where V = (c2 + ¢2)/2 is a variability parameter and 7 is the mean service time, if we assume that it

is valid locally at time ¢, then we obtain

_ ~ p(t)V _ AV
w= E[W(t)] i~ u(t)(l — p(t)) - ,u(t)2 _ M(t)/\(t) (1.4)

where p(t) = A(t)/u(t) is the instantaneous traffic intensity, which is a quadratic equation in u(t).

Figure 2 of Whitt [2015] shows that the first square-root rule is not too bad, but does not stabilize
either the mean queue length or the mean waiting time. Figure 3 (right) shows that this second
square-root formula does stabilize the mean waiting time for long cycles.

The paper Whitt [2015] has a strong result saying that it is not possible to stabilize both the mean
queue length and the mean waiting time in heavy traffic; see Theorem 5.3 of Whitt [2015]. Indeed,
when we stabilize the mean queue length, the mean waiting time tends to be inversely proportional
to the arrival rate; see Theorem 5.2 of Whitt [2015]. It still remains to develop effective methods to
stabilize the mean waiting time for short as well as long cycles.

A recent overview of time-varying queues is contained in Whitt [2018].

2 Approximating the Performance of Time-Varying G;/GI/1 Queues

Just as for stationary models, diffusion approximations and heavy-traffic limits provide a basis for
approximating the performance of single-server queues with time-varying arrival rates (and i.i.d. ser-
vice times). Early work in this direction was done by Newell [1968a,b,c], with significant subsequent
contributions by Massey [1985] and Mandelbaum and Massey [1995]. The uniform acceleration paper
Massey and Whitt [1997] is also relevant. We have recently contributed in Whitt [2014, 2016]. These
new papers express the heavy-traffic limits in the (now familiar) setting of Whitt [2002].

In Whitt [2014] a heavy-traffic limit is established for the periodic G;/GI/1 model. As in previous
work, it exploits the arrival process model in which the time-varying arrival process A is represented

as the composition of a stochastic process N satisfying a FCLT and a deterministic cumulative arrival



rate function A, i.e., A = NoA, which embodies all the time-dependence. The limit process in the main
theorem (Theorem 3.2 of Whitt [2014]) is reflected periodic Brownian motion (RPBM). Unfortunately,
that RPBM limit process is not so useful directly, because not much is known about it.

Ni Ma and Wei You have done recent work to yield practical performance characterizations. An
effective algorithm to simulate the general periodic G¢/GI/1 queue and RPBM is developed in Ma
and Whitt [2016] exploiting a convenient reverse-time representation of the time-varying workload
process and rare-event simulation. The algorithm draws on the rare-event simulation for the GI/GI/1
queue as in Asmussen [2003]. The rare-event approach is designed to efficiently calculate very small
tail probabilities, but we show that it also applies to compute the time-varying mean and variance.
We obtain a simulation algorithm for RPBM by considering a heavy-traffic approximation. Extensive
simulation experiments show that it is effective. Additional results appear in Ma and Whitt [2019].

An effective approximation for the general periodic G¢/GI/1 queue and RPBM is developed in
Whitt and You [2016b], exploiting a new periodic time-varying robust queueing (PRQ), which extends
a first paper on robust queueing for stationary models in Whitt and You [2016a] The PRQ yields
an easily computed approximation for the time-varying mean workload. It is remarkably effective in
predicting the time of peak congestion within a periodic cycle. In Whitt and You [2016a,b], theoretical
support is provided by new limit theorems. In important cases with appropriate parameters, the RQ

bound is asymptotically correct, and so can serve as a useful approximation.
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