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The Model

A polling system is a stochastic queueing network where several queues are
served by one switching server
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@ A single server switching between K > 2 queues
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o The server attends to the queues in a periodic cycle of a stages defined
by the polling table p : {1,...,a} — {1,...,K} (a > K)

e p(j) =i — the server serves queue i at stage j within a cycle



The Model

A polling system is a stochastic queueing network where several queues are
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o Stationary arrival process of jobs with rate \; to queue i

o IID service times with mean 1/y; at queuvei € {1,...,K}

o Necessary stability condition: S5 ' \;/p; < 1

o Large switchover time s; is incurred when server switches from queue i



Stochastic Dynamics

@ Q;(t) —number in queue i attime 7, 1 <i < K
@ Z(t) — the stage of the server at time ¢:
Z(t) =j—serveris atstagej,j=1,...,a
Z(t) = ©; — server is switching from stage j to stage j + 1 (modulo )
The stochastic dynamics are characterized via the process
X(t) = (Qi(1),Z(t);i=1,...,K), t>0

Remark: Given a routing order and service policy, X(¢) is a well-defined
stochastic process



Applications

Polling systems are used to model computer, communication, and production
systems

Stochastic economic lot scheduling: make-to-stock production of multiple
products on a single machine
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Our goal is to find a control that minimizes long run average holding costs
among all “admissible” controls that are

@ non-idling

o discrete-Markov (Given the queue length at the polling instant, the

service policies do not depend on the history of the service process up to
that instant)

Remark:
@ X(r) is not necessarily a markov process under an admissible control
o It is prohibitively hard to solve the optimal control problem exactly.

@ We carry out optimality analysis in an asymptotic sense.



A Fluid Approximation to Simplify the Problem

Consider a hybrid dynamic system (HDS) characterized by

where x(7) is a hybrid of the piece-wise linear continuous number-in-system
process ¢(t) € [0,00) and the discrete server-position process
z(t) € {j,©j,1 <j < a}, characterized via

4i(1) = (Ni — i) Lpe)=ig()>0) + Ailgppnziy, 1 <i<K



A Fluid Approximation to Simplify the Problem

Consider a hybrid dynamic system (HDS) characterized by

where x(¢) is a hybrid of the piece-wise linear continuous number-in-system
process ¢(t) € [0, 00) and the discrete server-position process
z(t) € {j,©j,1 <j < a}, characterized via

qi(t) = (\i = 1) L) =iq(>0y + Ailfp)y, 1<i<K

Remark:

@ Under a fixed routing order and service policy, x(¢) is well-defined



A Fluid Approximation to Simplify the Problem

Consider a hybrid dynamic system (HDS) characterized by

where x(¢) is a hybrid of the piece-wise linear continuous number-in-system
process ¢(t) € [0,00) and the discrete server-position process
z(t) € {j,6j, 1 <j < a}, characterized via

qi(1) = N = i) lpe)=ig>0p + Adpemyzy, 1< i< K

Fluid Optimal Control Problem: To find a control that minimizes

1 &
¢ := limsup — Yi(qi(s))ds,
9>
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where 1);(+) is the cost rate for queue i



The Road Map

A Road Map of Our Approach:

o Find the optimal periodic equilibrium among all the possible periodic
equilibria of the HDS

@ Design a fluid control that achieves the optimal equilibrium
o “Interpret” the fluid control into a control for the stochastic system

@ Prove: The control is asymptotically optimal



Characterization of Periodic Equilibria

E.x. periodic equilibrium with two queues and server routing {1,2|1,2]...}
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Characterization of Periodic Equilibria

E.x. periodic equilibrium with two queues and server routing {1,2|1,2]...}
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Fixed-Proportion Reduction Control (FPR)

E.x. periodic equilibrium with two queues and server routing {1,2|1,2]...}
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The FPR Control (Definition):

e For fixed {r; € [0,1], j = 1,...,a}, if p(j) = i, then reduce g; (the value
of queue i at the beginning of service) to r;g;

@ After serving station j, switch to station j + 1 in the polling table



Fixed-Proportion Reduction Control (FPR)

E.x. periodic equilibrium with two queues and server routing {1,2|1,2]...}
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Remark: Any periodic equilibrium can be translated to some control
parameters of the FPR



Fixed-Proportion Reduction Control (FPR)

E.x. periodic equilibrium with two queues and server routing {1,2|1,2]...}
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Independently of initialization,

@ the HDS converges to a unique periodic equilibrium under FPR with any
non-trivial control parameters

@ the HDS converges to the desired equilibrium under the translated FPR




The Optimal Control

There is a bijective mapping from the possible periodic equilibria of the HDS
to the FPR control.

Therefore, minimizing the long-run average cost ¢ is equivalent to finding the
optimal FPR control:

K
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where 7 is the equilibrium cycle length



The Optimal Control

There is a bijective mapping from the possible periodic equilibria of the HDS
to the FPR control.

Therefore, minimizing the long-run average cost c is equivalent to finding the
optimal FPR control:

K
. L7 .
ming, j—1,..q T/o E Yi(qi(s,r))ds st rpel0,1], j=1,..a,
i=1

where 7 is the equilibrium cycle length

e E.x.1: Under routing {1,2,3]1,2,3] ...}, optimal ratio is {0%, 0%, 0%}
e E.x.2: Under routing {1,3,2,3,2[1,3,2,3,2]|...}, optimal ratio is
{0%, 48.86%, 0%, 0%, 0%}
)\,‘ — 2,,[1,’ — 8,5‘,‘ :Z,i: 1,2,3
linear cost rates 1 (-) = 1-, 92 () = 4-,3(-) = 1-



The Optimal Control

There is a bijective mapping from the possible periodic equilibria of the HDS
to the FPR control.

Therefore, minimizing the long-run average cost c is equivalent to finding the
optimal FPR control:

K
. L[ :
ming, j—1,..q T/o E Yi(qi(s,r))ds st rpel0,1], j=1,..a,
i=1

where 7 is the equilibrium cycle length

Proposition

It is optimal to exhaust each queue at least once during a cycle

In the case of cyclic routing, the exhaustive policy is optimal




The Road Map

The Road Map Revisited:
o Find the optimal periodic equilibrium among all the possible periodic
equilibria of the HDS
@ Design a fluid control that achieves the optimal equilibrium

@ “Interpret” the fluid control into a control for the stochastic system
o Reduce queue i from g¢; to [r;¢;] if the server is at queue i in stage j

@ Prove: The control is asymptotically optimal



Asymptotic Optimality

Consider a sequence of systems indexed by n under an admissible control 7"

o Large switchover times: switchover times satisfy s = ns; in n' system

e Temporal and spacial scalings: X", (t) := (Qun(nt)/n, Z(nt))

o Scaled long-run average costs: C%, = lim,_,o0 f(; P(Q%(s))ds
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Asymptotic Optimality

Consider a sequence of systems indexed by n under an admissible control 7"

o Large switchover times: switchover times satisfy s7 = ns; in n' system

e Temporal and spacial scalings: X", (t) := (Qun(nt)/n, Z(nt))

o Scaled long-run average costs: C%, = lim,_,o0 f(; P(QL(s))ds

Let 7" denote the optimal fluid FPR control translated for the n” stochastic
system, and ¢, denote the optimal fluid objective value

Theorem (Asymptotic Optimality)

@ Under any sequence of policies 7", liminf, ., Clhn > c.

o Under ml, C:lri = ¢y asn — o0 (The FPR is asymptotically optimal)

= For cyclic routing, the exhaustive policy is asymptotically optimal



Asymptotic Optimality (Proof)

0"(1) ——— 02(1)
n— oo n—oo
q(1) g+ (1)

Under any FPR control parameters,

C" = lim 1

t—oo f

/0 Y (Q"(s))ds = casn — oo

In particular, C., = ¢4 as n — oo under
*




@ We considered the optimal-control problem of a polling system with
large switchover times when long-run average holding costs are to be
minimized

@ We proposed the Fixed-Proportion Reduction Control (FPR):

— all possible periodic equilibria are achievable under FPR
— stable under all control parameters

@ We find the optimal FPR and prove that the control is asymptotically
optimal under large-switchover-time scaling

o In the special case of cyclic routing, the exhaustive policy is optimal
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