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The Model

A polling system is a stochastic queueing network where several queues are
served by one switching server



The Model

A polling system is a stochastic queueing network where several queues are
served by one switching server

A single server switching between K ≥ 2 queues
The server attends to the queues in a periodic cycle of a stages defined
by the polling table p : {1, ..., a} → {1, ...,K} (a ≥ K)

p(j) = i − the server serves queue i at stage j within a cycle



The Model

A polling system is a stochastic queueing network where several queues are
served by one switching server

Stationary arrival process of jobs with rate λi to queue i

IID service times with mean 1/µi at queue i ∈ {1, . . . ,K}
Necessary stability condition:

∑K
i=1 λi/µi < 1

Large switchover time si is incurred when server switches from queue i



Stochastic Dynamics

Qi(t) – number in queue i at time t, 1 ≤ i ≤ K

Z(t) – the stage of the server at time t:

Z(t) = j – server is at stage j, j = 1, ..., a

Z(t) = 	j – server is switching from stage j to stage j + 1 (modulo a)

The stochastic dynamics are characterized via the process

X(t) := (Qi(t),Z(t); i = 1, . . . ,K), t ≥ 0

Remark: Given a routing order and service policy, X(t) is a well-defined
stochastic process



Applications

Polling systems are used to model computer, communication, and production
systems

Stochastic economic lot scheduling: make-to-stock production of multiple
products on a single machine
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Goal

Our goal is to find a control that minimizes long run average holding costs
among all “admissible” controls that are

non-idling

discrete-Markov (Given the queue length at the polling instant, the
service policies do not depend on the history of the service process up to
that instant)

Remark:

X(t) is not necessarily a markov process under an admissible control

It is prohibitively hard to solve the optimal control problem exactly.

We carry out optimality analysis in an asymptotic sense.



A Fluid Approximation to Simplify the Problem

Consider a hybrid dynamic system (HDS) characterized by

x(t) = (q(t), z(t)),

where x(t) is a hybrid of the piece-wise linear continuous number-in-system
process q(t) ∈ [0,∞) and the discrete server-position process
z(t) ∈ {j,	j, 1 ≤ j ≤ a}, characterized via

q̇i(t) = (λi − µi)1{p(z(t))=i,q(t)>0} + λi1{p(z(t))6=i}, 1 ≤ i ≤ K
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Remark:

Under a fixed routing order and service policy, x(t) is well-defined



A Fluid Approximation to Simplify the Problem

Consider a hybrid dynamic system (HDS) characterized by

x(t) = (q(t), z(t)),

where x(t) is a hybrid of the piece-wise linear continuous number-in-system
process q(t) ∈ [0,∞) and the discrete server-position process
z(t) ∈ {j,	j, 1 ≤ j ≤ a}, characterized via

q̇i(t) = (λi − µi)1{p(z(t))=i,q(t)>0} + λi1{p(z(t))6=i}, 1 ≤ i ≤ K

Fluid Optimal Control Problem: To find a control that minimizes

c := lim sup
t→∞

1
t

∫ t

0

K∑
i=1

ψi(qi(s))ds,

where ψi(·) is the cost rate for queue i



The Road Map

A Road Map of Our Approach:

Find the optimal periodic equilibrium among all the possible periodic
equilibria of the HDS

Design a fluid control that achieves the optimal equilibrium

“Interpret” the fluid control into a control for the stochastic system

Prove: The control is asymptotically optimal



Characterization of Periodic Equilibria

E.x. periodic equilibrium with two queues and server routing {1, 2|1, 2| . . . }
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E.x. periodic equilibrium with two queues and server routing {1, 2|1, 2| . . . }
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Fixed-Proportion Reduction Control (FPR)

E.x. periodic equilibrium with two queues and server routing {1, 2|1, 2| . . . }

q1

r1q1

q2

r2q2

The FPR Control (Definition):

For fixed {rj ∈ [0, 1], j = 1, ..., a}, if p(j) = i, then reduce qi (the value
of queue i at the beginning of service) to riqi

After serving station j, switch to station j + 1 in the polling table



Fixed-Proportion Reduction Control (FPR)

E.x. periodic equilibrium with two queues and server routing {1, 2|1, 2| . . . }

q1

r1q1

q2

r2q2

Remark: Any periodic equilibrium can be translated to some control
parameters of the FPR



Fixed-Proportion Reduction Control (FPR)

E.x. periodic equilibrium with two queues and server routing {1, 2|1, 2| . . . }

q1

r1q1

q2

r2q2

Theorem
Independently of initialization,

the HDS converges to a unique periodic equilibrium under FPR with any
non-trivial control parameters

the HDS converges to the desired equilibrium under the translated FPR



The Optimal Control

There is a bijective mapping from the possible periodic equilibria of the HDS
to the FPR control.

Therefore, minimizing the long-run average cost c is equivalent to finding the
optimal FPR control:

min{rj,j=1,...,a}
1
τ

∫ τ

0

K∑
i=1

ψi (qi(s, r)) ds s.t. rj ∈ [0, 1], j = 1, ..., a,

where τ is the equilibrium cycle length



The Optimal Control

There is a bijective mapping from the possible periodic equilibria of the HDS
to the FPR control.

Therefore, minimizing the long-run average cost c is equivalent to finding the
optimal FPR control:

min{rj,j=1,...,a}
1
τ

∫ τ

0

K∑
i=1

ψi (qi(s, r)) ds s.t. rj ∈ [0, 1], j = 1, ..., a,

where τ is the equilibrium cycle length

E.x.1: Under routing {1, 2, 3|1, 2, 3| . . . }, optimal ratio is {0%, 0%, 0%}
E.x.2: Under routing {1, 3, 2, 3, 2|1, 3, 2, 3, 2| . . . }, optimal ratio is
{0%, 48.86%, 0%, 0%, 0%}

λi = 2, µi = 8, si = 2, i = 1, 2, 3
linear cost rates ψ1(·) = 1·, ψ2(·) = 4·, ψ3(·) = 1·



The Optimal Control

There is a bijective mapping from the possible periodic equilibria of the HDS
to the FPR control.

Therefore, minimizing the long-run average cost c is equivalent to finding the
optimal FPR control:

min{rj,j=1,...,a}
1
τ

∫ τ

0

K∑
i=1

ψi (qi(s, r)) ds s.t. rj ∈ [0, 1], j = 1, ..., a,

where τ is the equilibrium cycle length

Proposition
It is optimal to exhaust each queue at least once during a cycle

Corollary
In the case of cyclic routing, the exhaustive policy is optimal



The Road Map

The Road Map Revisited:

Find the optimal periodic equilibrium among all the possible periodic
equilibria of the HDS

Design a fluid control that achieves the optimal equilibrium

“Interpret” the fluid control into a control for the stochastic system
Reduce queue i from qi to drjqie if the server is at queue i in stage j

Prove: The control is asymptotically optimal



Asymptotic Optimality

Consider a sequence of systems indexed by n under an admissible control πn

Large switchover times: switchover times satisfy sn
i = nsi in nth system

Temporal and spacial scalings: X̄n
πn(t) := (Qπn(nt)/n,Zπn(nt))

Scaled long-run average costs: C̄n
πn = limt→∞

1
t

∫ t
0 ψ(Q̄n

πn(s))ds

Let πn
∗ denote the optimal fluid FPR control translated for the nth stochastic

system, and c∗ denote the optimal fluid objective value

Theorem (Asymptotic Optimality)

Under any sequence of policies πn, lim infn→∞ C̄n
πn ≥ c∗

Under πn
∗, C̄n

πn
∗
⇒ c∗ as n→∞ (The FPR is asymptotically optimal)

⇒ For cyclic routing, the exhaustive policy is asymptotically optimal
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Asymptotic Optimality (Proof)

Theorem (Limit Interchange)
Under any FPR control parameters,

C̄n = lim
t→∞

1
t

∫ t

0
ψ
(
Q̄n(s)

)
ds⇒ c as n→∞

In particular, C̄n
πn
∗
⇒ c∗ as n→∞ under πn

∗



Summary

We considered the optimal-control problem of a polling system with
large switchover times when long-run average holding costs are to be
minimized

We proposed the Fixed-Proportion Reduction Control (FPR):
– all possible periodic equilibria are achievable under FPR
– stable under all control parameters

We find the optimal FPR and prove that the control is asymptotically
optimal under large-switchover-time scaling

In the special case of cyclic routing, the exhaustive policy is optimal
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