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Abstract: Service systems abound with queues, but the most natural direct models are often 
time-varying queues, which may require nonstandard analysis methods beyond stochastic 
textbooks. This paper provides an overview of time-varying queues. Most of the recent 
literature concerns many-server queues, which arise in large-scale service systems, such as 
in customer contact centers and hospital emergency departments, but there also has been 
some new work on single-server queues with time-varying arrivals, which arise in some 
settings, such as airplanes coming to land at an airport, cars coming to a traffic intersection 
and medical staff waiting for the availability of special operating rooms in a hospital. The 
understanding of many-server queues and single-server queues is enhanced by heavy-traffic 
limits, which have been extended to time-varying models as well as stationary models.
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1. Introduction 
This paper provides an overview of time-varying (TV) queueing models. We primarily 

consider the standard multi-server model with unlimited waiting space and the first-come 
first-served (FCFS) service discipline, where the servers work independently in parallel and 
the arrival process has a time-varying rate. We also consider other time-varying model 
elements, such as the number of servers or the individual service rate, often chosen to 
stabilize performance over time, as occurs when we want to set staffing levels in a service 
system to provide nearly constant quality of service at all times of the day. We not only 
review ways to analyze these models, but we also review important insights about the impact 
of time-varying arrival rates upon performance. 

1.1. The old way: Applying stationary models in a nonstationary way 

There is a startling disconnect between stochastic textbooks and many service systems. 
The stochastic textbooks discuss stationary models and ways to compute their steady-state 
distribution. In contrast, many service systems have strongly time-varying demand. 
Nevertheless, there are well developed engineering methods to apply stationary stochastic 
models to achieve good performance. 

First, when there is flexibility in the service capacity to meet the demand, as achieved 
by TV staffing in call centers, it is often possible to apply stationary models in a 
nonstationary way in order to achieve good performance. If the arrival rate ( )t changes
sufficiently slowly, then we may use a pointwise-stationary approximation (PSA), i.e., to 
use a stationary model in a nonstationary way. In particular, for each time t , we would 
approximate the performance at time t by the steady-state performance of the stationary 
model with constant arrival rate equal to ( )t ; see Green and Kolesar [63] and Whitt [213]. 
Variants of the PSA have been effective for analyzing the performance of many service 
systems, as discussed in Green et al. [64].

Second, when there is no flexibility in the service capacity to meet the demand, as in 
the classical telephone networks, and we wish to provide high Quality-of-Service (QoS) at 
all times, then we may apply stationary models to an appropriate worst case. This is the 
classic “busy-hour engineering” in telephony. A stationary model then might be applied 
with the arrival rate equal to the average over the busiest hour of the day. If the capacity 
indeed cannot be adjusted easily on a short-term basis, then allowance may be needed for 
growth over a longer time period. 

Third, when there is no flexibility in the service capacity to meet the demand, but we 
do not require high QoS at all times, then we may ignore the performance over short time 
periods. Then we can ignore local fluctuations and use stationary models with the long-run-
average arrival rate. 
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TV models become important when we want to go beyond one of these relatively 
simple approaches. We may want to achieve high QoS at all times, but the arrival rate may 
not change slowly enough. Indeed, we want to decide whether or not the arrival rate changes 
rapidly or not. 

1.2. A new perspective 

Moving from stationary models to TV models leads us to focus on time and ask new 
questions: When is the congestion greatest? How does the congestion build up and decline? 
How can we effectively control the congestion? 

1.2.1. New notions of traffic intensity 

For stationary queueing models, the standard approach is to do steady-state analysis. 
We start by seeing if the model is stable, i.e., if there exists a proper steady state. To do so, 
we look at the traffic intensity  , the long-run arrival rate divided by the long-run maximum 
possible service rate (both assumed to be exogenously specified). We check that 1  and
then investigate the long-run steady-state behavior. If 1  ( 1),  the model is 
overloaded (critically loaded) and the congestion grows without bound, which can be 
described in more detail by heavy-traffic limits, e.g., as in Chapters 5 and 8-10 in Whitt 
[214]. Most attention is given to actually determining the steady-state behavior, assuming 
that 1  , for which many excellent approaches have been developed; e.g., Asmussen [9]. 

For TV models, that routine starting point changes drastically. We need to reconsider 
the notions of traffic intensity. Suppose that we consider the Markovian / /tM M s model
with a fixed number of servers, each with a fixed service rate  . The TV behavior can be 
understood by looking at the cumulative rates over subintervals [ , ]a b of 0[ , )t  , defined as   

( , ) ( )
b

a
a b t dt     and ( , ) ( ) ( ) ( ).

b

a
M a b s t t dt s b a     (1.1) 

( ( , ))M a b represents the service capacity, i.e., the maximum possible total service rate over 
[ , ]a b .) At time t , we can define a TV traffic intensity by   

 
0

*( ) sup ( , ) / ( , ) ,
t s t

t s t M s t
 

   (1.2) 

see Figure 1 of Newell [160] and Theorem 1 of Massey [142]. 
The following example shows that the TV traffic intensity *( )t in (1.2) is often more 

useful than the instantaneous traffic intensity ( ) ( ) / ( ) ( ).t t s t t  

Example 1.1. (congestion build up and decline) To see that the TV traffic intensity provides 
important new information, it helps to consider a deterministic fluid model, where the rates 
describe the flows of continuous divisible fluid. For a stochastic model, when the rates are 
very large, then the stochastic behavior will be similar to the fluid model, by law-of-large-
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numbers asymptotics. 
A relatively simple case is a single-server queue with a TV arrival rate ( )t and a 

constant service rate  . If we assume for the fluid model that ( )t smoothly increases from 
0 at time 0t , reaching and exceeding  , and then decreases back down to a level below  ,
then we have several important times: (i) 1t , the first time t at which ( )t  (hitting from 
below), (ii) 2t the time at which ( )t reaches its maximum value, (iii) 3t , the second time
t at which ( )t  (hitting from above), after which it remains below, and (iv) 4t , the time 

that the queue is first empty. 
For the the instantaneous traffic intensity we see that 1 3( ) ( ) 1t t   , ( ) 1t  for

1 3t t t  and ( ) 1t  otherwise. In contrast, for the TV traffic intensity, we see that 
* *

1 4( ) ( ) 1t t   , *( ) 1t  for 1 4t t t   and *( ) 1t  otherwise. Fluid first waits at 
time 1t and the queue first empties at time 4t and remains empty thereafter.   

The time lag. Example 1.1 shows that for TV queues there is a time lag in the impact 
of congestion after the arrival rate reaches its peak. For Example 1.1, the peak arrival rate 
occurs at time 2t , while the maximum queue length occurs at time 3t and the queue first 
empties at time 4t . For the congestion at time t , we need to look at the past prior to time t ,
as captured by the TV traffic intensity in (1.2). For the service rate, we ask the question: 
“What have you done for us lately?” (Extra service capacity when there is no demand is 
wasted.)

1.2.2. Beyond exponential distributions and Markov processes 

Because TV arrival rates are so challenging, it is natural to start looking at the 
consequence for Markovian stochastic models, but we also want to understand the 
interaction between non-Markov stochastic variability together with the deterministic 
variability of a TV arrival-rate function. 

Thus, much of our discussion is for the general / /t tG GI s GI model, which has a 
general arrival process having a TV arrival-rate function (the tG ), a TV number of 
homogeneous servers (the ts ), unlimited waiting space and abandonment from queue (the

GI ) and assume that the service times and patience times (times until abandonment after 
joining the queue) come from independent sequences of independent and identically 
distributed (i.i.d.) random variables, independent of the arrival process, with service-time 
cumulative distribution function (cdf) G and patience cdf F .

A good example of the joint impact of the time-varying arrival rate and a non-
exponential distribution is the formula for the mean number of busy servers in an

/ /tM GI   infinite-server (IS) model with a non-homogeneous Poisson process (NHPP) 
as an arrival process, reviewed in Section 4; in particular,   

*

0
( ) [ ( )] ( ) ( ) [ ( )] [ ], 0,em t E X t t s G s ds E t S E S t 


       (1.3) 
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where ( )t is the deterministic arrival rate at time t , G is the cdf of a service time S , and
eS is a random variable with the service-time stationary-excess cdf; see (4.2). The last 

expression in (1.3) shows that the mean is the same as in a stationary model ( [ ]m E S )
except for a random time lag by eS . By doing a Taylor series expansion of the TV arrival 
rate function ( ),t  we see that the peak in ( )m t tends to lag behind the peak in ( )t by
approximately 2 2[ ] [ ] / 2 [ ] [ ]( 1) / 2,e sE S E S E S E S c     which depends on the second 
moment of the service time as well as the mean. Equivalently, it depends on the squared 
coefficient of variation (scv, variance divided by the square of the mean) 2

sc of the service 
time as well as the mean. The scv is convenient because it measures the variability 
independent of the mean. For more on the structure of ( )m t , see Section 2 and Section 3 of 
Eick et al. [44].

1.2.3. Many servers versus few servers 

We only consider a small class of the queueing models in the vast literature on queues. 
Among those that we do consider, the TV models with many servers have proven much 
easier to analyze than the TV models with few servers, because we can exploit insights 
drawn from the / /tM GI  IS model, which is remarkably tractable; e.g., see Eick et al. 
[44, 45] and Massey and Whitt [147]. Indeed, the IS model structure underlies many of the 
results for many-server queues. 

The TV IS model is more tractable because all customers enter service immediately 
upon arrival, so that there is no waiting. Hence, each customer is in the system over its 
service time. This simplification breaks down in many server queues, but since the total 
service rate when many customers are in service is large, the waiting times tend to be 
relatively short. 

In sharp contrast, with few servers, e.g., with one, both the performance and the 
analysis techniques tend to be very different. For the single-server queue, the waiting times 
are often longer than the service times. This is especially true when *( ) 1t  for *( )t in
(1.2). Most of our review covers the relatively well-developed theory for the TV many-
server queue, but we also discuss recent work on the TV single-server queue in the final 
Section 7. But that topic is in its infancy; we can expect to learn much more in the future. 

1.2.4. Relevant time scales and periodic models 

Leaving steady-state and considering TV behavior makes us look more closely at time. 
We should consider the relevant time scale for performance, which is usually determined 
by the response (service plus waiting) times. For example, if all service is completed on a 
given day, as in a telephone call center, then it suffices to look at a representative day. Since 
the waiting tends to be a consequence of the specific way service is provided, it is often 
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appropriate to consider only the mean service time as the relevant time scale. 
In hospitals, patient length of stay may extend over several days. Thus, the relevant 

time scale tends to be longer than in many other service systems, extending over multiple 
days. Because the arrival rates vary strongly over each day and also differ substantially by 
the day of the week, it can be good to use a periodic model of the arrival rate with the week 
being the length of a period, as in the data-based stochastic model for an emergency 
department proposed in Whitt and Zhang [230]. 

A periodic arrival-rate function is a very special case of a TV arrival-rate function, but 
it is important to note that the model with a periodic arrival-rate function actually is very 
general, including most TV and stationary models as special cases. If the periodic arrival 
rate is constant, then the TV model reduces to a stationary model; any TV model over a 
finite interval can be regarded as a periodic model if we make the length of the period longer 
than the original interval. 

1.3. Organization 

We start in Section 2 by reviewing methods for analyzing the / /t t t tM M s M TV
Markov model, where the arrival process is an NHPP, while the service rate and 
abandonment rate may now be TV as well. The standard tools are numerical algorithms for
ordinary differential equations (ODE’s). The ODE approach is well illustrated by the 
studies of airplane landing delays at airports by Koopman [105] and dispatching delays for 
police patrol cars by Kolesar et al. [104]. Especially promising for these TV Markov models 
are reduced systems of ODE’s for summary statistics such as the TV mean obtained via 
closure approximations. We highlight the recent Gaussian closure approximations 
developed by Massey and Pender [145, 146], which involve a general framework that seems 
to be widely applicable. 

In Section 3 we review deterministic fluid models, which can serve as useful 
alternatives to (or approximations for) the TV stochastic models. The deterministic analysis 
is a natural first-order approach when the deterministic variations tend to be more important 
than the uncertainty. The basic deterministic analysis is illustrated by the studies of traffic 
delays at tool booths by Edie [43] and letter delays at post offices by Oliver and Samuel 
[167]. We highlight the recent two-parameter (or measure-valued) deterministic fluid 
models for the / /t tG GI s GI model developed by Whitt [221] and Liu and Whitt [123]. 

In Section 4 we review the / /tM GI  TV infinite-server (TVIS) model and the 
approximations based on it. The TVIS model ultimately is the source of much that we know 
about TV models. After reviewing the Poisson random measure representation in Section 
4.1, we review the modified-offered-load (MOL) approximation in Section 4.3 and its 
application to set staffing levels to stabilize performance at target levels in Section 4.4. The 
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main ideas about MOL are well covered in Green et al. [64], but there has been more work, 
primarily extending to new models and non-NHPP arrival processes. We also discuss recent 
work on the TV Little’s law ( L W ) in Section 4.5 because Little’s law is intimately 
related to the IS queue. 

In Section 5 we discuss arrival process models. The standard TV arrival process model 
is the NHPP, but recent examination of service system data raises questions about the 
suitability of the NHPP model, usually because of over-dispersion. We highlight the studies 
by Kim and Whitt [98, 99] of how to test the NHPP model assumption and the associated 
studies to see if arrival process data are consistent with the NHPP assumption. We also 
highlight the composition construction of a more general arrival process that has a one-
parameter quantification of the level of variability. 

In Section 6 we discuss recent (MSHT) limits for TV queues and insights that can be 
drawn from them. After reviewing the quality-and-efficiency-driven (QED) or Halfin and 
Whitt [70] MSHT limiting regime, we highlight the more recent complementary-QED 
( cQED ) regime studied in Liu and Whitt [123, 124, 126], which underlies much of the most 
useful methods developed so far for TV many-server queues, including the two-parameter 
fluid model in Liu and Whitt [123] discussed in Section 3.3, the Gaussian approximations 
in Liu and Whitt [126], the truncated Gaussian approximations in Liu et al. [130] and the 
Gaussian closure approximation of Massey and Pender [145]. We also review the basic 
QED TV MSHT limit in Mandelbaum et al. [140] and Puhalskii [183]. We then highlight a 
new QED TV MSHT limit by Sun and Whitt [205] for scheduling of multiple classes in a 
TV setting and the sample-path TV MSHT Little’s law that emerges from that TV MSHT 
limit. 
    Finally, in Section 7 we discuss recent studies of TV single-server queues. We 
highlight the new HT limit for periodic queues in Whitt [224] that involves scaling of the 
arrival rate function in addition to the usual HT scaling. The limit process is reflected 
periodic Brownian motion (RPBM), the natural periodic analog of the RBM HT limit for 
stationary models. We highlight a new rare-event simulation algorithm in Ma and Whitt 
[136] and a new TV robust queueing (TVRQ) algorithm for periodic queues in Whitt and 
You [227] that can be used to obtain concrete numerical results. We discuss service-rate 
controls to stabilize performance in TV single-server queues developed in Whitt [225] and 
studied further in Ma and Whitt [137]. In Section 8 we draw conclusions. 

1.4. Related literature 

In closing this introduction we point to other related surveys and applications. Broad 
surveys of the literature on TV queues have recently been provided by Defraeye and van 
Nieuwenhuyse [39] and Schwarz et al. [195]. These are much broader than the earlier 
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surveys in Massey [143], Green et al. [64] and Hampshire and Massey [72], which are more 
directly related to this review. A good account of the remarkable early work on the Erlang 
models by A. K. Erlang appears in Brockmeyer et al. [24], while C. Palm’s 1943 early work 
on time-varying queues appears in Palm [170]. 

There are broad surveys of the literature on call centers in Gans et al. [54] and Aksin 
et al. [5], while Brown et al. [25] is the seminal contribution on data analysis for call centers. 
For hospitals, there is the data analysis by Armony et al. [8] and the recent papers by Kim 
and Whitt [99], Yom-Tov and Mandelbaum [234], Kim et al. [95], Shi et al. [199], Kim et
al. [100], Dai and Shi [36], and Whitt and Zhang [230] from which the early literature can 
be traced. 

Time-varying queues also play an important role in communication networks, e.g., see 
Leung et al. [111], Neely et al. [155], and Shakkotai et al. [198], and in road traffic, e.g., 
see Newell [159], Ran and Boyce [185], Daganzo [ 34], and Kurzhanskiy and Varaiya [107]. 

2. Numerical Algorithms for Time-Varying Markov Chains 
The TV behavior of a TV model can be very different from the TV behavior of a 

stationary model, which is often called the transient behavior, because it describes the 
dissipating transient impact of initial conditions before the system reaches steady state, 
where the deterministic performance measures such as the mean queue length do not change 
over time. Nevertheless, the basic mathematical representations that are the basis for 
computing the TV behavior of the two kinds of models are essentially the same for Markov 
chains. To make that clear, we first review the basic theory for discrete-time Markov chains
(DTMC’s) in Section 2.1 and then we review the basic theory for continuous-time Markov 
chains (CTMC’s) in Section 2.2. For CTMC’s, the TV behavior is characterized by a system 
of ordinary differential equations (ODE’s) called the Kolmogorov equations. In Section 2.3 
we then review functional Kolmogorov equations for CTMC’s, which are greatly simplified 
systems of ODE’s for summary statistics such as the TV moments. In order to get bonafide 
ODE’s for these summary statistics, we need to approximate other TV quantities on the 
right-hand side of the ODE’s. We review early closure approximations for the first few 
moments of TV queues in Section 2.3.1 and the recent highly successful Gaussian closure 
approximations developed by Massey and Pender [145] for the TV many-server

/ /t t t tM M s M model in Section 2.3.2. 

2.1. Discrete-time Markov chains 

A stationary m-state DTMC is usually specified by its m m transition matrix ,P  with
,i jP representing the probability of making a one-step transition from state i to state j at

any time. The n-step transition probabilities are then given by the Chapman-Kolmogorov 

Queueing Models and Service Management

87



equations   

( ) ( ) ( )
, , ,

=1

= for each , 1 1,
m

n p n p
i j i k k j

k
P P P p p n     (2.1) 

which is equivalent to the simple matrix product ( ) = .n nP P P P  
The main theoretical result for DTMC’s (that are aperiodic irreducible, i.e., for which 

it is possible to get from each state to any other state in some finite number of transitions) 
is about the steady state: ( )

,
n

i jP converges to a limit j as n   , which is independent of 
the initial state i . The steady-state probability vector  can be calculated as the unique 
solution to the matrix equation = P  , which says that  is the unique probability vector 
that remains unchanged by a single transition under P ; i.e., if the initial distribution is  ,
then the DTMC is a stationary stochastic process. 

A TV (inhomogeneous) m-state DTMC is specified by a sequence of transition 
matrices { ( ) : 1}P k k  , where ( )P k is the m m one-step transition probability matrix at 
discrete time k , with , ( )i jP k  representing the probability of making a one-step transition 
from state i at time k to state j at time 1k  . Paralleling (2.1), the probability of making 
an n -step transition from state i at time r to state j time r n is then   

( ) ( ) ( )
, , ,

=1

( ) = ( ) ( ) for each , 1 1,
m

n p n p
i j i k k j

k
P r P r P r p p p n      (2.2) 

or by the matrix product ( ) ( ) ( ) ( 1) ( 1)nP r P r P r P r n      . Obviously, the nice 
description of the steady-state behavior is lost in the TV setting, but we can still speak of 
“asymptotic loss of memory” or “weak ergodicity;” see Seneta [196, 197] and Liu and Whitt 
[122] plus references in and citations to these sources. 

If we compute by recursive matrix multiplication, then there is no difference in 
computing with (2.2) in the TV setting from (2.1) in the stationary setting, but some 
advanced methods, such as spectral decomposition methods (exploiting eigenvalues), gain 
computational advantage from stationary representation and additional mathematical 
structure, e.g., see Latouche and Ramaswami [108] and Stewart [201]. 

2.2. Continuous-time Markov chains 

The story for CTMC’s is similar; indeed, it is natural to think of a CTMC as being a 
DTMC with a very short time between its transitions (with appropriately adjusted transition 
probabilities), which is exactly how some numerical methods for CTMC’s proceed; see 
Section 2.4. Directly, stationary CTMC’s are usually specified by their rate (or infinitesimal 
generator) matrices Q , with ,i jQ giving the rate of a transition from state i to state j at
time t ; i.e., if , ( , )i jP t t h is the probability of a transition from state i at time t to a state 
j at time t h , then we assume that  
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, , ,( ) ( ) = ( ) as 0 for = ,i j i j i jP t h P t Q h o h h i j   

where ( )f h is ( )o h if ( ) / 0f h h  as 0h  ; e.g., see Chapter 5 of Ross [193]. (We also 
assume that the rate of leaving state i is ,1 ( ) = ( )i i iP t h o h  as h 0 , where 

, ,: =i i i jj j ii Q Q    .)
In other words, we regard ,i jQ as the derivative of , ( ).i jP t The transition matrices over 

positive time intervals t are then characterized by the solution of a a system of ordinary 
differential equations (ODE’s): either the forward Kolmogorov equation ( ) = ( )P t P t Q

(looking forward to the incremental change over the interval ( , )t t h , starting from ( )P t
at time t ) or the backward Kolmogorov equation ( ) = ( )P t QP t (looking backward to the 
incremental change over the interval (0, )h followed by ( )P t to get to time t h ). For 
stationary infinite-state CTMC’s, the backward Kolmogorov equations are often preferred 
for the theory; e.g., see Section 5.4 of Ross [193] or Chung [30].  

For TV (inhomogeneous) CTMC’s, we assume that the rate matrix depends on t , so 
that , ( )i jQ t represents the rate of a transition from state i at time t to state j , while 

, ( , )i jP t t h  is the probability of a transition from state i at time t to a state j at time 
t h . Just as the Chapman-Kolmogorov equations immediately extend to TV DTMC’s, so 
do the Kolmogorov ODE’s immediately extend to TV CTMC’s, although the regularity 
conditions in the theory gets more complicated. For TV CTMC’s, it becomes important to 
work with the forward equations in order to incorporate the TV rates in a TV manner. For 
some theory formulating TV CTMC’s and uniform acceleration approximations for them in 
terms of time-ordered exponentials, see Section 3 of Massey and Whitt [152]. 

For most TV Markov queueing models (of a single queue), the number of customers 
in the system at time t , which we denote by ( )X t , can be represented as a TV birth-and-
death (BD) process on the nonnegative integers; i.e., in state k at time t , arrivals occur 
according to a birth rate ( )k t for 0k  , while departures occur according to a death rate 
of ( )k t for 1k  . Let ( ) ( ( ) = )kp t P X t k denote the probability of being in state k at
time t and let ( )kp t be its derivative with respect to time. For a TV BD process, the 
(forward) Kolmogorov equations are the system of ODE’s  

1 1 1 1( ) = ( ( ) ( )) ( ) ( ) ( ) ( ) ( ), 1, andk k k k k k k kp t t t p t t p t t p t k          

0 0 0 1 1( ) = ( ) ( ) ( ) ( ).p t t p t t p t    (2.3) 

Letting 0 1( ) ( ( ), ( ), )p t p t p t  be the vector of TV state probabilities, the system of 
ODE’s in (2.3) can be represented as a single linear ODE for the vector ( )p t ; i.e.,   

( ) = ( ) ( ),p t p t Q t  (2.4) 

where ( )Q t is the TV rate matrix, with , ( ) ( ( ) ( ))k k k kQ t t t    , 1, 1( ) ( )k k kQ t t   and 
1, 1( ) ( )k k kQ t t   for 1k  and 0,0 0,1 0( ) ( ) ( )Q t Q t t    .
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Paralleling the discrete-time setting, if we computed by directly solving the ODE  
(2.4), then the TV setting is essentially the same as the stationary setting, but some advanced 
methods, such as directly computing the transition matrix as a matrix exponential 
( ( ) = QtP t e ), gain computational advantage from stationary representation, despite the need 
for caution; see Moler and van Loan [154], Hairer et al. [69], and Press et al. [182]. 

2.3. Functional Kolmogorov equations 

It is natural to look for more elementary ODE’s for summary statistics such as the TV 
mean. For that purpose, we can apply functional versions of the Kolmogorov equation. Let 
f  be a real-valued function of the state. Then we define   

( ) [ ( ( ))] = ( ) ( ) ( )f k
k

m t E f X t p t f p t f k    (2.5) 

and examine the resulting ODE for ( ).fm t If we let ( ) = ,pf k k 0,k  then
( ) = [ ( ) ]p

fm t E X t .
The functional Kolmogorov equations for the first few moments take a relatively 

tractable form for highly structured queueing models such as the / /t t t tM M s M model, 
which has a nonhomogeneous Poisson process as its arrival process with arrival rate ( )t ,
service provided by each busy server at rate ( )t , ( )s t servers and customer abandonment 
from queue where each waiting customer has an abandonment rate ( )t . (If the service is
M instead of tM , then the service times are mutually independent exponential random 

variables, but not more generally; and similarly for the times to abandon.) 
For the / /t t t tM M s M model, where the number of servers ( )s t is TV, we need to 

specify what happens when all the servers are busy when the staffing is scheduled to 
decrease. In practice this can be complicated because of specified shifts for the servers; e.g., 
see Ingolfsson [85]. For simplicity, in this paper we assume that a customer is pushed back 
to the head of the queue, after which it receives a full new service. Moreover, we do not pay 
attention to the identity of individual servers and customers. 

When ( ) =X t k at time t , the arrival rate is ( )t and the number of servers is ( )s t ,
independent of k , while the total service rate is ( ( )) ( )k s t t and the total abandonment 
rate is ( ( )) ( )k s t t for min{ , }x k x k  and ( ) max{ ,0}.x x  Thus, for the 

/ /t t t tM M s M  model,  

( ) = ( ) [ ( ( ) 1) ( ( ))] ( ) [( ( ) ( ))( ( ( ) 1) ( ( )))]fm t t E f X t f X t t E X t s t f X t f X t      

( ) [( ( ) ( )) ( ( ( ) 1) ( ( )))].t E X t s t f X t f X t      (2.6) 

For the TV mean ( )m t , we have ( )fm t in (2.5) for ( ) =f k k , 0k  , so that  

( ) = ( ) ( ) [( ( ) ( ))] ( ) [( ( ) ( )) ].m t t t E X t s t t E X t s t        (2.7) 

By combining (2.6) for the first two moments, we get the corresponding ODE for the TV 

C  Whitt

90



variance, denoted by ( )v t ,

( ) = ( ) ( ) [ ( ) ( )] ( ) [( ( ) ( )) ]v t t t E X t s t t E X t s t      
2( ( ) ( ( ), ( ) ( )) ( ) ( ( ),( ( ) ( )) )).t Cov X t X t s t t Cov X t X t s t       (2.8) 

For special cases of the / /t t t tM M s M model, we obtain more concrete results, as 
we illustrate now. 

Example 2.1. (the / /t tM M  IS Model) For the / /t tM M  TVIS model, (2.7) and (2.8) 
simplify greatly, becoming   

( ) = ( ) ( ) ( )m t t t m t                              (2.9) 
and

( ) = ( ) ( ) ( ) 2 ( ) ( ).v t t t m t t v t     (2.10) 

By itself, equation (2.9) is an ODE that can be solved for ( )m t . As we will discuss in 
Section 4, for the / /t tM M  model starting empty, ( )X t has a Poisson distribution for 
each t , which implies that ( ) = ( )v t m t for all t . Indeed, we see that ODE (2.10) coincides 
with ODE (2.9) when ( ) = ( )v t m t . Formulas (2.9) and (2.10) are consistent with Theorems 
1 and 6 and Corollary 4 in Eick et al. [44]. 

Variations of the simple ODE representations above for the TVIS model extend to 
Markovian networks of TVIS queues, possibly with phase-type ( Ph ) distributions or 
MAP  arrival processes; see Section 8 of Massey and Whitt [147], Nelson and Taaffe [157, 
158], and Gebhardt et al. [57].   

Example 2.2. (the / /1t tM M Single-Server Model) For the / /1t tM M TV single-server 
model, (2.7) and (2.8) also simplify, becoming   

0( ) = ( ) ( )(1 ( )),m t t t p t                                  (2.11) 
and

0( ) = ( ) ( ) ( ) ( )(2 ( ) 1),v t t t t p t m t      (2.12) 
where 0( ) ( ( ) = 0)p t P X t . Equations (2.11) and (2.12) were first derived and applied by 
Clarke [32].   

2.3.1. Closure approximations 

It is evident that equation (2.11) can be approximately closed and converted to a single 
ODE if we approximated 0( )p t by a function of ( )m t (and possibly ( )t and ( )t ). For 
the / /1tM M queue, such a closure approximation was suggested by Rider [189]. Rothkopf 
and Oren [194] later showed that a more effective closure approximation could be obtained 
from both equations (2.11) and (2.12) . Then we can obtain a system to two ODE’s by 
developing approximations for 0( )p t in terms of ( )m t and ( ).v t  They approximated 
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0( )p t by fitting the two-parameter negative-binomial distribution to the mean ( )m t and
variance ( )v t .

Rothkopf and Oren [194], and then Clark [31] went further and developed a closure 
approximation for mean and variance in the / /t tM M s model, exploiting the fact that the 
ODE’s for ( )m t and ( )v t can be expressed directly in terms of the s  unknown time-
varying probabilities 0( )p t , 1( )p t , ... , 1( )sp t  as well as ( )m t and ( )v t .

Closure approximations for more complex time-varying Markov models involving 
time-varying phase-type distributions were developed by Taaffe and Ong [207], Taaffe and 
Clark [206], Ong and Taaffe [168, 169], and Grier et al. [65]. The paper Grier et al. [65] is 
interesting because it applies a closure approximation to reduce a TV two-queue network to 
two stochastically independent TV queues, providing a TV analog of the reduced-load or 
Erlang fixed-point approximation in Whitt [211] and Kelly [94]. 

2.3.2. Gaussian closure approximations 

As will be discussed in Section 4, the number in system in the / /t tM M   TVIS 
model, starting out empty, is Poisson for all t , and is thus approximately Gaussian for all 
t  provided that the mean is not too small. Thus, it is natural to consider Gaussian closure 
approximations for TV / /t t t tM M s M many-server queues, as proposed by Massey and 
Pender [145]. It is also significant that this Gaussian closure approximation is supported by 
the MSHT limit in the complementary-QED ( cQED ) MSHT regime, as we will discuss 
later in Section 6.3. 

The Gaussian variance approximation (GVA) from Massey and Pender [145] is based 
on the approximation   

( ) ( ) (0,1) ( ) for all ,X t m t N v t t   (2.13) 
where (0,1)N is a standard (mean 0, variance 1) Normal (Gaussian) random variable, while 

( )m t and ( )v t  are the TV mean and variance satisfying (2.7) and (2.8). The Gaussian 
approximation is convenient because simple scaling properties of Gaussian distributions can 
be exploited to calculate the right sides of (2.7) and (2.8) given approximation (2.13) ; i.e., 
(2.7) and (2.8) can be re-expressed approximately as  

( ) = ( ) ( ) ( ) ( ) [ (0,1) ( ))] ( ) [( (0,1) ( )) ]m t t t m t t E N t t E N t            (2.14) 
and

( ) = 2 ( ) ( ) 2 ( ) ( ),v t t m t t v t     (2.15) 
where

( ) [ ( ) ( )] / ( ) andt s t m t v t  

( ) ( ) ( (0,1), (0,1) ( )) ( ) ( (0,1),( (0,1) ( )) .t t Cov N N t t Cov N N t          (2.16) 

Massey and Pender [145] exploit Stein’s lemma, which states that, if (and only if) 
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d
= (0,1)X N , then   

[ ( )] = [ ( ) / ]E Xf X E df X dX  (2.17) 

for all generalized functions f (which includes indicator functions needed in the present 
setting); see Stein [200]. With the aid of (2.17), (2.14) and (2.15) can be expressed 
approximately as  

( ) = ( ) ( ) ( ) ( ( ) ( ))( ( ) ( ( )) ( ( ))) ( )m t t t m t t t t t t v t             (2.18) 
and

( ) = 2 ( ) ( ) 2( ( ) ( ( )) ( ) ( ( ))) ( ),v t t m t t t t t v t           (2.19) 

where ( )x is the probability density function (pdf) of (0,1),N ( ) ( (0,1) )x P N x   is 
the associated cumulative distribution function (cdf) and ( ) 1 ( )x x   is the 
complementary cdf (ccdf). This GVA dynamical system in (2.18) and (2.19) coincides with 
the approximation developed earlier by Ko and Gautam [103]. 

The GVA approximation above seems adequate to yield effective numerical 
approximations for many / /t t t tM M s M models in practice, but Massey and Pender [145] 
in Section 4 go much further and develop a more accurate three-ODE system for the first 
three TV moments and a systematic framework for developing closure approximations 
much more generally. This extension can be obtained without much extra work. 

The three-ODE refinement is called the Gaussian skewness approximation (GSA) 
because the third moment captures the skewness of non-Gaussian distributions, i.e., 

3 3/2( ) [( [ ]) ] / ( ) .skew Z E Z E Z Var Z   Specifically, the three-ODE system is for the TV 
mean and the TV second and third central moments. The systematic procedure yields a 
closure approximation that is a quadratic function of a Gaussian random variable; i.e., 
instead of  (2.13) , in their (4.2) the approximation at each time becomes   

2(0,1) 1( ) ( ) (0,1)cos( ( )) sin( ( )) ( ), for all .
2

NX t m t N t t v t t 
 

   
 

 (2.20) 

With (2.20), the solution of the three-ODE system directly yields the TV mean, variance 
and skewness. To apply this scheme, we need not calculate ( )t , but they give an explicit 
expression for it. 

The general framework for closure approximations for / /t t t tM M s M models
developed by Massey and Pender [145] represents the distribution at each time t  as a 
polynomial function of a Gaussian distribution. The framework exploits the Hilbert space 
of Hermite orthogonal polynomials ( )nh x and involves a Hermite polynomial 
generalization of Stein’s lemma, stating that   

[ ( ) ( )] = [ ( ) / ]n n
nE f X h X E d f X dX  (2.21) 

for any generalized function .f Not only does this paper develop effective closure 
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approximations / /t t t tM M s M models, but it develops a systematic approach that has 
promise for other settings. Indeed, extensions to TV loss models and TV Jackson networks 
of queues with abandonment have since been treated by Pender [176] and Pender and 
Massey [178], respectively. Analyses using different orthogonal polynomials have been 
done in Pender [174, 175]. 

These Gaussian closure methods require closed-form expressions for the expectations 
that appear in the functional Kolmogorov forward equations. Pender [177] presents a new 
sampling algorithm to use with simulation when closed-form expressions are unavailable. 

2.4. Numerical algorithms for ODE’s 

To numerically solve the ODE’s discussed above, for the most part it suffices to apply 
off-the-shelf methods, such as the basic Euler method or the Runge-Kutta fourth-order 
method. We briefly discuss remaining numerical issues in this section. 

Truncating the state space. For infinite-state models, the system of ODE’s is infinite, 
but computation can be done by truncating the state space, as was done to analyze airplane 
landing delays at airports by Koopman [105] and dispatching delays for police patrol cars 
by Kolesar et al. [104]. Standard ODE algorithms with truncated state space have been used 
extensively in studies of time-varying queues, e.g., in many of the papers surveyed in Green 
et al. [64]. We do remark that this step can require some care, because the behavior at the 
truncated boundary can matter. A reasonable approach is to achieve the truncation by 
approximating by a well-defined finite-state queueing model that can be related to the 
original model; e.g., approximating by a model with a finite waiting room. Then the impact 
of the truncation can be understood and managed. 

A uniformization algorithm for solving the system of ODE’s. Davis et al. [38] found 
that it was effective and convenient to uniformize the TV CTMC to create a TV DTMC 
over an evenly spaced discrete time grid. Assuming that , ( )i iK A t for all i and t , a 
DTMC for a step size < 1 /h K with time-varying transition probabilities can be defined by   

, , , ,
, =

( ) = ( ), = and ( ) =1 ( ).i j i j i i i j
j j i

P k hA kh j i P k P k   (2.22) 

Then we approximate the CTMC at time kh by the DTMC at time k .

Verifying numerical accuracy. It is always important to use simple practical methods 
to ensure numerical accuracy. For example, at various times t over a target interval [0, ]T ,
we can check that the resulting probability vector ( )p t is indeed nonnegative with total 
mass equal to 1.  We can correct by either (i) adding missing mass to the highest state or 
subtracting excess mass from 0 or (ii) subtracting excess mass from the highest state or 
adding missing mass to 0. Since these two approaches tend to be upper and lower bounds, 
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we can see that the impact of these corrections is negligible by doing both. Similarly, to 
verify numerical accuracy, it is good to consider several truncation levels and several step 
sizes to see that further refinement produces negligible change. 

2.5. Piecewise-constant arrival-rate functions 

Many algorithms have been developed to compute the transient performance of a 
stationary model for general initial conditions. These algorithms can be applied to calculate 
the TV performance of a TV model if we approximate the TV arrival-rate function by a 
piecewise-constant arrival rate function. Then we can recursively compute the TV 
performance on each interval by letting the initial distribution on each interval be specified 
by the terminal distribution on the previous interval. 

For example, the transient workload process in an / / 1M GI queue is a Markov 
process whose TV distribution can be characterized by a two-dimensional Laplace 
transform. A numerical inversion algorithm was developed in Choudhury et al. [27] for 
multi-dimensional Laplace transforms, drawing on Abate and Whitt [1, 2, 3], and applied to 
compute the TV distribution of the transient workload process in the / / 1M GI queue.
Moreover, that algorithm was applied to compute the performance measures of the TV 
workload process in the / /1tM GI queue with a piecewise-constant arrival process in 
Choudhury et al. [28]. 

Evidently, other algorithms for the transient performance can be used in the same way. 
For example, Lucantoni et al. [134] developed a numerical inversion algorithm for the 
transient behavior of the / / 1BMAP GI queue, having an arrival process that is a batch 
Markovian arrival process (also known as a Neuts process or versatile Markovian point 
process); see Lucantoni [133]. In addition, Abate and Whitt [4] developed a numerical 
inversion algorithm to compute transient blocking probability and other TV performance 
measures for the / / / 0M M s Erlang loss model for general initial conditions. 

3. Time-Varying Deterministic Fluid Models 
When the deterministic variability in the arrival and departure rates tends to be more 

important than the stochastic variability about those rates, it may be appropriate to ignore 
the stochastic part of the model altogether. Moreover, if the number in system varies over a 
fairly wide range, then we might also ignore the discrete nature of individual customers or 
jobs. That leads us to continuous deterministic fluid models as alternatives to (or 
approximations for) discrete stochastic TV queueing models. 

These deterministic fluid models make optimization far more tractable; e.g., see 
Hampshire and Massey [72], Hampshire et al. [71], Niyirora and Pender [165], Niyirora and 
Zhuang [166], and Whitt [222]. We give a simple example in Section 3.2. 
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3.1. Fluid models for TV Markovian / /t t t tM M s M queues

We can obtain deterministic fluid models for the TV Markovian / /t t t tM M s M
queues considered in Section 2 directly from the ODE for the mean in (2.7) by adjusting our 
interpretation. If we replace the mean ( )m t in (2.7) by a deterministic state ( )x t , then (2.7) 
becomes the ODE  

( ) = ( ) ( )( ( ) ( )) ( )( ( ) ( )) .x t t t x t s t t x t s t        (3.1) 

3.2. Single-server fluid models 

The single-server fluid model is the natural direct approach when we can assume that 
we have a TV arrival rate ( )t and a TV service rate ( )t ; see Edie [43], Oliver and Samuel 
[167], May and Keller [153], and Newell [163] for early examples. 

We need a different interpretation than is provided by (3.1). Now we need to keep track 
of whether or not the single server is busy. Thus, the deterministic analog of (2.11) is the 
ODE   

{ ( )>0} { ( )=0}( ) = [ ( ) ( )]1 [( ( ) ( )) ]1 ,x t x tx t t t t t        (3.2) 

where 1A is the indicator function of the set A , equal to 1 in A and equal to 0 otherwise.
The first part of (3.2) states that ( )x t evolves according to the simple ODE 

( ) = ( ) ( )x t t t   when ( ) > 0x t . The second part of (3.2) states that, when ( ) = 0x t ,
( )x t  remains at 0 unless ( ) ( ) > 0t t  .

This deterministicsingle-server model can often be analyzed by back-of-the-envelope 
calculations, without any ODE algorithms, as illustrated by the National Cranberry 
Cooperative case study in Porteus [179, 180, 181]. Here is a short story extracted from the 
longer detailed narrative: Trucks bring wet cranberries to be processed at a processing 
facility that has storage capacity for 3200 bbl (barrels). The trucks bring cranberries each 
day over the 12-hour time interval [7, 19] at a rate of 1050 bbl per hour. If the input exceeds 
the 3200 bbl storage, the input keeps arriving but waits in the delivery trucks, which is 
undesirable.

An original plan has the berries processed at the facility at 600 bbl per hour, with 
processing starting at 11 and continuing until the daily input has been processed. A quick 
analysis of the deterministic ODE shows that the plan leaves too much waiting for the trucks. 
A revised plan, yielding no truck waiting, has the processing rate increased from 600 bbl
per hour to 800 bbl per hour, with the processing starting at 7 am. Figure 1 shows the 
inventory level building up and dissipating over a single day with the original plan (above) 
and the revised plan (below).  

Many service system applications require little more than the analysis above; the rest 
of this paper is intended to help when that is not the case. 
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Figure 1. An example of the deterministic single-server fluid model applied to analyze 
the daily buildup and eventual decline of inventory over the day: a comparison of the 
original plan with processing at rate 600 bbl per hour starting at 11 (above) with a 
revised plan having processing at rate 800 bbl per hour starting at 7 (below). 

3.3. Two-parameter fluid models for non-Markov many-server queues 

Turning to something less obvious, but not so difficult after we get acclimated, we now 
discuss more recent two-parameter fluid models to approximate many-server queues with 
non-exponential service-time and patience-time distributions. These models are of interest 
because the service times and patience times often have non-exponential distributions in 
service systems; e.g., see Armony et al. [8], Brown et al. [25], and Whitt and Zhang [230]. 
It is natural to model many of these systems as / /t tM GI s GI queues, where the service 
times and patience times come from independent sequences of i.i.d. random variables with 
cdf’s G and ,F respectively, and associated pdf’s g and f . In order to analyze the 
performance of these systems, it is natural to focus on the pair of two-parameter stochastic 
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processes ( , ) {( ( , ), ( , ) : 0, 0}B Q B t x Q t x x t   , where ( , )B t x ( ( , )Q t x ) is the number of 
customers in service (queue) at time t that have been so for at most time .x This 
representation is convenient because the function-valued (or measure-valued) stochastic 
process {( ( , ), ( , )) : 0}B t Q t t   is a Markov process. 

Nevertheless, the stochastic process ( , )B Q is relatively complicated. Hence, it is 
natural to approximate the performance by a deterministic fluid model, which was done for 
the / /G GI s GI stationary model in Whitt [221] and for the / /t tG GI s GI TV model 
by Liu and Whitt [123]. The fluid model is specified by the four-tuple of functions 
( , , , )s g f , where ( )t is the arrival rate and ( )s t is the capacity at time t , while g and
f  are the service and patience pdf’s. For the deterministic fluid model, we interpret the 

cdf’s G and F as proportions; e.g., ( )G x is the proportion of fluid that completes service 
within time x of entering service. 

These fluid models also can be viewed as measure-valued functions. In addition, they 
can be viewed as deterministic limits in MSHT laws of large numbers for the stochastic 
model; see Section 6 here and Kang and Ramanan [90], Kaspi and Ramanan [91], Liu and 
Whitt [124, 126], Kang and Pang [89], Zhang [236], and Zuniga [239]. Kang and Pang [89] 
have shown that four different representations of this fluid model are equivalent. 

The impact of the cdf’s F and G beyond their means. This deterministic two-
parameter fluid model is quite different from the fluid models in (3.1) and Section 3.2 
because the cdf’s F and G beyond their means can play an important role in system 
performance. For the overloaded stationary / /G GI s GI model, Tables 1-3 of Whitt [221] 
show that the patience cdf F can have a significant impact, but the service cdf G is
relatively unimportant. In contrast, for the TV / /t tG GI s GI model, Figure 2 of Liu and 
Whitt [123] shows that the service cdf G also can have a big impact on the TV performance. 
That figure compares the fluid content in two 2/ /tM GI s E systems, one with service 
time having a mean-1 exponential ( )M distribution, having squared coefficient of variation 
(scv, variance divided by the square of the mean) 2 = 1c , and the other having a mean-1
hyperexponential 2(H , mixture of two exponentials) distribution with scv 2 = 4c . The 
sample paths are very different and yet both agree with simulation estimates of the TV mean 
values in the stochastic models. 

An important insight is that lessons learned about the stationary model do not 
necessarily remain valid for the more general TV setting. For another example, Davis et al.
[38] showed that the service-time cdf G beyond its mean can have a significant impact on 
the blocking probability in the TV / / / 0tM GI s  loss model, even though the stationary 

/ / / 0M GI s  model has the celebrated insensitivity property. 

Deterministic stochastic models and stochastic deterministic models. The 
Markovian / /t tM M s M model in Section 2 can be regarded as a deterministic 
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stochastic model, because the process ( )X t being modeled is a stochastic process, evolving 
randomly over time, but only deterministic features of the model are specified; i.e., the 
exponential service-time and patience distributions are fully specified by their deterministic 
means, while the NHPP arrival process is fully specified by its deterministic rate. 

In contrast, the / /t tG GI s GI  fluid model considered in this section can be regarded 
as a stochastic deterministic model, because the process being modeled is a deterministic 
process, evolving deterministically over time, but stochastic features of the model are 
specified; i.e., there is a separate specification of the service-time and patience distributions 
beyond their means through the cdf’s F and G (although the arrival process has no impact 
on the fluid model performance beyond its deterministic rate). 

The evolution of the two-parameter fluid model. The evolution of the 
/ /t tG GI s GI  fluid model specified by ( , , , )s g f can be characterized by the pair 

( ( , ), ( , )),B t x Q t x  where ( , )B t x ( ( , ))Q t x is the amount of continuous, divisible, 
deterministic fluid in service (queue) at time t that has been so for at most time .x  These 
in turn can be characterized by the density functions ( , )b t x and ( , )g t x , where   

0 0
( , ) = ( , ) and ( , ) = ( , ) , 0.

y y
Q t y q t x dx B t y b t x dx y    (3.3) 

The evolution depends on whether the system is overloaded (all the service capacity 
( )s t  is being used) or whether it is not. The evolution is carefully analyzed in Liu and Whitt 

[123], to which we refer for more details. A key initial assumption is that the system 
alternates between overloaded (OL) intervals and underloaded (UL) intervals. Just as in 
Section 2.3.2, from the perspective of MSHT limits, this switching between OL and UL 
intervals again corresponds to being in the complementary-QED ( cQED ) MSHT regime, 
discussed in Section 6.3. 

We assume that fluid enters service from queue in order of arrival. As a consequence, 
at any time t when the system is OL, there will be a lower boundary of the queue-length 
density   

( ) inf{ 0 : ( , ) = 0, for all < }.w t y q t x x y   (3.4) 

The fundamental evolution equations state that fluid in service (queue) that is not 
served (does not enter service or abandon) remains in service (queue), i.e.,  

( )( , ) = ( , ) and
( )

c

c
G x ub t x x u b t x

G x


 

( )( , ) = ( , ) , 0 < ( ) ,
( )

c

c
F x uq t x x u q t x x w t u

F x


     (3.5) 

where ( ) 1 ( )cG x G x  and ( ) 1 ( )cF x F x  .
The key flows depend on the hazard rates of the service-time cdf G and the patience 
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cdf ,F where ( ) ( ) / ( )c
Gh x g x G x and ( ) ( ) / ( )c

Fh x f x F x . In particular, from (3.5) it 
is evident that the service rate ( )t and abandonment rate ( )t at time t are   

0 0
( ) = ( , ) ( ) and ( ) = ( , ) ( ) .G Ft b t x h x dx t q t x h x dx 

 

   (3.6) 
During each UL interval, the system behaves like an / /tM GI   TVIS fluid model, 

so that ( , )b t x evolves according to   

{ } { > }( , ) = ( ) ( )1 (0, )[ ( ) / ( )]1 ,c c c
x t x tb t x G x t x b x t G x G x t      (3.7) 

until the first time T that ( ) > ( )B t s t , at which point an OL interval starts. 
During an OL interval, ( , )b t x  evolves according to   

{ } { > }( , ) = ( ) ( ,0)1 (0, )[ ( ) / ( )]1 ,c c c
x t x tb t x G x b t x b x t G x G x t     (3.8) 

which is the same as in (3.7) except that the fluid rate entering service, ( ,0)b t x , replaces 
the external fluid arrival rate, ( )t x  . That is complicated because ( ,0)b t x is part of 
what we are trying to determine. However, it turns out that the function representing the rate 
fluid enters service, ( ,0)b t , satisfies the following fixed-point equation   

0
ˆ( ,0) = ( ) ( ,0) ( ) ,

t
b t a t b t x g x dx   (3.9) 

where ˆ( )a t is an explicit function of known quantities; see (19) in Liu and Whitt [123]. 
Under regularity conditions, the operator specified by the right side of (3.9) is a contraction 
map, so that equation (3.9) can be solved by successive iteration. The algorithm for each 
OL interval requires solving the fixed-point equation in (3.8) . 

To analyze the queue performance in each OL interval it is convenient to look at the 
function ( , )q t x showing the queue content under the assumption that no fluid enters service 
from queue. The function ( , )q t x evolves the same way ( , )b t x does except that the 
abandonment cdf F plays the role of the service cdf G for ( , )b t x ; i.e., paralleling (3.8),   

{ } { < }( , ) = ( ) ( )1 (0, )[ ( ) / ( )]1 ,c c c
x t t xq t x F x t x q x t F x F x t      (3.10) 

The key insight is that, because all fluid enters service from the head of the queues, ( , )q t x
differs from ( , )q t x only for < ( )x w t ; i.e.,   

{ ( )} { < ( )}( , ) = ( ) ( ,0)1 (0, )[ ( ) / ( )]1 ,c c c
x t w t t x w tq t x F x q t x q x t F x F x t       (3.11) 

It then turns out that the boundary function ( )w t evolves as an ODE. In particular, 
under general regularity conditions,   

( ,0)( ) = 1
( , ( ) )
b tw t

q t w t


 





 (3.12) 
and any initial value (0)w .

Moreover, under regularity conditions, the potential waiting time (the waiting time of 
a hypothetical infinitely patient arriving atom of fluid at time t ), denoted by ( )v t , is the 
unique function satisfying the equation   

( ( )) = ( ) or, equivalently, ( ) = ( ( )) for all 0.v t w t w t v t w t v t t    (3.13) 
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It is important to recognize that the / /t tG GI s GI fluid model is a valid 
mathematical model in its own right. Indeed, Theorems 2-6, Propositions 2, 5 and 6 and 
Corollaries 3, 5 and 6 in Liu and Whitt [123] present conditions verify that the performance 
description above is valid under regularity conditions stated there. Moreover, the 
performance functions, including ( ( , ), ( , ), ( ), ( ))b t x q t x W t v t for each OL interval, can be 
computed by an algorithm with complexity about the same as for the closure approximations 
in Section 2.3.1 and Section 2.3.2. 
Example 3.1. (the 2 2/ /tM H s E fluid model with a sinusoidal arrival rate) Figure 2 
illustrates the computational results by showing the plots of six performance functions for 
an 2 2/ /tM H s E  fluid model with a sinusoidal arrival rate function: ( ) = 1 0.6sin( )t t  ,
mean service time 1 / = 1 , mean patience 1 / = 1 , and fixed service capacity = 1s , taken 
from Liu and Whitt [123]. Simulations confirm that these deterministic performance 
descriptions are effective for approximating the corresponding TV mean values in the n-
server stochastic model with arrival rate ( )n t for = 100n and smaller n as well.  

Figure 2. Six performance functions for the 2 2/ /tG H s E fluid model with            
sinusoidalarrival-rate function ( ) = 1 0.6sin( )t t  for service capacity s and mean 
service and patience times equal to 1 : (i) arrival rate ( )t ; (ii) head-of-line waiting 
time ( )w t ; (iii) fluid waiting in queue ( )Q t ; (iv) fluid in service ( )B t ; (v) total fluid 
in system ( )X t ; and (vi) rate into service ( ,0)b t .
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More on fluid models. Liu and Whitt [122], and Long and Zhang [131] show that, 
under regularity conditions, the fluid model has an asymptotic-loss-of-memory property, 
implying that the performance at time t is asymptotically independent of the initial 
conditions as t increases. As a consequence, the periodic fluid model has a dynamic 
periodic steady state, consistent with what we see from performance plots over several 
cycles. Even if we start the system empty in the algorithm, that limiting behavior is usually 
evident over a few cycles, as in Figure 2. 

This TV fluid model is applied by Ibrahim and Whitt [80, 81] to improve delay 
announcements in a time-varying environment. Extensions of the analysis to networks of 
TV fluid queues are contained in Liu and Whitt [121, 127] and Zychlinski et al. [240].

There is a larger literature on stationary fluid models, which present directions for TV 
extensions. Fluid models are used in the analysis of kidney donation by Ata et al. [11]. 
Bassamboo and Randhawa [14] show that fluid models are remarkably effective in setting 
capacities. Other network fluid models are discussed in Talreja and Whitt [208]. 

Diffusion process refinements. Two-parameter diffusion models are useful 
refinements of the two-parameter fluid models, because they can capture the impact of the 
stochastic variability as well as the deterministic TV arrival-rate function. We will discuss 
them in Section 6.3. 

4. Time-Varying Infinite-Server Queues 
Many good methods for analyzing the stochastic behavior of non-Markovian 

/ /t tM GI s GI models exploit the associated / /tM GI  TVIS model, which is 
remarkably tractable. Indeed, this / /tM GI  TVIS model can be regarded as the 
“prototype” or ideal form of the / /t tG GI s GI many-server queue that reveals the 
essential TV behavior, before focusing on the implications of the capacity constraints. 

The IS models can also be useful tools even for many-server models that do not directly 
perform like IS models. For example, IS models can help analyze overloaded models when 
we regard the patience times as service times; see Liu and Whitt [126] and Aras et al. [6]. 
In the same spirit, the stationary IS model played an important role in analyzing the 
stationary / /GI GI s model in Reed [186]. 

4.1. The Poisson random measure representation 

Even though the number in system, ( )X t , in the / /tM GI  TVIS model is not a 
Markov process, it has a Poisson distribution for each t with mean   

0
( ) [ ( )] = ( ) ( ) = ( ) = [ ( )] [ ], 0,

tc
et S

m t E X t t s G s ds E s ds E t S E S t  




        (4.1)
where ( )t is the deterministic arrival rate at time t , G is the cdf of a service time ,S

( ) 1 ( ) ( > )cG s G s P S s    and eS is a random variable with the stationary-excess or 
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equilibrium lifetime cdf of G , i.e.,   

0

1( ) ( ) ( ) , 0.
[ ]

x c
e eG x P S x G s ds x

E S
     (4.2) 

This follows because the arrivals together with the service times form a Poisson random 
measure in the plane; see Theorem 1 of Eick et al. [44] and references given there. As a 
consequence, the departure process is also a Poisson process with departure rate   

0
( ) ( ) ( ) = [ ( )], 0.t t s dG s E t S t  


     (4.3) 

Independence properties hold because the number of points in disjoint sets are independent 
under a Poisson random measure. 

Consistent with Example 2.1, for the Markov / /t tM M   TVIS model, the mean 
( )m t  satisfies the ODE given there by Theorem 6 and Corollary 4 in Eick et al. [44]. 

The offered load. The TV mean ( )m t in (4.1) is called the offered load, because with 
finitely many servers, it represents the expected number of servers needed if we ignored the 
capacity constraints (considered the associated IS model). As discussed in Eick et al. [44], 
formula (4.1) can be exploited to understand the “physics” of the TVIS queue and, as an 
approximation, the associated many-server queues. 

For example, the final formula in (4.1) shows that the TV offered load coincides with 
the stationary offered load except for a random time lag by eS . (In the stationary case, when
 is a constant, ( ) = [ ]m m E S  , by Little’s law.) To get a rough idea of the impact of 

the service-time cdf, we can use the mean 2[ ] = [ ]( 1) / 2e sE S E S c  ; see (2) in Eick et al.
[44]. Moreover, we see that there tends to be both a time lag and a space shift in the mean 

( )m t behind the arrival rate; see equations (14)-(16) of Eick et al. [44]. For stationary 
models starting empty, we get a simple formula for the TV mean starting out empty: 

( ) = ( ) ( )em t m P S t  ; see (20) in Eick et al. [44]. 
There are extensions to networks of IS queues and more general spatial models; see 

Duffield et al. [41], Massey and Whitt [147, 150], and Leung et al. [111]. 

4.2. Direct IS approximations with application to staffing

As discussed in Section 3 of Jennings et al. [87] and Section 4.3 of Green et al. [64],
if we directly approximate an / /t tM GI s GI  TVMS model by a TVIS / /tM GI 
model, then we immediately obtain a Poisson distribution, which leads to the Gaussian 
approximation ( ) ( ( ), ( )),X t N m t m t where ( )m t is the offered load in (4.1) and ( , )N m v
denotes a random variable with a normal distribution having mean m  and variance v .
(We have variance equal to the mean because of the Poisson distribution.) If we choose 

( )s t  so that ( ( ( ), ( )) > ( )) =P N m t m t s t  , then we obtain the classical square-root-safety
(SRS) staffing formula   

( ) = ( ) ( ),s t m t m t  (4.4) 
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where ( (0,1) > )P N  is a quality-of-service (QoS) parameter. It is significant that the 
large subsequent literature primarily provides support for the SRS staffing formula in  
(4.4) , leading only to adjustments to the QoS parameter  .

The exact distribution of ( )X t is more complicated in the / /tG GI   TVIS model, but 
fortunately it is often approximately Gaussian, so that it remains to find formulas for the TV 
mean and variance. The TV mean presents no problem because the mean ( ) [ ( )]m t E X t
in the / /tM GI  model in (4.1) remains unchanged if the arrival process is changed to tG
with the same arrival-rate function; see Theorem 2.1 and Remark 2.3 of Massey and Whitt 
[147] plus (4.20) in Section 4.5 below. 

To support the Gaussian approximation and develop an approximation for the TV 
variance, we can apply the MSHT FCLT for the / /tG GI  TVIS model. For this model, 
the MSHT limits and the resulting Gaussian approximation tend to follow from the FCLT 
and Gaussian approximations for the arrival counting process, as can perhaps best be seen 
from the case of deterministic service times and then extending to service-time distributions 
that are finite mixtures of these, as in Glynn and Whitt [62]. In particular, for the / /tG D 
model, ( ) = ( ) ( [ ])X t A t A t E S  for each t , where A is the arrival process, i.e., the 
number in system at time t is the number of arrivals over an interval before t of length 
equal to the service time. 

For the stationary model, the MSHT limit was first established by Borovkov [22]. For 
the / /tG GI  TVIS model, we can apply the two-parameter MSHT limit established by 
Pang and Whitt [171], which has been supplemented by an improved new chaining proof in 
Pang and Zhou [173]. The resulting Gaussian approximation has the mean in (4.1) and 
variance  

2 2

0
( ) ( ) ( ) with ( ) ( ) ( 1) ( )av t t s V s ds V s G s c G s


    

2 2

0
= ( ) ( 1) ( ) ( ) ,am t c t s G s ds


    (4.5) 

where 2
ac is the asymptotic variability parameter for the arrival process, coming from an 

assumed FCLT for the arrival process, as in (5.6) in Section 5.3 below, so that the ratio of 
( )v t  in (4.5) to ( )m t in (4.1) , called the time-varying MSHT peakedness, is   

2 1 2

0

( )( ) = 1 ( 1) ( ) ( ) ( ) .
( ) a

v tz t c m t t s G s ds
m t


     (4.6) 

However, because the TV MSHT peakedness formula in (4.6) is complicated, it is 
natural to approximate it by the MSHT peakedness formula in the associated stationary 

/ /G GI   model (letting 1( ) /m t     and ( )t s    in (4.6)) to obtain the MSHT 
stationary peakedness   

2 2

0
1 ( 1) ( ) .az c G s ds


     (4.7) 
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This analysis leads to our final TV approximation for the / /tG GI  model:   
( ) ( ( ), ( )),X t N m t zm t  (4.8) 

where ( )m t is given in (4.1) and z is given in (4.7). 
Thus, when the arrival process is allowed to be tG instead of tM , instead of (4.4) , 

we would staff according to   
( ) = ( ) ( ) ( ) ( ),s t m t v t m t z m t     (4.9) 

where again ( (0,1) > ).P N  This new version is still based on a Gaussian 
approximation, but involves a change in the variance. 

From (4.8), we see that the TV behavior of ( )X t is captured by ( )m t in (4.1), while 
the impact of non-Poisson stochastic variability in the arrival process is captured by z in
(4.7), which depends on the arrival process only via the parameter 2

ac , but also depends on 
the entire service-time cdf .G  The use of the heavy-traffic approximation for z in delay 
and loss models is discussed and examined in Pang and Whitt [172], Li and Whitt [114], 
and He et al. [75]; see the references there for earlier work on peakedness. 

4.3. The Modified-offered-load (MOL) approximation 

The pointwise-stationary approximation (PSA). The MOL is a variation of the 
pointwise-stationary approximation (PSA). The PSA approximation applies to queues with 
finitely many servers. For any / /t tM GI s GI model, the PSA approximation is based on 
the associated stationary / /M GI s GI model. At time t , the PSA approximation for 

( )X t  is the steady-state random number, ( , , , )X X G F s  , where we let G and F be the 
given distributions, but we let = ( )s s t , the actual number of servers at time t , and we let

= ( )t  , the actual arrival rate at time t . The PSA approximation tends to be effective if 
the arrival rate changes slowly during the time of a single service time. The PSA 
approximation tends to be very effective in call centers when the average call holding time 
is short, e.g., less than 10 minutes. Asymptotics supporting the PSA approximation and 
refinements appear in Whitt [213], and Massey and Whitt [152]. 

The MOL approximation. The MOL approximation is a minor, but important, 
modification of PSA. The MOL approximation is just like PSA, except that instead of the 
actual arrival rate at time t , we use the MOL arrival rate   

( )( ) ,
[ ]mol

m tt
E S

   (4.10) 

where ( )m t is the mean number of busy servers in the associated TVIS model, which is the 
offered load in (4.1) , and [ ]E S is a mean-service time. 

There is a simple logic: If the IS model were stationary at time t , then the offered load 
would be ( ) = ( ) [ ]m t t E S ; the mean ( )m t provides a better starting point for a performance 
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approximation than ( ),t  because it also accounts for the service-time distribution. Most 
important, MOL proves to be much more accurate than PSA with longer service times, while 
MOL reduces to PSA for shorter service times. 

Example 4.1. (staffing with MOL in the / /t tM M s model) For the / /t tM M s model with 
TV arrival rate ( )t , TV staffing ( )s t and constant service rate  , instead of assuming 
that ( ) ( ( ), ( ))X t N m t m t , where ( )m t is the offered load in (4.1) as we did in Section 4.2 
above, we now assume that ( ) ( ( ), , ( ))molX t X t s t   , where ( , , )X s  is the steady-state 
number in system in the stationary / /M M s model with parameter triple ( , , )s  . Thus, 
to achieve approximate delay probability  at each time t , we would choose ( )s t so that   

( ) inf{ 0 : ( ( ( ), , ) }.mols t s P X t s      (4.11) 

This approximation is not difficult to implement because, for the stationary Markovian 
models, algorithms for the steady-state distribution of X are readily available. 

However, it is even easier to apply the MSHT limit, which for the stationary 
/ /M M s  model comes from Halfin and Whitt [70]. That MSHT limit gives the non-

Gaussian approximation   

( ) ( ) 1 / [1 ( ) / ( )],P X m x m HW x x x       (4.12) 

for /m   not too small, where  and  are the cdf and pdf of (0,1)N . To staff with 
delay probability target  , approximation (4.12) dictates that the SRS staffing formula (4.4) 
should hold with   

1( ),HW   (4.13) 
where 1HW  is the inverse of the “Halfin-Whitt” function HW defined in (4.12). Section 
4 of Jennings et al. [87] shows that the QoS parameter (4.13) provides an improvement to 
the Gaussian approximation in (4.4) .   

Starting with Jagerman [86]. The MOL method was originated by Jagerman [86] for 
the / / / 0tM M s loss model with a fixed number of servers. Consistent with intuition, the 
MOL approximation tends to be more effective for many-server queues under relative light 
loading. Theoretical support for the MOL approximation for that model and the more 
general / / / 0tM Ph s model were provided in Massey and Whitt [148]. Peak congestion in 

/ / / 0tM GI s  models was studied using TVIS models in Massey and Whitt [151]. The 
time-varying performance of the nonstationary loss model with fixed staffing was also 
discussed in Grier et al. [65], and Pender [176]. 

For both delay and loss models, the MOL approximation is an alternative to two natural 
simple approximations. The first is the PSA discussed above, while the other is the simple 
stationary approximation (SSA), which uses the stationary model with the long-run average 
arrival rate. The SSA approximation usually exhibits poor performance whenever the arrival 
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rate fluctuates significantly. Figures 1-3 of Jennings et al. [87] show the big advantage of 
the new infinite-server (IS) staffing scheme over PSA and SSA for multi-server delay 
models with longer service times. (In Jennings et al. [87] a direct IS approximation is first 
proposed, but it is extended to the MOL approximation in Section 4; see the review in Green 
et al. [64].) 

As noted above, the MOL approximation tends to be ineffective when the staffing 
cannot be increased to meet high demand, so that the system becomes seriously overloaded. 
Then other methods may be needed to describe the performance, such as the Gaussian 
closure approximation in Section 2.3.2, the fluid models in Section 3, the stationary backlog-
carryover approach in Stolletz [203], or extensions of the methods to describe overloaded 
single-server queues in Section 7. 

4.4. Different systems and performance measures 

The MOL approximation has been found to be very effective for the practical problem 
of choosing TV staffing in order to stabilize the performance at target levels. Given that the 
staffing is chosen by (4.11), which implements MOL, the system tends not ever to be 
overloaded, which tends to make MOL consistently effective. The application of MOL to 
set TV staffing levels to stabilize performance, first the delay probability and then other 
performance measures, was discussed in Jennings et al. [87], Green et al. [64], Feldman et 
al. [48], Liu and Whitt [125], Defraeye and van Niewenhuyse [40], Liu and Whitt [128], 
Yom-Tov nad Mandelbaum [234], He et al. [75], Liu and Whitt [129], and Liu [120]. 
Significant new ideas have played a role in the later contributions, including MSHT limits, 
so that the following discussion overlaps somewhat with Section 6. 

Customer abandonment and the ISA. Feldman et al. [48] showed that the approach 
to staffing for the / /t tM M s model in Example 4.1 extends to the associated 

/ /t tM M s M model with customer abandonment from queue, using the MSHT limit 
from Garnett et al. [55] instead of the MSHT limit from Halfin and Whitt [70], which leads 
to the Garnett et al. [55] function instead of the Halfin and Whitt [70] function in (4.12). 

In addition, Feldman et al. [48] developed a simulation-based iterative staffing 
algorithm (ISA) that can be used for a large class of models, which is useful when the steady-
state distribution needed for the MOL approximation is not readily available. The simulation 
algorithm also confirms the effectiveness of the approximate staffing algorithm while it is 
being developed. That work provided additional support for the SRS staffing formula in 
(4.9) based on the offered load by showing that the ISA is consistent with the SRS. That 
was done by estimating the implied empirical QoS   
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( ) ( )( ) , 0.
( )

ISA
ISA s t m tt t

m t
 

   (4.14) 

Plots of the implied empirical QoS were approximately constant across a wide range of 
target delay probabilities; see Figures 12 and 3 of the e-companion to Feldman et al. [48] 
for the models with and without customer abandonment. 

With customer abandonment, higher delay probabilities targets are more reasonable, 
because abandonment tends to reduce the queues. Without abandonment, the delay 
probability target might be 0.1 , but with abandonment, it might be 0.5 .

Stabilizing the abandonment probability and the expected delay. For high QoS 
(low delay probability targets), Feldman et al. [48] found that all performance measures 
tended to be stabilized using the staffing algorithm with a delay probability target, as 
discussed above. However, Figure 4 shows that abandonment probabilities are not stabilized 
at the same time by that approach at low QoS (high delay probability targets). To address, 
that problem, Liu and Whitt [125] introduced a new MOL staffing algorithm to stabilize 
abandonment probabilities for all QoS targets. Just like the previous staffing algorithm, this 
new method tends to stabilize all performance measures at high QoS targets. Indeed, the 
new method reduces to the previous one as the QoS increases, but the new method differs 
significantly for lower QoS. 

To stabilize the TV abandonment probability (and the expected delay), Liu and Whitt 
[125] use IS models in a new way. Instead of directly replacing the / /t tM GI s GI model
by its / /tM GI  IS counterpart, they introduce a new delayed infinite-server (DIS) model 
containing two IS facilities in series, one for the waiting room (or the queue), and the other 
for the service facility, as shown in Figure 3. Customers arrive at the first IS facility 
according to the given arrival rate ( )t , but they remain until they either abandon or enter 
service. The key assumption is that all customers enter service at time w if they have not 
yet abandoned, so that the probability of abandoning is ( )F w .

Figure 3. The delayed infinite-server offered-load (DIS-OL) approximation for the 
/ /t tM GI s GI queueing model. The contents ( )Q t and ( )B t are independent 

Poisson random variables for each t ; the three flows are Poisson processes. 
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Given that our goal is to stabilize the abandonment probability  , we choose w so
that ( ) =F w  . With this DIS model, the two TVIS queues become independent IS queues 
with NHPP arrival processes. The arrival rate at the second TVIS queue is 

( ) ( ) ( )t t w F w   , where ( ) 1 ( )F w F w  . With this DIS model the number of busy 
servers at time t , ( )B t , has a Poisson distribution with mean ( ) [ ( )]m t E B t  , which we 
call the DIS offered load. A direct DIS staffing sets ( ) = ( ),s t m t  but a much better 
approximation is the DIS-MOL approximation, which uses an MOL approximation withthe 
OL ( )m t , adjusted by the target abandonment probability, specifically, with 

,
( )( ) .

[ ](1 )MOL
m tt

E S








 (4.15) 

The associated MOL staffing algorithm to stabilize the abandonment probability at  , lets 

, ( )mols t be the least staffing level such that the steady-state probability of abandonment in 
the stationary / /M GI s GI model with arrival rate , ( )MOL t is less than or equal to  .
We emphasize that this new DIS model is only used to define a new MOL and set the 
staffing function ( )s t ; it is not intended to directly model the system itself. 

Liu and Whitt [125] conduct simulation experiments showing that the new DIS-MOL 
approximation is effective. They also establish important asymptotic results. First their 
Theorem 2 proves that both the DIS and DISMOL staffing algorithms are asymptotically 
correct in the MSHT limit, which puts the system in the ED MSHT limiting regime. Second, 
they prove that it is impossible to stabilize the mean queue length and the abandonment 
probability at the same time in the MSHT limit. 

Staffing for non-Poisson TV arrival processes. The staffing methods were extended 
to non-Poisson TV arrival processes and networks of queues in He et al. [75], and Liu and 
Whitt [128, 129]. These new staffing algorithms exploit the methods described above. For 
the non-Poisson arrival processes, the logic for / /tG GI  models leading to (4.9) is 
combined with the MOL methods described above, including the MSHT FCLT’s. 

For the / /t tG GI s model, paralleling (4.13) for the / /t t tM M s model, in (3.1) of He 
et al. [75] the SRS staffing formula in (4.4) is used, but with the QoS parameter  set equal 
to   

(1) ,z      (4.16) 
where  is the target delay probability, z  is the HT peakedness in (4.7) with 2

ac there the 
arrival process asymptotic variability parameter from (5.6) and 1(1) ( )HW  is the 
inverse of the Halfin and Whitt [70] MSHT delay function HW in (4.12). Section 6 of He 
et al. [75] extends the staffing algorithm to the / /t tG GI s GI model with customer 
abandonment, using the corresponding Garnett et al. [55] MSHT delay function for the 

/ /tM M s M model with heuristic extensions for the non-Markov model. 
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For the networks of queues in Liu and Whitt [128, 129], the DIS model is extended to 
a larger network of IS queues. In addition, care is taken to address non-Poisson arrival 
processes within the network that are departures from queues having non-exponential 
service-time distributions. 

Staffing to stabilize the tail probability of delay. Let ( )V t be the offered waiting 
time, the virtual waiting time of a hypothetical arrival at time t if that arrival were infinitely 
patient. It is evident that it is convenient to focus on the delay probability ( ( ) > 0)P V t
because ( ( ) > 0) = ( ( ) ( )),P V t P X t s t where ( )X t is the number of customers in the system, 
which tends to be easier to analyze or approximate. That was the reason that the delay 
probability was the main target for the IS staffing in Jennings et al. [87], reviewed in Section 
4.2.

However, it is more common in practice to focus on the tail probability of delay
(TPoD). Indeed, for call centers, the classical staffing goal is expressed by the 80 20 rule, 
which stipulates that 80% of the customers should be delayed less than 20 seconds before 
a call is answered. In hospitals, there is concern about the delay after a decision has been 
made to admit a patient from the emergency department into an internal ward of the hospital. 
A goal has been to keep this “ED boarding time” below 6 hours; see Shi et al. [199]. 

Motivated by the ED boarding problem, Defraeye and van Niewenhuyse [40] showed 
that a variant of the ISA in Feldman et al. [48] also can be applied to stabilize the TPoD. 
More recently, Liu [120] has developed explicit analytical formulas to set staffing levels to 
meet a TPoD target ( ( ) > ) =P V t w  . To treat this more refined two-parameter target, Liu 
[120] exploits the MSHT FCLT for the / /t tG M s GI model in Liu and Whitt [126], 
assuming that the system is overloaded at all times and thus in the ED regime. (The 
extension to GI service is heuristic.) 

In particular, in the sequence of models indexed by n having TV arrival rate ( )n t ,
the staffing is chosen to satisfy   

(1) (2)( ) = ( ) ( ), 0,ns t ns t ns t t   (4.17) 
where (1) ( )s t is chosen from the fluid limit, while (2) ( )s t is chosen more carefully as a 
“tuning parameter.” In particular, (1) ( )ns t is the DIS offered load ( ) [ ( )]m t E B t  , in Liu 
and Whitt [125] depicted in Figure 3. That gets the mean approximately at the right place. 
(See (6.4) in Section 6.1 for another use of this scaling approach as a tuning parameter and 
see Section 6.3 for further discussion.) 

To get the second component of the staffing, (2) ( )ns t , Liu [120] exploits the MSHT 
FCLT, which shows that the MSHT-scaled waiting time converges to a Gaussian 
distribution, so that 2( ) ( ( ), ( )),s sV t N m t t where ( )sm t and 2 ( )s t depend on (2) ( ).s t
Hence, it is possible to choose (2) ( )s t so that   

2( ( ) > ) ( ( ( ), ( )) > ) = .s sP V t w P N m t t w   (4.18) 
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Staffing to stabilize blocking in TV loss models. More recently, MOL has been 
applied to set staffing levels, when they are flexible, to stabilize blocking probabilities in 
loss models in Li et al. [115], and Whitt and Zhao [233]. When staffing should be regarded 
as fixed, it is natural to consider controlling the demand instead, e.g., by dynamic pricing, 
as has been considered in Hampshire and Massey [72], Hampshire et al. [73] and references 
therein. However, there may be more flexibility in staffing than we initially think. For 
example, loss models are natural for an ambulance base serving several hospitals as in 
Restrepo et al. [188], for the rooms in a hotel as in Levi and Radovanovic [112] and for a 
bike-sharing system as in Henderson et al. [ 77]. In a short time scale the available resources 
are fixed, but in a longer time scale adjustments can be made. For example, the number of 
available ambulances or bicycles may be dynamic, because transfers can be made. 

When we do consider staffing in a loss model, the first thing to notice is that it is not 
possible to stabilize blocking probabilities in loss models with time-varying arrival rates as 
well as the delay probabilities have been stabilized in corresponding delay models with 
conventional methods, because the blocking probabilities necessarily jump at the time of 
any staffing change. 

To illustrate the difficulty, we show a simple example in Figure 4 with the sinusoidal 
arrival rate function   

( ) = sin( ), 0,t t t      (4.19) 
having average arrival rate  , amplitude  , and cycle length (or period) T (or equivalently, 
frequency = 2 / T  ). We let the mean service time be 1 time unit and the blocking 
probability target be = 0.1B . The left side of Figure 4 shows the blocking probability for 
the parameter triple ( , , ) = (100,25,100)T  with a direct application of MOL. The wild 
fluctuations we see occur because the blocking probability instantaneously jumps with each 
staffing change. Since the staffing is decreasing in the interval [25,75] , we see jumps up at 
the staffing changes there, but outside that interval, where the staffing is increasing, we see 
jumps down. It is evident that the blocking probability immediately drops to 0 after any 
staffing increase, because there is always free capacity at that instant. 

Nevertheless, Li et al. [115] and Whitt and Zhao [233] show that good performance 
can be obtained if we randomize the time of the staffing change in a small interval about 
each scheduled change time or if we average the probabilities over small intervals. That 
good performance is illustrated on the right in Figure 4. 
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Figure 4. Simulation estimates of the blocking probabilities in the nonstationary 
/ / / 0t tM M s model for the sinusoidal arrival rate in (4.19) with blocking probability 

target = 0.1B and parameter triple ( , , ) = (100,25,100)T  with the MOL staffing 
algorithm without any averaging (left) and with randomization (right). 

4.5. Little’s law 

Little’s law and the IS model. We include a discussion of Little’s law here in this 
section on IS queues, because Little’s law (LL, =L W ), as in Little [116, 117], Stidham 
[202], and El-Taha and Stidham [46], is intimately connected to (i.e., essentially equivalent 
to) the infinite-server (IS) queueing model, as emphasized on p. 238 in the early review 
paper by Whitt [212]: The model for LL can be interpreted as an IS model by interpreting 
the waiting times as service times of customers who enter service immediately upon arrival. 

Renewed interest in LL has occurred because of the important role it can play in 
interpreting data; see Glynn and Whitt [61], Little and Graves [118], Lovejoy and Desmond 
[132], Mandelbaum [138], Kim and Whitt [96], and Whitt and Zhang [230, 231]. 

The TVLL and the TVIS model. The TVIS model is in turn intimately connected to 
the TV Little’s law (TVLL) in Bertsimas and Mourtzinou [18] and Fralix and Riano [52]; 
also see Kim and Whitt [97]. In fact, the TVLL is identical to the offered load formula in  
(4.1) extended to the case of a TV service distribution, as in formula (6) in Jennings et al.
[87]:   

0 0
( ) [ ( )] = ( ) ( ) = ( ) ( ) .c c

t s sm t E X t t s G s ds s G t s ds 
 

     (4.20) 

The theoretical results in Fralix and Riano [52] show that this OL formula in (4.20) is valid 
for very general / /t tG G  TVIS models. Except for determining the full level of 
generality, the TVLL in Bertsimas and Mourtzinou [18] follows directly from p. 236 of 
Whitt [212] and formula (6) in Jennings et al. [87]. 

A periodic Little’s law (PLL). We now review a sample-path version of a periodic 
Little’s law (PLL) established in Whitt and Zhang [231], motivated by the data analysis of 
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an Israeli emergency department in Whitt and Zhang [230], in particular, because of the 
remarkable fit when comparing the stochastic model fit to the data to direct estimates from 
the data. 

Because that data analysis was done in discrete time, the model has discrete time 
periods (DTP’s) indexed by nonnegative integers k . We assume that all arrivals in a DTP 
occur before any departures. Moreover, we count the number of customers (patients in the 
ED) in the system in a DTP after the arrivals but before the departures. Thus, each arrival 
can spend j  DTP’s in the system for any 0j  .

With these conventions, just as for the data analysis in Whitt and Zhang [230], we 
focus on a single sequence, ,{ : 0; 0}k jX X k j   , with ,k jX denoting the number of 
arrivals in period k that have length of stay (LoS) j periods. We also could have customers 
at the beginning, but without lost of generality, we can view them as a part of the arrivals in 
DTP 0. We define other quantities of interest in terms of X :

, ,=k j k ii j
Y X

 : the number of arrivals in DTP k with LoS greater or equal to j ,

0j  ,

,0 ,=0
=k k k jj

A Y X
  : the total number of total arrivals in DTP k ,

,
,=0 =0

= , 0k k k j j
k k j j k jj j

k j

Y
Q Y A j

A


 


   ; the number in system in DTP k ,

all for 0k  . In the last line we understand 0 / 0 1 , so that we properly treat DTP’s with 
0 arrivals. 

With the periodicity in mind, we consider the following averages over n periods:

( 1)
=1

1( ) ,
n

k k m d
m

n A
n

   
( 1)

( 1) ( 1) ,
=1 =1 =0

1 1( ) = ,
k m dn n

k k m d k m d j j
m m j

Q n Q Y
n n

 

    

 
  

 
  

, ( 1) ,
=1

1( ) , 0,
n

k j k m d j
m

Y n Y j
n   

( 1) ,
, =1

,

( 1)
=1
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( )

n

k m d j
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k j n
k

k m d
m

YY n
F n j

n A

 

 

 




,
=0

( ) ( ), all for 0 1.c
k k j

j
W n F n k d



     (4.21) 

With the framework above, we can state the sample-path version of the PLL. Let 
[ ]k k mod d  be the modulo function, i.e., the remainder when dividing k by d .
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Theorem 4.1. (sample-path PLL (from Whitt and Zhang [231])) Assume that the following 
limits hold: 

( 1) ( ) , . .1 , 0 1,k kA n w p as n k d      

, ,( 2) ( ) , . .1 , 0 1, 0,c c
k j k jA F n F w p as n k d j and     

,
=0

( 3) ( ) . .1 , 0 1,c
k k k j

j

A W n W F w p as n k d


       (4.22) 

where the limits are deterministic and finite. Then the limits are periodic functions; i.e., for 
k   and [ ]k k mod d ,

[ ] , [ ], [ ]= , = , 0, = ,c c
k k k j k j k kF F j and W W   (4.23)

and the associated limits hold: 

( ( ), ( )) ( , ) . .1 ,k k k kQ n L n L L w p as n where 

,
=0

<c
k k j k j j

j

L F and


  

, ,( 1)
=0 =1 =1

( ) ( ) ( ) ( ) ( )
k d

c c
k k j k j j d j d j m d j k

j m j

L n n F n n F n 


        

[ ] [ ],
=0

= , 1c
k j k j j

j

F n


    (4.24) 

 for 0 1k d   .
The final line in (4.24) is what we should anticipate given the TVLL in (4.20) . When 

= 1d , the PLL reduces to the LL. Example 1 of Whitt and Zhang [231] shows that the 
condition on convergence of cdf’s in ( 2)A  is needed in Theorem 4.1. 

A CLT version of the PLL. Finally, we mention that a central-limit-theorem (CLT) 
version of the PLL has been established in Whitt and Zhang [232]; it parallels the CLT 
versions of LL in Glynn and Whitt [58, 59, 60, 61], and Whitt [223]. 

5. Arrival Process Models 
Given that the arrival rate in a service system varies strongly over each day, the NHPP 

is a natural model for the arrival process, because it makes the queueing models relatively 
tractable and it tends to be at least roughly realistic. The Poisson property often arises from 
the independent decisions of many people, each of whom uses the service system only rarely. 
There is a supporting limit theorem, called the Poisson superposition theorem or the Poisson 
law of rare events; for example, see Section 11.2 of Daley and Vere-Jones [37] or Section 
9.8 of Whitt [214]. 
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5.1. Over-dispersion and under-dispersion 

Even though the NHPP is a natural candidate for an arrival process model, there are 
phenomena that cause deviations from the Poisson property. 

Over-dispersion. Indeed, there are several phenomena that tend to make the arrival 
process more variable than Poisson, leading us to say that there is over-dispersion compared 
to a Poisson process. 

A common source of difficulty arises when the service system actually is a network of 
queues or can be regarded as a queue within such a network. First, when arrivals contain 
overflows from other service systems, as occurs in hospitals and hotels, the arrivals tend to 
occur in clusters, when the source system is overloaded. Second, when arrivals are 
departures from another queue with service distributions more variable than exponential, 
then the variability of the departure process tends to be greater than Poisson. 

Evidently the problem of greatest concern in practice is that there may be uncertainty 
about the arrival rate, which could stem from the weather, holidays or other special events. 
Experience indicates that historical arrival data alone may not be adequate to build a good 
stochastic arrival-process model. Given arrival process data, it is often found that the rate 
itself needs to be regarded as a stochastic process, so that again the overall arrival process 
is more variable than Poisson. Evidence of such over-dispersion has been found by 
Avramidis et al. [12], Besbes et al. [19], Ibrahim et al. [79], Jongbloed and Koole [88], Kim 
and Whitt [99], and Zhang et al. [237]. We illustrate with an example from Mandelbaum 
[138] based on the US Bank data studied in Brown et al. [25]. 

Example 5.1. (over-dispersion in call arrivals at a call center) Figure 5 shows the number 
of calls arriving at a US bank call center each hour between 7:00 and 23:00 on 25
consecutive Mondays. At first glance, we are impressed by the consistency in the 25 plots,
but can these sample paths actually be regarded as samples from i.i.d. NHPP’s? 

In fact, closer examination reveals significant over-dispersion. For a quick analysis, 
look around 13:00. We see that the range is approximately [2500, 3200], so that the mean 
should be about the midpoint, 2850 . Given that the width of 700 should correspond to 
about 5 standard deviations, the standard deviation would be about 140, so that the variance 
would be about 19,600, which is much greater than the mean. (For an NHPP, the variance 
would equal the mean.) In fact, detailed data analysis shows that the sample mean is 2842 
and the sample variance is 24,500. We can formalize that observation by applying the 
Poisson dispersion test, as in Section 4.1 of Kim and Whitt [99], to see that an NHPP is 
inconsistent with the data. Under the Poisson null hypothesis, the test statistic 

2( 1) / = (24)(24500) / 2842 = 206.9n n nD n x  has approximately a chi-square 
distirbution with 1n  degrees of freedom, and so is approximately normal with mean 
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1 = 24n   and variance 2( 1) = 48n  , which makes the observed value of 206.9 about
26 standard deviations above its mean.

Figure 5. Number of calls arriving at a US bank call center each half hour between 
7:00 and 23:00 on 25 consecutive Mondays. 

Under-dispersion. On the other hand, there are also phenomena that make arrival 
processes less variable than Poisson, leading us to say that there is under-dispersion: First, 
there may be forced separation between successive arrivals, as in airplane landings at 
airports. Such separation may be present even if it is not evident. For example, arrivals at 
emergency departments may tend to cluster according to the schedule of public 
transportation. Second, the arrivals at a service system may be filtered, or go through stages, 
so that the final arrival process is more regular than the exogenous arrival process. That is 
the case when the arrivals are generated by an appointment system, which is designed to 
make the arrival process more regular. Moreover, many of the appointments will be for 
regularly spaced return visits, which again tend to be evenly spaced. Evidence of under-
dispersion appears in data analysis of an endocrinology clinic by Kim et al. [95], and Kim 
et al. [100]. 

The relevant timescale for arrival processes. When we consider alternative 
stochastic models for arrival processes in service systems, we should consider what is the 
relevant timescale for the arrival process. Expressed more concretely, we should ask: How 
does the variability in the stochastic process affect the system performance? 

Fortunately, heavy-traffic limit theorems for a queueing model of the service system 
can provide useful insight. The heavy-traffic limits indicate that the performance should be 
primarily affected by the CLT behavior of the arrival process, which is summarized by the 
asymptotic variability parameter in the CLT. 

Perhaps the main issue is: What stochastic model properly represents the service 
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system? The situation is relatively clear for a large call center, where there may be 1000
servers. The call center is likely to be well modelled by a / /t tG GI s GI model. In this 
application, interarrival times may be about 1 / 1000 of a service time, so that we can infer 
that the individual interarrival times should not matter much. Indeed, the MSHT HT limits 
indicate that the performance is indeed primarily affected by the CLT behavior of the arrival 
process.

However, in other settings, such as in healthcare and web chat, the actual service time 
tends to be complicated, being composed of many separate pieces. As a consequence, the 
overall response time may be much longer. In general, it is less clear what is the relevant 
overall model. Then the congestion experienced by the customers is likely to be influenced 
more by variability in the arrival process. 

Two-time-scale models in healthcare. From data analysis of arrivals to an emergency 
department (ED) in Whitt and Zhang [230] and to an endocrinology clinic in Kim et al. [95], 
and Kim et al. [100], we found that the arrival data were consistent with a two-time scale 
model in which the successive daily totals are modeled as a discrete-time Gaussian process, 
while the arrivals within the day, conditioned on the daily total, could be modeled as an 
NHPP with a deterministic arrival rate. As in Whitt and Zhang [230], both the daily total 
and the arrival rate function over the day can vary by day of the week, so that a week is a 
natural period for a periodic model. 

The Gaussian-NHPP two-time-scale model implies that, once the daily total and 
arrival-rate function are given, the specified number of arrivals for that day arrive over the 
day according to i.i.d. random variables with a density proportional to the arrival rate for 
that day. This model was found to be effective in historical describing data over many weeks. 
It clearly can be implemented in simulation experiments. 

For the ED data in Whitt and Zhang [230], there was slight over-dispersion compared 
to Poisson for the daily totals, with average variance to mean ratio of about 1.5, which is 
much less than in Example 5.1 for the call center. On the other hand, for the clinic arrival 
data in Kim et al. [95], which has arrivals by appointment, there was under-dispersion 
compared to Poisson for the daily totals, with average variance to mean ratio of about 0.5. 
For the clinic, the arrival process appears to be intermediate between Poisson and 
deterministic. In particular, the arrival process appears to be neither Poisson nor the ideal 
deterministic that appointment systems aim to approach. 

This two-time-scale Gaussian-NHPP model would seem adequate for long-term 
planning, but it has not been tested to use for within-day prediction. 

5.2. Testing the NHPP hypothesis 

Recent efforts to test whether arrival data are consistent with an NHPP are contained 
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in Kim and Whitt [98, 99], which follows Brown et al. [25]. Assuming that the arrival rate 
can be regarded as approximately piecewise-constant (PC), Brown et al. [25] proposed 
applying the classical conditional uniform (CU) property over each interval where the rate 
is approximately constant. For a Poisson process (PP), the CU property states that, 
conditional on the number n of arrivals in any interval [0, ]T , the n ordered arrival times, 
each divided by T are distributed as the order statistics of n i.i.d. random variables, each 
uniformly distributed on the interval [0,1] . Thus, under the NHPP hypothesis with a PC 
arrival-rate function, if we condition in that way, the arrival data over several intervals of 
each day and over multiple days can all be combined into one collection of i.i.d. random 
variables uniformly distributed over [0,1] .

Thus, the NHPP hypothesis can be tested by applying the Kolmogorov-Smirnov (KS) 
statistical test to see if the resulting data are consistent with an i.i.d. sequence of uniform 
random variables. For that purpose, we construct the empirical cdf (ecdf)   

1
{ }

=1
( ) 1 , 0 1.

n

n X ti
i

F t n t
    (5.1) 

In this context, the KS test statistic is then   

0 1
{| ( ) |}.supn n

t
D F t t

 
   (5.2) 

We call the KS test of a Poisson process (PP) directly after applying the CU property to an 
NHPP with a piecewise-constant arrival rate the CU KS test. 

Given that the CU representation is independent of the rate of the PP on each 
subinterval, we are able to combine data from separate intervals with different rates on each 
interval, but the constant rate on each subinterval also could be random; a good test result 
does not imply that the rate on each subinterval is deterministic. Thus, a random arrival rate 
remains to be addressed. That shortcoming could have helped Brown et al. [25] conclude 
that their call center arrival data were consistent with an NHPP. 

In fact, the statistical testing is even more complicated, because Brown et al. [25] 
actually did not use the CU KS test directly. Instead, they applied a log KS test based on the 
CU property after performing an additional logarithmic data transformation. Kim and Whitt 
[98] investigated why an additional data transformation is needed and, if so, what form it 
should take. They showed through large-sample asymptotic analysis and extensive 
simulation experiments that the CU KS test of a Poisson process has remarkably little power 
against alternative processes with nonexponential interarrival-time distributions. That low 
power evidently occurs because the CU property focuses on the arrival times instead of the 
interarrival times; i.e., it converts the arrival times into i.i.d. uniform random variables. 

Kim and Whitt [98] showed that the log KS test used by Brown et al. [25] has much 
greater power against alternative processes with nonexponential interarrival-time 
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distributions. They also found that Lewis [113] had discovered a different data 
transformation in Durbin [42] to use after the CU transformation and that the Lewis KS test 
consistently has more power than the log KS test. In addition, they found that the CU KS 
test has advantages, because it turns out to be relatively more effective against alternatives 
with dependent exponential interarrival times. The data transformations evidently make the 
other methods less effective in detecting dependence because the reordering of the 
interarrival times weakens the dependence. Hence, Kim and Whitt [98, 99] recommend 
applying both the Lewis and CU KS tests. 

Unfortunately, the Lewis test may be of little relevance for many service systems, 
because it focuses too much on the local behavior of the arrival process, which is often 
unimportant. The critical part may be the variability in a longer timescale. 

5.3. A Composition construction for non-Poisson arrival processes 

A natural way to construct a TV arrival process that goes one step beyond an NHPP is 
to add a single additional parameter to represent the level of variability. That can be done 
by applying the CLT, which can be done using a composition construction, which was 
proposed in Massey and Whitt [149], Gebhardt and Nelson [56], and Nelson and Gebhardt 
[156], and has been used in all other recent work studying queues with non-Poisson TV 
arrival processes. 

The composition construction and the CLT. Let ( )A t count the number of arrivals 
over the interval [0, ]t and let ( )t be its deterministic time-varying arrival-rate function, 
satisfying 0 < ( ) <LB UBt     for positive numbers LB and UB . Let ( )t be the 
cumulative arrival-rate function, i.e.,   

0
( ) = ( ) , 0.

t
t s ds t   (5.3) 

We assume that the general nonstationary arrival process A can be represented as the 
composition of a stochastic counting process N and the cumulative arrival rate function  ,
using the composition function  , with ( )( ) ( ( ))x y t x y t , 0t  ; i.e.,   

or, equivalently, ( ) ( ( )), 0,A N A t N t t      (5.4) 

where N is a stochastic counting process with nondecreasing nonnegative integer-valued 
sample paths. The construction in (5.4) is standard when A is an NHPP; then N is a rate-1
Poisson process. Then, and more generally, [ ( )] = ( )E A t t , 0t  . Ways to fit the arrival-
rate function to data were studied in Massey et al. [144]. 

For our heavy-traffic limits, we will want the scaled arrival process based on A to
satisfy a functional central limit theorem (FCLT), for which it will suffice for the process 
N to obey a FCLT, i.e.,   

1/2ˆ [ ( ) ] in as ,n aN n N nt nt c B D n     (5.5) 
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where B is a standard (mean 0, variance 1) Brownian motion (BM),   denotes 
convergence in distribution and D is the function space of right-continuous real-valued 
functions on [0, )  with the topology of uniform convergence over compact intervals. The 
asymptotic variability parameter ac in (5.5) is the single-parameter characterizing the 
variability, with = 1ac corresponding to Poisson and = 0ac corresponding to deterministic. 

As an immediate consequence of (5.4) , (5.5) and the continuous mapping theorem, we 
have a FCLT for the associated sequence of arrival processes ( ) ( ( ))nA t N n t  , 0t  ,

1n  :   
1/2ˆ ( ) [ ( ) ( )] ( ( )) in as .n n aA t n A t n t c B t D n       (5.6) 

Renewal and Cox models for N . It is significant that the process N can be very 
general; many specific models are consistent with the composition construction. First, N
could be a renewal process with mean interarrival time 1 as well as its stationary (or 
equilibrium) version, as in Section V.3 of Asmussen [9], which necessarily satisfy the same 
FCLT in (5.5) ; e.g., see Nieuwenhuis [164]. 

However, it need not be either of those, which means that dependence among the 
interarrival times is allowed (under regularity conditions implying (5.5)). For example, the 
process N  could be a Cox process (doubly stochastic Poisson process), which is a Poisson 
process where the arrival rate itself is a non-stationary stochastic process, as suggested by 
Avramidis et al. [12], Bassamboo and Zeevi [15], Ibrahim et al. [79], and Zhang et al. [237]. 

To represent N as a Cox process, we apply the composition construction again, letting   
or, equivalently, ( ) = ( ( )), 0,N M C N t M C t t   (5.7) 

where M is a stochastic counting process with nondecreasing nonnegative integer-valued
sample paths and C is a stochastic cumulative process, expressed as   

0
( ) ( ) , 0,

t
C t Z s ds t   (5.8) 

with { ( ) : 0}Z t t   being a stochastic “rate” process (SRP) with nonnegative sample paths. 
We assume that the component stochastic processes M and C are mutually independent. 
Combining representations (5.4) and (5.7) gives a three-fold composition representation for 
the overall arrival process A: =A M C   .

This representation of N reduces to a stationary Cox process if we assume that M is
a Poisson process.The most familiar stationary Cox process is a Markov-modulated Poisson 
process (MMPP), which arises when the SRP Z is a function of a continuous-time Markov 
chain (CTMC); see Fischer and Meier-Hellstern [51]. A further special case of an MMPP is 
an interrupted Poisson process (IPP), which is an MMPP with a two-state environment 
process, where the rate of the Poisson process is 0 in one of the two environment states. An 
IPP is equivalent to a renewal process with hyperexponetial ( 2H ) intervals between 
renewals; see Kuczura [106] and Section 2.3.1 of Fischer and Meier-Hellstern [51]. 
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Our key stochastic assumption in this new framework is the validity of CLT’s for the 
two stochastic processes M and C . Given that we want N to asymptotically have rate 1
and C to specify the cumulative rate, We assume that ( ) / 1M t t  and ( ) / 1C t t   w.p.1 
as t   . Our key stochastic assumption in this new framework is the validity of CLT’s 
for the two independent stochastic processes M and C .   

1/2 2 1/2 2[ ( ) ] (0, ) [ ( ) ] (0, )M Ct M t t N c and t C t t N c      (5.9) 

These together imply a CLT for N and A as in (5.5) and (5.6) with   
2 2 2 2= = ,A N M Cc c c c  (5.10) 

as in Example 9.6.2 of Whitt [214]. For additional details on the derivation of (5.10) , see 
Theorem 11.4.4 and Section 13.3 of Whitt [214]. 

Simulation and Fitting. Efficient simulation algorithms have been developed for both 
Poisson and non-Poisson TV arrival processes that exploit the composition structure; see 
Ma and Whitt [135] and Liu et al. [119]. Ways to estimate the TV arrival-rate function are 
discussed in Massey et al. [144], Zheng and Glynn [238] and references there. 

Limitations. Even though the arrival process model based on the composition in  
(5.4), possibly with the additional composition in (5.7) , it is quite general, encompassing 
many specific models, it nevertheless is quite restrictive as well, As emphasized in Remark 
2.2 of He et al. [75]. Some generality could be gained by allowing the variability parameter 

2
ac  to depend on time as well. Despite the generality of this model, it evidently does not 

directly capture the two-time-scale Gaussian-NHPP model in Section 5.1. It appears that 
there remains a gap between what we see in arrival data and the TV arrival process models 
we can analyze. 

Estimating the asymptotic variability parameter ac . Given that we do use the 
arrival process model in (5.4), and want to apply it to arrival data, it remains to estimate the 
asymptotic variability parameter ac in (5.5) and (5.6), The parameter ac can be estimated 
by looking at the index of dispersion for counts (IDC), which is a normalized variance-time 
curve; see Cox and Lewis [33], and Fendick and Whitt [50]. In particular, if ( )A t counts the 
number of arrivals in the interval [0, ]t , then the IDC is the function   

( ( ))( ) , 0.
[ ( )]c

Var A tI t t
E A t

   (5.11) 

If ( )A t is an NHPP, then ( ) = 1cI t for all t .
Even for time-varying arrival processes, under regularity conditions, we can obtain the 

asymptotic variability parameter 2
ac from estimates of the IDC over a suitably long time 

interval; i.e.,  
2 = lim ( ).a ct

c I t


 (5.12) 
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For an NHPP, we have 2 = 1ac ; for more (less) variable arrival processes, we have 
2 > (<)1ac .

The IDC has been used to evaluate arrival processes in TVMS queues that are departure 
processes from other TVMS queues in Section 4 of Liu and Whitt [128]. The bottom-left 
plots in Figures 6 and 7 there show IDC estimates supporting an NHPP arrival process with 

2 = 1ac , whereas the bottom-right plots show IDC estimates suppporting a tG arrival process 
with 2 3.5ac  . (This deviation from the NHPP property is partly caused by the previous 
TVMS queue having 2H service times with 2 = 4sc .) Thus, we see that network structure 
as with re-entrant customers in Yom-Tov and Mandelbaum [234] is likely to induce non-
Markov arrival processes. Additional discussion of ways to estimate the asymptotic 
variability parameter 2

ac are contained in Whitt and You [229]. 

6. Many-Server Heavy-Traffic Limits 
The conventional heavy-traffic (HT) limit for stationary models. The early 

(conventional) heavy-traffic (HT) limit for stationary / /G G s model in Iglehart and Whitt 
[83, 84] assumed that the number of servers, s , and the service-time distribution remain 
fixed, while the arrival rate,  , increases, causing the traffic intensity  to increase toward 
the critical value 1 from below, which yields the same reflected Brownian motion (RBM) 
conventional heavy-traffic limit as for the / / 1G G single-server, reviewed in Chapter 9 of 
Whitt [214]. To obtain the limit, we introduce a family of models indexed by  and scale 
space by 1  and time by 2(1 ) when the traffic intensity is  ; i.e., the scaled process 
is   

2ˆ ( ) (1 ) ((1 ) ), 0,X t X t t        (6.1) 
so that the limit applies naturally to congested models (with high  ) over long time 
intervals. The time scaling is the square of the space scaling, just as in the classic CLT for 
random walks, because the HT limit can be regarded as a consequence of Donsker’s FCLT 
for random walks plus the continuous mapping theorem. 

It is significant that this RBM limit holds for general / /G G s models beyond the 
Markovian / /M M s special case, because that special case can be analyzed directly via  
Section 2 and the classical Erlang results; e.g., see Brockmeyer et al. [24], and Whitt [215]. 
Theorem 2 of Iglehart and Whitt [84] shows that the HT limit for the process in (6.1) holds 
if the arrival and service processes satisfy a joint FCLT, in which case the RBM limit is 
only altered by the asymptotic variability parameters appearing in those limits. Thus the HT 
limit tells us the impact of the non-Markov model properties as well as the limit for the 

/ /M M s Markov model. 

    MSHT double limits: three limiting regimes. New limiting possibilities arise when 
there are more parameters that can change simultaneously. In fact, in the early paper on the 
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stationary / /M M s model, Iglehart [82] let s and  both increase, obtaining the Ornstein-
Uhlenbeck (OU) diffusion process MSHT limit when the arrival rate increases to  when 
either =s  or s increases so rapidly that the model is asymptotically equivalent to an IS 
model. Later, Halfin and Whitt [70] identified three possible limiting regimes for the 

/ /GI M s  model as both  and s increase to  , with the service rate fixed at = 1 and
  required to stay below 1 , i.e.,   

lim{(1 ) : , ,0 < < 1} = .s s         (6.2) 

The case = 0 is the overloaded case, which can be reduced to the HT limit for fixed s ;
the case =  is the underloaded case, which is the same as for = ,s   as in Iglehart 
[82]; the case 0 < <  might be called the critically loaded case; now a useful new limit 
is obtained, which yields much better approximations in numerical examples, as illustrated 
by Table 1 in Halfin and Whitt [70]. 

It is significant that the MSHT process scaling is quite different from (6.1). For MSHT 
limits, we increase scale by considering a sequence of models indexed by the number of 
servers, s , and let s   . We again hold the service-time distribution fixed, but let the 
arrival rate also increase, so that the traffic intensity satisfies (6.2). The scaled process now 
is very different from (6.1), now being   

1/2ˆ ( ) ( ), 0.s sX t s X t t   (6.3) 

By (6.2), we see that the spatial scaling is essentially the same provided that 0 < <  ,
but in (6.3) there is no additional time scaling. The large scale with many servers and 
accelerated arrival rate provided by the MSHT regime makes it unnecessary to further 
accelerate time to obtain a diffusion limit. 

In the useful middle MSHT limiting regime, the limiting diffusion process is a hybrid 
of an RBM and an OU, leading to a corresponding hybrid approximating steady-state 
distribution of the number in system, being exponential, conditional on all servers being 
busy, and Gaussian, conditional on all servers not being busy. (For more on such hybrid 
limits for one-dimensional piecewise-linear diffusion processes, see Browne and Whitt [26].) 

The useful middle MSHT limiting regime was called the Halfin-Whitt regime by 
Puhalskii and Reiman [184], who obtained a multi-dimensional diffusion limit in the case 
of phase-type service distributions. As illustrated by Puhalskii and Reiman [184], the MSHT 
limit depends on the service-time distribution in a much more complicated way than when 
s  is held fixed. In particular, the limit process no longer is a tractable one-dimensional 
diffusion process. Other limits for the / /G G s model with non-exponential service were 
obtained in Whitt [220], Reed [186] and Kaspi and Ramanan [92]. These papers address the 
challenging problem of non-exponential service. For the / /GI M s model, Halfin and Whitt 
[70] obtained MSHT limits for both the transient process and the steady-state distribution. 
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In contrast, for GI service, the MSHT behavior of the steady-state distribution is more 
complicated. However, tightness for MSHT scaling has been established by Gamarnik and 
Goldberg [53]. While this recent work provides important structural insight, much still 
needs to be done to develop useful approximations; see Whitt [217, 219] and Liu et al. [130] 
for some progress in that direction. 

Customer abandonment. For call centers and many other service systems, customer 
abandonment plays a prominent role. Thus it is significant that similar tractable MSHT 
limits limits hold for the Markovian / /M M s M model with customer abandonment, as 
shown by Garnett et al. [55]. With abandonment, we can have < <   for the QED 
regime, which is again specified by (6.2) , because the abandonment ensures stability even 
if > 1 . The region where < <   was called the “rationalized” regime in Garnett 
et al.[ 55] and the quality-and-efficiency-driven (QED) MSHT limiting regime in Section 
4.1.1 of Gans et al. [54]. The underloaded and overloaded regimes are called the quality-
driven (QD) and (QED) driven regimes, respectively. With abandonment, the ED regime 
becomes more relevant too, as emphasized by Whitt [217]. The abandonment rate 
presents another parameter that we might vary as well; Section 4 of Whitt [217] shows that 
a tractable OU limit arises as 0  as well as    and s   , provided that /s    .
See He [76] for a recent generalization of that result. 

With abandonment, MSHT limits again become complicated for nonexponential 
service times and patience times. Useful approximations were developed directly in Whitt 
[219] and supplemented by MSHT limits; see Zeltyn and Mandelbaum [235], Mandelbaum 
and Zeltyn [141], Reed and Tezcan [187], and Liu et al. [130] and references therein. See 
Dai and He [35] and Ward [209] for surveys. 

The relevance of the different regimes of course depends on economic factors; see 
Whitt [216] and Borst et al. [23] for discussion. 

The QED and QED c  TV MSHT limiting regimes. When we consider TV many-
server queues, it is evident that MSHT limits should still play an important role, but the 
setting is more complicated because the traffic intensity becomes TV as well. We emphasize 
two relatively simple cases, which have been exploited to advantage: The first, and most 
natural (or obvious), which we call QED, arises when the TV staffing is chosen so that the 
key QED condition is maintained at all times. The second, which we now call the
complementary QED (or QED c ) MSHT limiting regime, arises in the complementary case 
in which the system alternates between overloaded (OL) and underloaded (UL) intervals, 
instantaneously passing through the critical loading in each transition between OL and UL. 

We should hasten to point out that by “complementary” we mean for a single time t ,
and not for functions, because there are of course many other possibilities. By QED c , we 
mean that, for almost all t with respect to Lebesgue measure, the regime is not QED. A 
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natural goal is to seek the greatest generality, but we emphasize more restricted goals in 
order to develop useful insight and algorithms. We next discuss the TV QED MSHT regime; 
we discuss an application of the QED MSHT regime to scheduling in multi-class queues in 
Section 6.2; then we discuss the TV QED c  MSHT regime in Section 6.3. 

6.1. The time-varying QED MSHT regime 

The first MSHT limits for a general class of TV Markov models were obtained in 
Mandelbaum et al. [140]. The framework there is quite general, so that it is a bit difficult to 
identify the limiting regime. However, the QED regime is imposed through the scaling in 
(1.13) there. For the TV Markov / /t t t tM M s M model, we follow the more recent 
Puhalskii [183], which presents direct martingale arguments. The QED scaling is clearly set 
forth there in equations (2.11a)-(2.11d). With that scaling, the QED regime holds for all 
time. 

In fact, following Whitt and Zhao [233] and Sun and Whitt [205], here we will consider 
the special case consisting of a sequence of / /t tM M s M models indexed by n with
fixed service rate = 1 and abandonment rate  , 0 <  . Let the arrival rate functions 
in model n be ( ) ( )n t n t  for a fixed arrival-rate function ( )t with ( ) = 0t for all < 0t .
We write ( ) = ( )g t o t if ( ) / 0g t t  as t   . We impose the QED condition by assuming 
that the staffing functions satisfy   

( ) = ( ) ( ) ( ) as ,ns t nm t nc t o n n    (6.4) 

where ( )m t is the offered load in (4.1) and ( )c t is an integrable function for all t , which 
we think of as a staffing control function. As in Puhalskii [183], when the staffing decreases 
with all servers busy, let the customers be moved to the end of the queue and let them receive 
a new full service when they are next assigned. Let ( )nX t be the number of customers in 
model n at time t .

An important special case of (6.4) arises when ( ) ( )c t c m t for some constant c ;
then (6.4) reduces to the SRS staffing formula in (4.4) , but we allow greater generality. The 
main point is that the staffing in (6.4) puts the TV / /t tM M s M model into the QED 
MSHT limiting regime at all times t .

To state the limit, let ( )nX t be the number in system at time t in model n and let the 
FWLLN and FCLT scaled processes be defined by   

1 1/2ˆ( ) ( ) ( ) [ ( ) ( )], 0,n n n nX t n X t and X t n X t nx t t      (6.5) 

where ( )x t is the limit in the FWLLN. 

Theorem 6.1. (QED MSHT FCLT in the / /t tM M s M delay model from Mandelbaum 
et al. [140], Puhalskii [183]) For the sequence of / /t tM M s M delay models specified 
above, if (0) (0)nX x in   as n   , where (0)x is deterministic, then 
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1( ) ( ) ( ) ,n nX t n X t x t in D as n     (6.6) 
where ( )x t satisfies the ordinary differential equation ( ) = ( ) ( ),x t t x t   so that 

( ) = ( )x t m t , the OL in the / /tM M   IS model, provided that it is given consistent initial 
conditions.

If, in addition, ˆ ˆ(0) (0)nX X  in   as n   , then  
1/2ˆ ˆ( ) [ ( ) ( )] ( ) ,n nX t n X t nx t X t in D as n    (6.7)

where ˆ ( )X t is a diffusion process satisfying   

0 0 0
ˆ ˆ ˆ ˆ( ) = (0) ( ( ) ( )) ( ( ) ( )) ( ) ( ) ( )

t t t
X t X X s c s ds X s c s s x s dB s         (6.8)

with B being standard Brownian motion. As a consequence, if ( )t is Lipschitz continuous 
and ( ) > 0c t for all t , then   

ˆ ˆ( ( ) ( )) = ( ( ) ( ) (1)) ( ( ) ( )) > 0n n nP X t s t P X t c t o P X t c t as n      (6.9)

for all > 0t . Hence, the staffing in (6.4) puts the system asymptotically in the QED MSHT 
regime for each > 0t .
Proof. This is a simplification of Theorems 1 and 2 of Puhalskii [183]. In particular, in the 
setting there we have: = = 0s s  , = = ( )s sq m s , = ( )s s  and = ( )s c s for all s .
Theorem 1 of Puhalskii [183] implies that the limit in (6.6) holds with limit ( )x t , where 

( )x t  satisfies the ordinary differential equation ( ) = ( ) ( )x t t x t  . However, Corollary 4 of 
Eick et al. [44] implies that the OL ( )m t also satisfies the same ODE. Hence, ( ) = ( )x t m t ,

0t  . The second limit in (6.7) follows from Theorem 2 of Puhalskii [183]. The Lipschitz 
continuity of ( )t ensures that the one-dimensional distribution of the diffusion process 
ˆ ( )Q t  has a continuous cdf for each t , which is required for the limit to hold for all ( )c t

in (6.9) ; see Theorem 3.2.1 of Stroock and Varadhan [204]. 

Remark 6.1. (not centered at the natural fluid model) It is significant that the FWLLN limit 
in (6.6), which is the centering term in the FCLT (6.7), is the OL ( )m t , which satisfies the 
ODE of the associated IS model, instead of the natural direct ODE for the fluid model with 
abandonment, which would yield   

( ) = ( ) ( ( ) ( )) ( ( ) ( )) .x t t x t s t x t s t       (6.10)
This occurs because we staff to order ( )O n  at the scaled OL ( )nm t  in (6.4). In (2.6) of 
Puhalskii [183] our scaling yields =s sq k for 0s  .   

While this statement of the QED MSHT FCLT in the / /t tM M s M delay model is 
clean, it remains to show that it offers any advantages over Section 2 for actually computing 
TV performance measures. Nevertheless, in the next section we show how limits in the QED 
MSHT regime can provide important insight via the sample-path TV MSHT Little’s law. 

Extensions of Theorem 6.1 to more general non-Markovian models is an important 
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remaining research problem. 

6.2. Scheduling for multiple classes in a time-varying environment 

We now review recent TV QED MSHT limits for multi-class queues in Sun and Whitt 
[205] that provide insight into ratio scheduling rules for achieving desired service 
differentiation with TV arrival rates. 

Gurvich and Whitt [66, 67, 68] showed that fixed-queue-ratio (FQR) controls that 
schedule (select the next customer to enter service from queue when a server becomes free) 
and route to different server pools, which we do not consider here, aiming to keep the queue 
lengths at fixed ratios also are effective for achieving delay-based service-differentiation in 
stationary large-scale service systems modeled as many-server queues. Indeed, the goals are 
achieved asymptotically in the QED MSHT regime. 

We conducted simulations experiments to see how the FQR control performs with 
time-varying arrival rates. We found that FQR controls remain quite effective for balancing 
the queue lengths over time, keeping them near desired ratios, but that the FQR controls can 
be highly ineffective at the indirect goal of stabilizing delays at fixed ratios. Thus, we 
investigated alternative head-of-line-delay-ratio (HLDR) controls aiming to keep the head-
of-line delays at fixed ratios. Figure 6 illustrates by showing simulation results for FQR (left) 
and HLDR (right) for the two-class / /t tM M s model with common service rate = 1, no
abandonment ( = 0 ) and sinusoidal arrival-rate functions ( ) = sin( ),i i i it a b d t  where

1 1 1( , , ) (60, 20,0.5)a b d   and 2 2 2( , , )a b d  (90,30,0.5).  We chose the staffing ( )s t to be 
consistent with the SRS staffing formula in (4.4) for the aggregate model, using QoS 
parameter = 0.25 .

The property that causes difficulties for FQR is class-dependent arrival rates, i.e., 
where the ratios of the arrival rates of two different classes varies strongly over time. It is 
thus significant that class-dependent arrival rates may indeed occur in applications. For 
example, Section 3.5 of Whitt and Zhang [230] shows that the proportion of arrivals to the 
Israeli emergency department (ED) that are admitted to an internal ward of the hospital 
varied strongly over time. Since the admitted patients tend to be among the more critical 
patients, we infer that there is likely to be a difference in the arrival rates of patients 
classified by acuity. 
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Figure 6. Queue and delay ratios obtained from the FQR rule (left) and HLDR rule 
(right) for a two-class / /t tM M s queue with arrival rate functions 

1( ) = 60 20sin( / 2),t t  2 = 90 30sin( / 2)t  , common service rate = 1 , without 
abandonment ( 1 2= = 0  ) and the QoS parameter = 0.25 .

Sun and Whitt [205] conclude that the results can be explained by a sample-path (SP) 
TV MSHT Little’s law (LL) (SP-TV-MSHT-LL) that is a consequence of a TV QED MSHT 
limit, which is a generalization of the the SP-MSHT-LL for the stationary model that is a 
consequence of Theorem 4.3 in Gurvich and Whitt [66] and is discussed after equation (13) 
in Section 3 of Gurvich and Whitt [68]. In particular, the SP-TV-MSHT-LL states, for large 
scale systems in the QED MSHT regime, that 

( ) ( ) ( ) for all ,i i iQ t t V t t  (6.11) 

where ( )iQ t is the queue length, ( )i t is the arrival rate and ( )iV t is the potential delay at 
time t for class i . It is illustrated for individual sample paths in Figure 5 of Sun and Whitt 
[205]. The SP-MSHT-LL in (6.11) follows from the TV QED MSHT limit established in 
Theorem 4.1 of Sun and Whitt [205], which extends Theorem 6.1 above to the multi-class 
setting. As in Gurvich and Whitt [66, 67, 68], there is great state-space collapse, which 
makes the limit process for the quantities in (6.11) above for all classes be only one-
dimensional. 

If we consider ratio 

1 2( ) ( ) / ( ),QR t Q t Q t 1 2( ) ( ) / ( )AR t t t  and 1 2( ) ( ) / ( ),DR t V t V t

then as a consequence of (6.11) we have   

( ) ( ) * ( ) for all .QR t AR t DR t t  (6.12) 
Given (6.12), ( )QR t and ( )DR t can both be nearly constant over time only if ( )AR t is
nearly constant over time. The new SP-MSHT-LL implies that it is impossible to stabilize 
queue ratios and delay ratios simultaneously with these ratio controls in the MSHT limit 
when the ratio of the asymptotic arrival rates is time-varying. Otherwise, these ratio controls 
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stabilize both queue ratios and delay ratios; e.g., see Figures 1-4 of Sun and Whitt [205]. 

6.3. The QED c MSHT regime 

Given that the QED regime has proven so successful for stationary many-server models, 
it is remarkable that we might elect to discard it entirely by considering the QED c  MSHT 
regime, which assumes that it never holds or, more precisely, that it holds only at the 
instantaneous transition points between OL and UL intervals. 

The reason is that the QED limit for the / /t tM M s M model in Theorem 6.1 
remains relatively intractable, requiring further analysis something like Section 2. On the 
other hand, the QED c  assumption leads to relatively tractable analysis, which ultimately is 
based on the IS queue. 

It turns out that the behavior on both OL and UL intervals is largely determined by 
associated IS models. The story for UL intervals is obvious, because during each UL interval 
the system evolves the same as the corresponding IS model. The OL intervals are more 
complicated, but it turns out that a similar story holds there as well, provided that we let the 
patience times play the role of the service times, as discussed in Section 3.3. 

In fact, both the Gaussian closure approximations in Section 2.3.2 and the two-
parameter fluid model in Section 3.3 can be regarded as a consequence of the QED c  MSHT 
assumption. That is evident from Liu and Whitt [123], because it is explained at the outset 
that the model is assumed to alternate between OL and UL intervals. Moreover, the analysis 
of the OL intervals explicitly exploit the IS perspective in (3.10) . The QED c  role for the 
Gaussian closure approximations is less apparent, because even in the abstract the authors 
advertise the QED scaling in Halfin and Whitt [70]. However, further examination of 
Massey and Pender [145] reveals the QED c  MSHT assumption instead. In particular, that 
follows from the discussion below (2.6) and the Gaussian distributions claimed for the limit 
process after (2.8); the Gaussian limit only arises in the QED c  MSHT regime. 

That QED c  perspective is maintained in the supporting TV MSHT limits in Liu and 
Whitt [124, 126] and for the initial content process in Aras et al. [7] and the stationary 

/ /G GI s GI  model in Aras et al. [6]. The MSHT FCLT during an overloaded interval 
yields an insightful stochastic differential equation of the form   

1 1 2 2 3 3( ) = ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),dW t H t W t J t B t J t B t J t B t    (6.13) 
where ( )H t and ( )iJ t , = 1 3i  , are deterministic functions, while iB are mutually 
independent BMs associated with the arrival process, service times and patience times, 
respectively. The MSHT FCLT in Liu and Whitt [126] is for the / /t tG M s GI model; the 
extension to the / /t tG GI s GI model remains an open problem. The results in Aras et al.
[6, 7] and Pang and Zhou [173] may help in that effort. 

The direct QED c  TV MSHT limits lead to Gaussian distributions on both UL and OL 
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intervals, but the resulting direct Gaussian approximations are not very accurate. That leads 
to a search for refinements, such as the Gaussian closure approximations proposed by Ko 
and Gautam [103] and Massey and Pender [145] and the truncated Gaussian approximations 
proposed in (1.2) of Liu and Whitt [126] and examined more thoroughly in Liu et al. [130]
and extended in Liu [120]. 

A special case of the QED c  MSHT regime is simply having the overloaded or ED 
MSHT regime. As demonstrated in Whitt [218, 221] and Liu et al. [130], the ED regime is 
practically relevant even for stationary models. Even in the ED region, it may be important 
to consider refined staffing as in (4.17) from Liu [120]; see Mandelbaum and Zeltyn [141], 
Section 10 of Liu and Whitt [126] and Section 6 of Aras et al. [6] for other instances. 

A complication when we switch between OL and UL intervals is the behavior near the 
switching points. That is addressed directly in Liu and Whitt [126] and in the limits for the 
initial content process in Aras et al. [7]. 

It remains to be done for general / /t tG GI s GI models. It also remains to see if new 
perspectives will yield even better understanding and more effective algorithms. 

7. The Time-Varying Single-Server Queue 
There is a substantial literature on TV single-server queues: structural results (e.g., 

definition and existence of processes), as in Harrison and Lemoine [74], Heyman and Whitt 
[78], Lemoine [109, 110], and Rolski [190, 191, 192], numerical algorithms, as in Section 
2, and asymptotic methods and approximations, as in May and Keller [153], Newell [159, 
160, 161, 162], Keller [93], Massey [142], Mandelbaum and Massey [139], and Whitt [224, 
226].

In Section 7.1 we first review a convenient representation for the workload process 
introduced by Lemoine [109] that separates all stochastic variability from the deterministic 
variability of the arrival-rate function. Then in Section 7.2 we review the heavy-traffic (HT) 
limit for the periodic / /1tG G queue established in Whitt [224]. Paralleling the stationary 
case, the limit is a reflected periodic Brownian motion (RPBM). Since that RPBM limit 
process is not so tractable, we review further numerical methods and approximations. In 
Section 7.3 we review the rare-event simulation algorithm developed in Ma and Whitt [136] 
and in Section 7.4 we review the time-varying robust queueing (TVRQ) from Whitt and 
You [227]. We conclude in Section 7.5 by reviewing service-rate controls for stabilizing 
performance in the TV single-server queue from Whitt [225]. 

7.1. The extended Lemoine representation of the workload 

We start by reviewing a convenient representation of the workload process for the 
/ /1tG G queue, first discovered for the periodic / /1tM G queue by Lemoine [109]. 
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A reverse-time construction. We assume that the system starts out empty at time 0.
Let {( , )}k kU V be the sequence of ordered pairs of nonnegative random variables 
representing the interarrival times and service times. Let an arrival counting process be 
defined on the positive halfline by 1( ) max{ 1: }kA t k U U t     for 1t U and

( ) 0A t   for 10 <t U , and let the total input of work over the interval [0, ]t be the random 
sum   

( )

=1

( ) , 0,
A t

k
k

Y t V t   (7.1) 

Then the workload (the remaining work in service time) at time t , starting empty at time 
0 , can be represented using the reflection map as ( ) = ( )( )W t Y e t  , where e  is the 
identity map, i.e., ( )e t t , 0t  . Hence,  

0
( ) = ( )( ) ( ) { ( ) }inf

s t
W t Y e t Y t t Y s s

 
     

0 0
= { ( ) ( ) ( )} = { ( ) }, 0,sup sup t

s t s t
Y t Y s t s Y s s t

   
      (7.2) 

where   
( )

= ( ) 1

( ) ( ) ( ) = , 0 , 0,
A t

t k
k A t s

Y s Y t Y t s V s t t
 

       (7.3) 

is the cumulative input over the interval ( , ]t s t .

Exploiting the composition construction from Section 5.3. We now exploit the 
composition construction of the tG arrival process in Section 5.3. Given that additional 
model structure, we have   

( ( ))d

=1
{ ( ) : 0 }= : 0 for all 0,

N st

t k
k

Y s s t V s t t
       

  
  (7.4) 

where
d
=  denotes equality in distribution, which here in (7.4) we mean as stochastic 

processes, and   

( ) ( ) ( ), 0 , 0.t s t t s s t t         (7.5) 

Assuming a positive bounded arrival-rate function as in (5.3) , the function ( )t s in (7.5) 
is strictly increasing and continuous as a function of s with (0) = 0t for each t , so it has 
a continuous strictly increasing inverse 1( )t s as a function of s with (0) = 0t for each t .

Hence, we can combine (7.2) and (7.4) to obtain the alternative representation of the 
workload as  

( ( )) ( )
1

0 0 ( )=1 =1

( ) = = ( ) ,sup sup
N s N st

k k t
s t s tk k

W t V s V s




   

        
   

   (7.6) 

where ( )t s is defined in (7.5). The second expression in (7.6) is the Lemoine [109] 
representation, introduced for the / /1tM G model. The extended Lemoine representation 
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of the workload for the / /1tG G queue here is appealing because it has all the stochastic 
variability in the first term within the supremum but all determinstic variability in the 
arrival-rate function in the second term within the supremum. 

The periodic / /1tG G queue. If the arrival process and workload process are periodic 
over the entire real line with period c , then we can obtain an expression for the periodic 
steady-state workload at time t within the interval [0, )c by letting the system start empty in 
the distant past. For this periodic steady-state distribution to be well defined, we require that 
the average arrival rate satisfy   

= ( ) / < 1,c c     (7.7) 
to ensure that the average arrival rate is less than the maximum possible service rate 

1 / [ ] 1E V   . We assume that a proper periodic steady-state exists. 
Instead of (7.2) for the transient workload, we have the periodic steady-state workload 

represented as a supremum over the entire real line. In particular, for a fixed position y
within a cycle, we have  

 
0

= ( ) , 0 < ,supy y
s

W Y s s y c


   (7.8) 

where yY is defined as in (7.3) . 

7.2. Heavy-traffic limits for periodic single-server queues 

The seminal papers on HT approximations for the TV single-server queue are Newell 
[160, 161, 162]. Even though HT limits are not actually discussed, the diffusion 
approximations discussed there can be obtained via HT limits. Key scaling properties are 
presented directly. Direct HT limits for the / /1t tM M queue were then obtained by Massey 
[142] and Mandelbaum and Massey [139]. A new perspective on one case is provided by 
Whitt [226]. That paper shows that there are more possibilities for the scaling. 

Here we discuss HT limits for periodic queues. In particular, we review HT limits for 
the periodic / /1tG GI queue from Whitt [224]. The HT limit was stated for the queue length 
in Whitt [224] and then extended to the workload process in Ma and Whitt [136]. A previous 
HT limit for the / /1tM GI model was established by Falin [47], but it produced the same 
limit as for the corresponding / / 1M GI model. The key idea in Whitt [224] for obtaining 
useful new results to expose the TV behavior is to introduce a new HT scaling of the arrival-
rate function. 

Another key idea in Whitt [224] is to simplify the proof by focusing only on the first-
order behavior, in particular, by assuming that the fluid limit is not TV when focusing on 
the TV FCLT. That is a great simplification over Massey [142] and Mandelbaum and 
Massey [139], but with that simplification, it is possible to apply the early HT limit for the 
s -server queue in Theorem 1(a) of Iglehart and Whitt [84]. For the single-server special 
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case, it suffices to apply the HT FCLTs in Theorems 9.3 and 9.4 of Whitt [214]. In either 
case, these theorems state that a HT FCLT holds jointly for all the standard queueing 
processes if a FCLT holds jointly for the arrival and service processes. For the case 
considered here of i.i.d service times, independent of the arrival process, the FCLT for the 
service process is just Donsker’s theorem, so that it suffices to establish a FCLT for the 
arrival process. Most important, that simplification produces useful results. 

The new HT limit for the arrival process depends on a new family of scaled arrival-
rate functions, indexed by  in (7.7). To avoid notational confusion, we add a superscript 
d  to the diffusion quantities. Given  and the limiting cumulative arrival rate function 

( )d t  for a periodic arrival-rate function ( )d t with period 1/  , we let the cumulative 
arrival-rate function in model  be   

1 2
, ( ) (1 ) ((1 ) ), 0,dt t t t            (7.9) 

so that the associated arrival-rate function is   
2

, ( ) (1 ) ((1 ) ), 0,dt t t            (7.10) 
where   

1

0 0
( ) ( ) , ( ) ( ), and ( ) = 0

td d dt s ds t h t h t dt         (7.11) 
with ( )h t being a periodic function with period 1 . Alternatively (more generally), we can 
assume that   

2 2
, ,

ˆ ( ) (1 )[ ((1 ) ) (1 ) ] ( )dt t t t                  (7.12) 
uniformly over bounded time intervals. 

As a consequence, ( )d t is a periodic function with period = 1 /c  and , ( )t  is a 
periodic function with period 2

, = 1 / (1 )c    . To ensure that ,  is nonnegative, we 
assume that 

( ) / (1 ), 0 < 1,h t t      (7.13) 

which will be satisfied for all  sufficiently close to the critical value 1 provided that h
is bounded below. In fact, we directly assume that   

0 1 0 1
< { ( )} < { ( )} < .supinf

t t
h h t h t h 

   
     (7.14) 

There are two primary cases of interest < 1h and > 1h . When < 1h , the instantaneous 
traffic intensity, which is , ( )t  , satisfies , ( ) < 1t  for all t  and  . On the other hand, 
when > 1h , , ( ) > 1t  for some t . When , ( ) > 1t  for some t , the workload can reach 
very high values when time is scaled, because the cycles are very long. That takes us into 
the setting of a slowly changing random environment in Choudhury et al. [29], to which we 
refer for additional discussion. 

Theorem 3.2 of Whitt [224] and Theorem 2 of Ma and Whitt [136] provide a heavy-
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traffic limit as 1   for the arrival process, the queue-length and workload processes at 
time t  starting empty at time 0 , but we will focus only on the arrival and workload 
processes. Let , ( )W t  denote the workload process starting empty, but it also applies to the 
periodic steady-state distribution except for the usual problem of interchanging the order of 
the limits as 1   and as t   . We use the periodic steady-state of the limit to 
approximate the periodic steady-state of the periodic / /1tG GI queue.

To express the heavy-traffic limits, we use (7.9) and let   

 
( ),

, , , , ,
=1

( ) ( ) , ( ) , and ( ) ( ) , 0.
A t

k
k

A t N t Y t V X t Y t t t
 

                (7.15) 

Then , ( )X t  is the net-input process and , ( )W t  is the workload process, which is the 
image of ,X   under the reflection map ,  i.e.,   

, , , ,
0

( ) = ( )( ) = { ( ) ( )}.sup
s t

W t X t X t X t s       
 

    (7.16) 

For the heavy-traffic functional central limit theorem (FCLT), we introduce the scaled 
processes

   1/2 2 2
, ,

ˆˆ ( ) [ ], ( ) (1 )[ (1 ) (1 ) ],nN t n N nt nt A t A t t            

   2 2
, , , ,

ˆ ˆ( ) (1 ) (1 ) and ( ) (1 ) (1 ) ,X t X t W t W t                  (7.17) 
for 0t  .

Let kD be the k -fold product space of the function space D . Again let e  be the 
identity map in D , i.e., ( )e t t , 0t  .

Theorem 7.1. (HT FCLT from Theorem 3.2 of Whitt [224] and Theorem 2 of Ma and Whitt
[136]) For the family of / /1tG GI  models indexed by ( , )  with cumulative arrival-rate 
functions in (7.9) (or in (7.12) ) and scaled processes in (7.17) , if ˆ

n a aN c B as n   ,
where aB is a standard Brownian motion, then  

, , ,
ˆ ˆˆ ˆ ˆ ˆ( , , ) ( , , ) 1,A X W A X W in D as            (7.18) 

where   
ˆ ˆˆ ˆ ˆ( , , ) ( , , ( )),d

a a s sA X W c B e A c B X           (7.19)

 is the reflection map in (7.16), d
  is defined in (7.11), and aB and sB are two 

independent standard ( mean 0 variance 1 ) Brownian motions; i.e., Ŵ is reflected 
periodic Brownian motion (RPBM) with 

d

, ,
ˆ = ( )= ( ),a a s s d x dW c B c B e c B e           (7.20) 

where 2 2 2=x a sc c c .

Unfortunately, there evidently are no available performance formulas or algorithms for 
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the RPBM limit in Theorem 7.1. The next two sections present new approaches to remedy 
that deficiency. We present numerical algorithms to calculate the, exact or approximate, 
distribution of the periodic steady-state workload in the periodic / /1tG G , which can be 
applied via the HT limit to compute the distribution of RPBM. 

7.3. A rare-event simulation algorithm for the / /1tGI GI queue

Ma and Whitt [136] have shown that the classic rare-event simulation algorithm to 
efficiently compute the tail probabilities ( > )P W b for large b , where W is the steady-
state waiting time in the / / 1GI GI queue, can be extended to the periodic steady state 
workload at each place within the periodic cycle in the associated periodic / /1tGI GI
queue, provided that we use the compositon construction of the arrival process in Section 
5.3. Just as for the / / 1GI GI queue, the algorithm exploits importance sampling using an 
exponential change of measure, as in Chapter XIII of Asmussen [9] and Chapter VI of 
Asmussen and Glynn [10]. 

Moreover, Ma and Whitt [136] show that, by exploiting the HT scaling in Section 7.2, 
the algorithm can be exploited to compute the tail probabilities and moments of RPBM. By 
exploiting HT approximations, that can be used to obtain approximations for more general 
periodic / /1tG G queues.

We will not review the detailed algorithm, instead referring to Ma and Whitt [136], but 
we will review the key representation that links the periodic / /1tGI GI model to the 
stationary / / 1GI GI model. We will also illustrate how the algorithm can be used to 
compute the performance of RPBM by showing simulation results for several models with 
  increasing toward 1 , provided that we exploit the HT scaling. 

Based on the Lemoine representation for the TV workload in (7.6), we can obtain a 
convenient representation of the periodic steady-state workload. Let yW be defined in terms 
of the underlying stationary process N and the associated sequence of service times 
{ : 1}kV k   via   

( )d
1

0 =1

= { ( )}, 0 < 1,sup
N s

y k y
s k

W V s y


     (7.21) 

where   
( ) ( ) ( ), 0,y t yc yc t t       (7.22) 

is the reverse-time cumulative arrival-rate function starting at time yc within the periodic 
cycle [0, ]c , 0 < 1y , and 1

y
 is its inverse function, which is well defined because 

( )y t is continuous and strictly increasing. 

From the representation in (7.21) , it is evident that from each sample path of the 
underlying stochastic process ( , )N V , we can generate a realization of yW in (7.21) for 
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each y , 0 < 1y , by just changing the deterministic function 1
y
 . Moreover, from the 

rare-event construction, we can simultaneously obtain an estimate of ( > )yP W b for all b
in the bounded interval 0[0, ]b while applying the estimation for the single value 0b . Thus, 
we can essentially obtain estimates for all performance parameter pairs

0( , ) [0,1) [0, ]y b b   while doing the estimation for only one pair. This efficiency is very 
useful to conduct simulation studies to expose the way that ( > )yP W b and the other 
performance measures depend on ( , )y b .

Bounds on the difference between the periodic and stationary workloads. 
Fundamentally, the reason that it is possible to exploit the / / 1GI GI rare-event algorithm 
to create a new rare-event algorithm for the periodic / /1tGI GI queue is because it is 
possible to bound the difference between the two random quantities. We review that bound 
now.

We compare the periodic steady-state workload yW in (7.21) and the associated 
stationary workload W defined as in (7.21) with 1s replacing 1( )y s :   

( )d
1

0 =1

= { },sup
N s

k
s k

W V s


  (7.23) 

Note that in both (7.21) and (7.23) , N is understood to be a stationary point process. In 
particular, for the / /1tGI GI model, N is an equilibrium renewal process with the first 
inter-renewal time having the equilibrum distribution, therefore W is the stationary 
workload in the associated / / 1GI GI model, which may differ from the stationary waiting 
time in the same model. We now show that we can bound yW above and below by a constant 
difference from the stationary workload W  by rewriting (7.21) as   

( )
1 1 1

0 =1

= { ( ( ) )}.sup
N s

y k y
s k

W V s s s   


      (7.24) 

From (7.24) , we immediately obtain the following lemma.  

Proposition 7.1. (upper and lower bounds on yW ) If we construct yW in (7.21) and W in
(7.23) using the same service times and base arrival process N in the composition 
construction of the arrival process, then  

y y y y yW W W W W           (7.25) 

 where  
1 1 1

00
{ ( ) } = { ( ) } 0 andsup infy y y

s cs c
s s s s


      

  
       

1 1 1

0 0
{ ( ) } = { ( ) } 0supinfy y y

s c s c
s s s s


      

   
         (7.26) 

Note that the supremum and infimum in (7.26) are over the interval [0, ]c . Because 
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the average arrival rate is  , ( ) = ( ) =y c c c  and thus 1( ) =y c c . Given that  is
continuous and strictly increasing, we can use properties of the inverse function as in Section 
13.6 of Whitt [214] to determine the alternative second representation of the bounds. 

Unified numerical results via heavy-traffic scaling. To produce unified numerical 
results, we scale the arrival rate function so that the performance measures have heavy-
traffic limits as 1  , using the framework in Section 7.2. For the special case of a 
sinusoidal arrival rate function, we let  

2( ) = (1 ) sin( (1 ) ), 0,t t t          (7.27) 
so that the cycle length in model  is * 2 2= (1 ) = 2 / ( (1 ) )c c      . After scaling, the 
cycle length is * = 2 /c   .

When we consider the periodic steady-state workload, we include spatial scaling by 
1 ,  so that we consider ( > ),yP W b where = / (1 ).b b  Hence, to have 
asymptotically convergent models, we should choose parameter four-tuples ( , , , )b     
indexed by ,  where   

2 1( , , , ) = ( ,(1 ) ,(1 ) ,(1 ) ),b b                (7.28) 
where ( , , )b  is a feasible base triple of positive constants with < 1 . (We must 
constrain 1  so that ( ) 0t  for all t .) Hence, we have the  -dependent constraint 

= (1 ) 1b    . There is no problem if 1  , but we may want to consider > 1 . In 
that case,  is only well defined for 1 (1 / )   . For example, if = 5.0 , then we 
require that 0.8  .
Example 7.1. (Using / /1tM M to estimate the performance of the tail probabilities) To 
illustrate how we can apply simulations of the / /1tM M model with increasing traffic 
intensities, let the base parameter triple be ( , , )b  = (1.0,2.5,4.0) . Then the parameter 4-
tuple for = 0.8 is

2 1( , , , ) = (0.8,(1 0.8) ,(1 0.8) ,(1 0.8) ) = (0.8,0.2,0.1,20.0).b b            (7.29) 

The associated parameter 4 -tuple for = 0.9 is (0.90,0.10,0.025,40.00) .
Let W be the steady-state workload in the stationary / / 1M M model with the same 

scaling, which has an exponential distribution except for an atom 1  at the origin. Table 
1 shows estimates of the ratio ( > ) / ( > )yP W b P W b  for 5 different values of 1  ,
where we successively divide 1  by 2 and 8 different values of the position y within the 
cycle in the / /1tM M  model with sinusoidal arrival-rate function in (7.27) with the 
parameter 4-tuple in (7.28) using the base parameter triple ( , , ) = (1.0,2.5,4.0)b  . (The 
paramter 4-tuple for = 0.8  and = 0.9  are shown above.) 
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Table 1. Comparison of the ratios ( > ) / ( > )yP W b P W b  , where W is for the 
stationary model, for 5 different values of 1  and 8 different values of the position
y within the cycle in the / /1tM M model with sinusoidal arrival-rate function in 

(7.27) with the parameter 4-tuple in (7.28) using the base parameter triple 
( , , ) = (1.0,2.5,4.0)b  .

y   1 0.16  1 0.08  1 0.04  1 0.02  1 0.01 

 0.000 0.96364 0.96523 0.96424 0.96357 0.96344 
0.125 0.97619 0.97686 0.97504 0.97493 0.97482 
0.250 1.00456 1.00450 1.00255 1.00251 1.00305 
0.375 1.03278 1.03264 1.03035 1.03152 1.03152 
0.500 1.04565 1.04470 1.04278 1.04346 1.04405 
0.625 1.03213 1.03096 1.03230 1.03150 1.03204 
0.750 1.00225 1.00404 1.00425 1.00277 1.00241 
0.875 0.97371 0.97696 0.97629 0.97457 0.97545 

 avg diff 0.00037 0.00112 0.00015 -0.00019
avg. abs. dif 0.00099 0.00121 0.00081 0.00039

rmse 0.00116 0.00134 0.00096 0.00049

Table 1 shows that, for each fixed y , all estimates as a function of  serve as 
reasonable practical approximations for the others as well as for the RPBM limit developed 
in Section 7.2. The convergence in Table 1 is summarized by showing the average 
difference, average absolute difference and root mean square error (rmse) of the entry with 
the corresponding estimate for = 0.99 in the final column, taken over 40  evenly spaced 
values of y in the interval [0,1) .

The mean and variance. The tail-integral representations of the mean and higher 
moments on p. 150 of Feller [49] can be exploited to obtain corresponding rare-event 
simulations of these related quantities. Recall that, for any nonnegative random variable X ,
the mean can be expressed as   

0
[ ] = ( > ) ,E X P X t dt



  (7.30) 
while the corresponding representation of the thp  moment for any > 1p  is   

1

0
[ ] = ( > ) .p pE X pt P X t dt

   (7.31) 

To obtain a finite algorithm, it is natural to approximate the integrals for the mean and 
the second moment by finite sums plus a tail approximation, i.e.,  

*
=0

( > )
[ ] ( ( > ) )

n
y

y y
k

P W n
E W P W k


 


 

2
* * 2

=0

1[ ] (2 ( > ) ) 2 ( > )( ).
( )

n

y y y
k

nE W P W k k P W n   
 

    (7.32) 

C  Whitt

138



In each case, the second term is based on applying the tail integral formula over [ , )n 
with the approximation   

*
( > ) ( > ) x

y yP W n x P W n e      (7.33) 
and integrating. 

We now illustrate the application of the rare-event simulation algorithm to estimate the 
mean and standard deviation of yW  and then for RPBM. 

Example 7.2. (Using / /1tM M to estimate the mean and standard deviation) Table 2 show 
estimates of the time varying mean [ ]yE W and standard deviation ( )ySD W for the special 
case of = 0.5y for associated / /1tM M model with the sinusoidal arrival-rate function for 
base parameter pair ( , ) = (4,2.5)  using the scaling convention in (7.28). The cycle 
length is 2 / ,   which equals 6.28 / 0.1 = 62.8 for = 0.8 . The higher relative 
amplitude of = 4 in Table 2 leads to much larger mean values at = 0.5y than for = 1 ;
the cycle midpoint = 0.5y tends to produce the largest values in the cycle.  

Table 2. Estimated mean [ ]yE W and standard deviation ( )ySD W as a function of 
1   for five cases of the / /1tM M queue at = 0.5y : = 1, =   and base 
parameter pair ( , ) = (4,2.5)  having larger relative amplitude 

 
 0.16 0.08 0.04 0.02 0.01 

 in (7.32) 40,000 40,000 40,000 40,000 40,000 

 in (7.32) 0.001 0.001 0.001 0.001 0.001 
largest  41 86 173 345 691 

 0.9728 0.9883 0.9967 0.9965 0.9993 
s.e. of  3.61E-03 2.69E-03 2.05E-03 1.16E-03 8.52E-04 
95% CI of  [0.9657, 0.9799] [0.9831, 0.9936] [0.9927, 1.0000] [0.9943, 0.9988] [0.9976, 1.0000] 

 15.148 33.583 70.677 145.183 294.222 
std of  5.58E-02 1.13E-01 2.27E-01 4.59E-01 9.15E-01 
95% CI of  [15.04, 15.26] [33.36, 33.81] [70.23, 71.12] [144.3, 146.1] [292.4, 296.0] 

 15.572 33.980 70.909 145.690 294.437 
95% CI of [15.35, 15.80] [33.58, 34.39] [70.2, 71.6] [144.5, 147.0] [292.4, 296.7] 

 331.868 1528.127 6547.951 27,092.17 110,239.9 
std of  1.023 4.263 17.227 69.632 0.785 
95% CI of  [329.9, 333.9] [1519.8, 1536.5] [6514, 6582] [26,955, 27,228] [109,691, 110,787] 

 10.119 20.007 39.405 77.551 153.861 

 1.1581 1.0743 1.0383 1.0169 1.0094 
 2.4915 2.7184 2.8364 2.9138 2.9444 

 1.5892 1.5830 1.5704 1.5442 1.5371 

The first row shows 1  , which decreases over successive columns. The next block 
of three rows shows the parameters for the approximating sums. For the estimates we also 
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shows 95%  confidence intervals. The last three rows show scaled estimates that should 
be converging to RPBM, showing accuracy suitable for engineering applications. 

7.4. Time-varying robust queueing 

We now review the recent robust optimization approach to approximating the 
performance in the TV / /1tG G single-server queue in Whitt and You [227]. Robust 
optimization is a relatively new approach to difficult stochastic models. As in Bertsimas et
al. [17], Ben-Tal et al. [16], and Beyer and Sendhoff [20]; the main idea is to replace a 
difficult stochastic model by a tractable optimization problem. We replace an “average-case” 
expected value by a “worst-case” optimization, where stochastic process sample paths are 
constrained to belong to uncertainty sets. The paper Whitt and You [227] extends the 
previous paper, Whitt and You [228], which developed robust queueing (RQ) algorithms to 
approximate the expected steady-state waiting-time and workload in stationary single-
server queues, aiming especially to capture the impact of dependence among interarrival 
times and service times. In turn that paper builds on the RQ formulation of Bandi et al. [13]. 

The TVRQ optimization problem performs the maximization in (7.2) subject to 
deterministic constraints placed on the input process ( )Y t in (7.1). These constraints 
convert the stochastic process ( )W t in (7.2) into a deterministic approximation as the 
solution of a deterministic optimization problem. In simulation experiments Whitt and You 
[227] compare this deterministic approximation to the mean [ ( )]E W t  estimated from 
multiple independent replications of the model. They show that the detailed structure of the 
objective function in the PRQ provides insight into the structure of the mean and quantiles 
of the periodic workload. Thus, they develop a promising new way to obtain new insight 
into the “physics” of TV single-server queues, paralleling Eick et al. [44] for many-server 
queues.

The general TVRQ formulation. In particular, to formulate the deterministic TVRQ 
approximation for the time-varying workload ( )W t for any > 0t , we let   

 *

0
( ) ( ) ,sup sup t

X U s tt t

W t X s
  

  (7.34) 

where ( ) ( )t tX s Y s s  and tU is the deterministic uncertainty set, i.e., the set of allowed 
sample paths { ( ) : 0 }tX s s t  , which we define as  

 ( ) : ( ) [ ( ) ] ( ( ) ), 0t t t t tU X s X s E Y s s bSD Y s s s t       

 = ( ) : ( ) [ ( )] ( ( ))), 0 ,t t t tX s X s E Y s s bSD Y s s t       (7.35) 

With SD  being the standard deviation. This uncertainty set requires that the sample path 
of the reverse-time net-input process ( ) ( )t tX s Y s s  remain within b standard deviations 
of its mean at all times s , 0 s t  .
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To ensure a finite supremum, we assume that 2[ ( ) ] <E Y t   for all t . Then, since 
( ) 0tY s   for all t  and s , necessarily *0 ( ) <W t   for all t . As a consequence, we 

have the final TVRQ optimization   

   *

0 0
( ) = ( ) = [ ( )] ( ( )) , 0.sup sup supt t t

s t X U s tt t

W t X s E Y s s bSD Y s t
    

    (7.36) 

The uncertainty set in (7.35) is a natural time-varying generalization of the uncertainty 
sets in our previous paper, which are similar to the ones used in Bandi et al. [13]. The idea 
is that the uncertainty set (7.35) can be based on a Gaussian approximation, which in turn 
is supported by central limit theorem (CLT) for ( )tY s under customary regularity conditions. 
Nevertheless, providing convincing support for this uncertainty set, even in the stationary 
setting, is somewhat complicated. Thus the choice may ultimately be justified by its utility, 
which is demonstrated by establishing connections to the performance of the original 
queueing model. We refer readers to Section EC.3 and Section EC.4 in Whitt and You [228] 
for further discussion of the motivation and justification. 

Whitt and You [228] give alternative representations for the uncertainty set in (7.35) 
and the final TVRQ algorithm in (7.36) using indices of dispersion, as in Cox and Lewis 
[33]. Following Fendick and Whitt [50] and Whitt and You [228], the index of dispersion 
for work (IDW) is exploited. The IDW, denoted by ( )wI t , characterizes the variability of the 
total input of work ( )Y t  over the time interval [0, ]t , independent of its mean. The idea is 
the same as the squared coefficient of variance (scv, variance divided by the square of the 
mean), which represents the variability of a single random variable independent of scale. 

For the base total input process 
( )

=1
( ) N s

kk
Y t V , the IDW is defined as   

( ( ))( ) , 0;
[ ] [ ( )]w
Var Y tI t t

E V E Y t
 


  (7.37) 

see (1) of Fendick and Whitt [50]. In our setting with mean-1  service times and a rate-1
base process N , the IDW becomes   

( ( )) ( ( ))( ) = , 0,
[ ( )]w

Var Y t Var Y tI t t
E Y t t

 
 
  (7.38) 

which is just a scaled version of the variance function. For the / / 1M GI model, we have 
2 2 2( ) = = 1w a s sI t c c c   with 2

ac and 2
sc being the coefficient of variation of the interarrival 

and service distribution, respectively. We assume that IDW as a function of time is bounded, 
which is to be anticipated. 

As a consequence, the uncertainty set (7.35) in the TVRQ can be written as  
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 

 
 

1

=1 =1

= ( ) : ( ) ,0 ( )
N s N s

t k t k
k k

X t X s E V s b Var V s t
              

     
 

  1= ( ) : ( ) ( ),0 ( )t wX t X s s s b sI s s t      

  = ( ) : ( ) ( ) ( ) ( ) ,0 .t t w tX t X s s s b s I s s t         (7.39) 

Combining (7.34) and (7.39), we have the tractable TVRQ optimization for the / /1tG G
model

  *

0
( ) = ( ) ( ) ( ) , 0,sup t t w t

s t
W t s s b s I s t

 
       (7.40) 

with the final expression in (7.40) providing a convenient expression for a computational 
algorithm because ( )t s is usually readily available, whereas 1( )t s in the first expression 
may not be. 

Periodic robust queueing (PRQ). To develop a periodic version of TVRQ, we start 
in the periodic setting of Section 7.1. For the periodic case, starting empty in the distant past, 
we consider [0, )y c . Then periodic RQ (PRQ) for the steady-state workload is just TVRQ 
in (7.36) except that s is allowed to range over the interval [0, ) and that ( )tY s is replaced 
by ( )yY t to emphasize the focus on a fixed location in a cycle. As a consequence, we have 
the final PRQ optimization  

 *

0
= [ ( )] ( ( ))supy y y

s
W E Y s s bSD Y s


 

  
0

= ( ) ( ) ( ) , 0 < .sup y y w y
s

s s b s I s y c


       (7.41) 

For periodic queues, we establish long-cycle fluid limits for both the original queueing 
system and the PRQ approximation and we prove that those limits coincide. Simulation 
experiments show that PRQ can yield useful approximations. 

Heavy-traffic limits for PRQ. HT limits are then established for PRQ in the setting 
of Section 7.2 and compared to Theorem 7.1. Again, we add a subscript y to indicate the 
place in the cycle. In particular, the workload at fixed place y within a cycle for a system 
which started empty and has run for t time units is  

( ), ,d

, ,
0 =1

( ) = ,sup
A ty

y k
s t k

W t V s
 

 
 

   
  
  (7.42) 

where , , , ,( ) ( ) ( )yA t A y A y t        , , ( )A t  is defined in (7.15) and kV is a generic 
service time. in the / /1tG G setting above, we immediately get the PRQ optimization 
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problem from (7.40) by replacing ( )t s with , , ( )y s 

  *
, , , , , , , ,

0
= ( ) ( ) ( ) .supy y y w y

s
W s s b s I s       


      (7.43) 

To express the heavy-traffic limit, we define two functions. The first function   
( ) 2f t t t    (7.44) 

is a variant of the function to be optimized with the stationary / /1M GI model, as can be 
seen from Theorem 1 of Whitt and You [228]. The second function  

2 2, , 2 2 2

4

4( ) ( )
y

y b cxy tx

g t h s ds
b c   

   (7.45) 

is a periodic function, depending on h in (7.11) , that captures the time-varying part of the 
arrival rate function. The period of , , ( )yg t  is 2 24 / xb c  . When the arrival-rate function is 
constant, , , ( ) = 0yg t  because ( ) = 0h t .

Here is the heavy traffic limit for PRQ.  

Theorem 7.2. (Heavy traffic limit for PRQ) The heavy traffic limit of the PRQ problem in 
(7.43) for the / /1tG G model is 

 *
, , ,1,2 2

1 0

2 2(1 ) = ( ) ( )suplim y y
tx

W f t g t
b c   




 


    (7.46) 

 for ( )f t in (7.44) and , , ( )yg t  in (7.45).  

Whitt and You [227] show that the HT limits can be usefully combined with the long-
cycle perspective to obtain further insight into the TV behavior of periodic queues. They 
identify three HT cases that can be characterized via the limiting density over a cycle, 

( ) = ( )d t h t   in (7.11). Letting 0 ( )supth h t
 , the three HT cases are: underloaded 

( < 1h ), overloaded ( >1h ) and critically loaded ( =1h ). 
They show that the HT limits for PRQ coincide with the HT limit of the pointwise-

stationary approximation of the HT limit for the original model in both the underloaded HT 
and overloaded HT cases; see Theorems 5 and 6 in Whitt and You [227]. They find that the 
scaling in the critically loaded case agrees with the scaling in Whitt [226]. When the cycle 
lengths are allowed to grow, there is a great buildup of congestion over time in the 
overloaded case, but no buildup over time in the underloaded case. For queues in a random 
environment, the overloaded case is discussed in Choudhury et al. [29]. The critically loaded 
case is discussed in Whitt [226]. 

Example 7.3. (a simulation evaluation of PRQ) Figure 7 illustrates the performance of PRQ 
in an underloaded case by making comparisons to simulation estimates and the heavy-traffic 
limit in Theorem 5 of Whitt and You [227]. The model considered is 2( (4) / (1) /1tH LN

Queueing Models and Service Management

143



model with the sinusoidal arrival-rate function   
2

, ( ) (1 ) sin(2 (1 ) ), 0,t t t            (7.47) 
where 0.8  , which is a special underloaded case of (7.10) with = = 0.8h   for h
in (7.11). 

In particular, Figure 7 compares three alternative expressions for the normalized mean 
workload , ,2(1 ) [ ] /yE W   . The first expression is the solution of the PRQ where the 
workload , ,[ ]yE W   is calculated from the PRQ optimization in (7.43); the second is the 
HT limit as 1   and 0   in Theorem 5 of Whitt and You [227]; and the third is the 
simulation estimate. 

Together with the HT limit, the figure on the left shows the PRQ and simulation 
estimates for three parameter pairs ( , )  : 2(0.7,10 ) , 3(0.9,10 ) and 4(0.95,10 ) . Figure 7 
confirms Theorem 5 of Whitt and You [227] by showing that both PRQ and the simulation 
estimates converge to the HT limit as  increases (with  decreasing). Only the simulation 
estimate for the case = 0.7 is not close to the theoretical HT limit. These plots also show 
that PRQ captures the essential shape of the TV mean workload and can serve as a useful 
approximation for moderate traffic intensities.  

Figure 7. A comparison of the solution to the PRQ problem in (7.43) as a function of 
the position y within a cycle to simulation estimations and the HT limit in Theorem 
5 of Whitt and You [227] for the normalized mean workload , ,2(1 ) [ ] /yE W   for

, , yW  in (7.42) in the underloaded 2( (4) / (1) /1tH LN model with arrival-rate 
function in (7.47) for 2 3 4( , ) {(0.7,10 ), (0.9,10 ), (0.95,10 )}     (left) and for three 
different service-time distributions (right). 

Figure 7 (right) shows the impact of changing variability in the service-time distribution 
with comparisons between PRQ and simulation for three cases: Erlang 4E with scv

2 = 1 / 4,sc hyperexponential 2(4)H with scv 2 = 4sc and lognormal (8)LN with scv 2 = 8sc .
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Consistent with the stationary model, increased variability in the service process tends to 
increase congestion. However, Davis et al. [38] drew the opposite conclusion about the 
impact of the service-time distribution on the blocking in the time-varying / / / 0tM GI n
loss model. 

7.5. Service-rate controls to stabilize performance 

As an analog of the staffing problem to stabilize performance in many-server queues 
with a TV arrival-rate function discussed in Section 4.3 and Section 4.4, we now review 
service-rate controls to stabilize performance in a single-server queue with a TV arrival-rate 
function developed in Whitt [225]. For this control, it is assumed that the service rate can 
be specified as a deterministic function separately from the random service requirements. 
For example, a customer service requirement might correspond to the size of a message to 
be transmitted in a communication network, while the service rate might be the processing 
rate of the message. Thus a service requirement S with a constant service rate  would lead 
to a service time of /S  . With this approach, all randomness appears through the service 
requirements, which are assumed to be stochastically independent of the arrival process. 

Having a single-server queue where the service rate is a continuous deterministic 
function subject to control is an idealization of what occurs in many service operations, such 
as hospital surgery rooms and airport security inspection lines. Assigning more doctors and 
nurses can increase the rate of completed operations; assigning more inspection agents at 
the airport security line or relaxing the inspection requirements can increase the rate at 
which passengers are processed through inspection. In these applications, the possible 
service rate functions may not actually be continuous, or even fully under control. 
Nevertheless, to better understand the possible benefits of these practical service-rate 
controls, it is helpful to understand what controls are desirable in the ideal situation when 
any deterministic continuous service-rate control function is possible. 

The model and its service times. We assume that the queue has unlimited waiting 
space with customers entering service in order of arrival. We let the arrival process be 
constructed from a rate-1 couting process N and arrival-rate function using the composition 
composition in Section 5.3. We assume that the / / 1G G model with arrival process N ,
service-requirement sequence { : 1}kS k  and constant service rate 1 /  for 0 < < 1 , as 
a number in system ( )X t that has a proper steady distribution. We then introduce a periodic 
arrival-rate function ( )t with average arrival rate = 1 .

In this setting we consider alternative service-rate controls. We assume that the service-
rate control ( )t  is also a periodic function, with average rate 1 /  , where  remains to 
be specified, subject to 0 < < 1 . To construct the service time kV determined by the 
service requirement sequence { }kS and the service-rate control ( ),t we need to properly 
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relate rates to requirements and time. Assuming that the system starts empty and that kB  is 
the time customer k enters service, the service time kV is specified implicitly via the 
equation

( ) , 1.k K

k

B V

k B
S s ds k


   (7.48) 

If we let   

0
( ) ( ) , 0,

Bt
M t s ds t   (7.49) 

then we see that ( )M t is the total amount of service completed in the interval , 
assuming that the server is busy continuously. Since M is strictly increasing and continuous, 
it has an inverse 1.M   With that inverse, we obtain an explicit formula for the service 
times, in particular,   

1( ( )) , 1.k k k kV M S M B B k     (7.50) 

Finally, we remark that the Lemoine representation for the workload process in Section 
7.1 that has been exploited in previous sections also extends directly to the current setting 
with time-varying service rate; see Remark 6 and Section Ec.4 of Whitt and You [227]. 

Three candidate service-rate controls. Whitt [225] considers three different service 
-rate controls, focusing mostly on the simple rate-matching control, which chooses the 
service rate to be proportional to the arrival rate; i.e., for a given target traffic intensity ,
we let the service rate be   

( )( ) , 0.tt t


   (7.51) 

The rate-matching service-rate control in (7.51) obviously stabilizes the traffic intensity  
( ) ( ) / ( )t t t    at  for all . 

The other two controls are square-root controls similar in spirit to the SRS staffing 
formulas in (4.4) and (4.9). The first is a variation of the Kleinrock [101] capacity allocation 
formula for open Jackson queueing networks in steady state, considered by Kleinrock [101], 
extended for approximations of generalized Jackson networks in Wein [210] and reviewed 
in Section 5.7 of Kleinrock [102], in Section 7 of Bitran and Dasu [21] and elsewhere. Here, 
instead of allocating capacity (which corresponds to service rate) to several queues in 
different locations, we allocate capacity to a single queue at different times. The first square-
root service-rate control is   

( ) ( ) ( ), 0.t t t t       (7.52) 

where  is a positive parameter; see Section 7.2 of Whitt [225] for additional discussion. 
The second square-root service-rate control is   

[0, ]t

t
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( )( ) ( ) 1 1 , 0,
2 ( )
tt t t

t
  


 

     
 

 (7.53) 

where  is a positive parameter. It is obtained by assuming that the PSA is appropriate, i.e., 
that the system is approximately stationary at each time . In particular, we directly assume 
that the expected time-varying workload at each time  can be approximated by   

( )[ ( )] , 0,
( )(1 ( ))

tE W t t
t t
 

 
 


 (7.54) 

where  is a variability parameter, as would be appropriate if the / / 1t tGI GI model were 
in steady state at each time t with arrival rate ( )t , service rate ( )t and traffic intensity 

( ) ( ) / ( )t t t   <  1, where  is a variability parameter which we could take to be 
2 2( ) / 2a sc c   .

We then assume that the goal is to choose the service rate ( )t to stabilize [ ( )]E W t
at the target w for all .t   Thus, from (7.54) , we have the equation   

2

( ) ,
( ) ( ) ( )

tw
t t t
 

  



 (7.55) 

which leads to the quadratic equation in ( )x t
2 ( ) ( ) 0;wx t wx t      (7.56) 

See Section 7.3 of Whitt [225] for additional discussion. 
The performance of the candidate service-rate controls. Theorem 3.1 of Whitt [225] 

shows that the rate-matching service-rate control allows us to represent the number in 
system as a deterministic time transformation of the number in system in a stationary  

/ / 1G G model, implying that it has a proper steady-state distribution, showing that the rate-
matching service rate control achieves its objective for the distribution of the number in 
system. 

This good performance is illustrated by the plot on the left in Figure 8 showing 
simulation estimates of the time-varying mean number in the system for the / / 1t tM M
model with sinusoidal arrival rate function ( ) 1 sint t    with 0.2  and 0.001 
with the rate-matching control in (7.51) for traffic intensity 0.8.  However, the plot on 
the right in Figure 8 shows that the mean virtual waiting time is not stabilized at the same 
time with the rate-matching service-rate control.  

t
t
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Figure 8. Simulation estimates of the time-varying mean number in the system (left) 
and the mean virtual waiting time (right), for the  model with sinusoidal 
arrival rate function ( ) 1 sint t    with 0.2  and 0.001  with the rate-
matching control in (7.51) for traffic intensity 0.8. 

Indeed, Theorem 5.2 of Whitt [225] establishes a HT limit for the number in system 
and virtual waiting time jointly with the rate-matching service-rate control, which implies a 
SP-TV-HT-LL just like the SP-TV-MSHT-LL in (6.11), showing that the virtual waiting 
time at each time  is inversely proportional to the arrival rate at time .t

On the other hand, the two square-root service-rate controls in (7.52) and (7.53) are 
less successful, even though the last in (7.53) does stabilize the mean virtual waiting time 
when the cycles are very long; e.g., see Figures 2 and 3 of Whitt [225]. The good 
performance for (7.53) with long cycles is as expected, because it is based on a PSA 
assumption. 

Stabilizing the mean waiting time. Ma and Whitt [137] have shown that it is possible 
to stabilize the mean waiting time by using a modification of the service-rate control with a 
time lag and a damping factor. In particular, for arrival rate-functions of the form 

( ) (1 ( ))t s t   , where ( )s t is periodic with average 0, they consider service-rate 
functions of the form ( ) 1 ( ).t s t     They develop a simulation search algorithm to 
locate the best control parameters ( , ).  They establish HT limits for the model with these 
controls.

8. Conclusions
Service systems often can be modeled as many-server queues, at least roughly 

consistent with the / /t tG GI s GI model, when the arrival rate ( )t and the number of 
servers, , are not small. When that is the case, we think that the first-order time-varying 
behavior can be captured by the two-parameter fluid model in Section 3.3 and the 

/ /tM GI  infinite-server queueing model in Sections 4.1 and 4.2. Ways to probe more 
deeply are contained in Sections 2-6. 

/ / 1t tM M

t

ts
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Time-varying single-server queues (or queues with relatively few servers) tend to 
behave differently from time-varying many-server queues. Even though single-server 
queues tend to have more elementary mathematical models, time-varying single-server 
queues tend to exhibit more complex behavior, because they allow a buildup of congestion 
that tends to take longer to dissipate. In a many-server queue, an overload period tends to 
end when the instantaneous traffic intensity falls below , which can be seen from 
asymptotic and approximate analysis of the QED MSHT regime in Section 2.3.2, Section 
3.3 and Section 6; in a single-server queue there tends to be a longer recovery period, leading 
to the different parts of an overload incident, as exposed by Newell [160, 161, 162]. 

It appears that the first-order time-varying behavior of a single-server queue often can 
be captured by the methods of Section 3.2 and Section 7.4. To go further, Section 2 can play 
a key role, but more needs to be done. 

We have not discussed networks of time-varying queues. We have mentioned the 
papers Massey and Whitt [147] and Liu and Whitt [121, 127, 128, 129] for many-server 
queues, but hardly anything has been done on networks of time-varying single-server queues 
or networks containing both many-server queues and single-server queues, which are 
natural models for hospitals and other large-scale service systems.
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