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ABSTRACT
Dynamic wireless charging (DWC) has recently been ac-
knowledged as a promising solution to alleviate the range
anxiety and long-charging-duration issue of electric vehi-
cles (EVs) on highways. However, modeling and analyzing
the DWC system are highly challenging because the system
dynamics from both the underlying power system and the
transportation system have to be jointly considered, which
makes the problem highly complicated. Existing works use
either simulation-based methods or oversimplified models,
where the influences and interactions of system parameters
on the resulting performances cannot be well understood.
In this paper, we propose a unified analytical model for the
DWC system, which captures the major influencing factors
in both the underlying power and transportation systems,
based on the M/G/s/s state-dependent queueing approach.
We also undertake performance analysis to identify signifi-
cant trade-offs between different important system parame-
ters for DWC infrastructure planning.

CCS Concepts
•Computing methodologies → Model development
and analysis;

Keywords
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1. INTRODUCTION
The increase of electric vehicle (EV) penetration gives

rise to an increasing demand for the corresponding pub-
lic refueling facilities [1]. Meanwhile, various refueling tech-
nologies have been proposed and successfully commercial-
ized. In particular, refueling facilities can be mainly divided
into four categories: i) EV parking lots (such as homes,
office buildings, and public parking garages) allow EVs to
stay for a long charging duration (e.g., several hours), while
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the charging rates are typically restricted to be low [2]. ii)
Fast charging stations refuel the EVs faster (e.g., 30 min-
utes) with high charging rates but have limited number of
chargers at each location due to the power capacity con-
straints from the power grid [3]. iii) Battery swapping sta-
tions refuel EVs by replacing depleted batteries with fully-
charged batteries but each station is only able to serve lim-
ited types of EVs because there is still no universal standard
for the batteries of EVs [4]. iv) Dynamic wireless charging
(DWC) systems charge EVs while they are passing through
a segment of roads equipped with wireless power transfer
(WPT) [5]. Unlike the first three categories that require
EVs to stop at the stations and refuel (stop-and-refuel), the
DWC system charges the EVs while they are driving along
the WPT-enabled road (charge-while-driving). Therefore, a
well-planned network of DWC systems can support an un-
limited driving range for EVs in the ideal case. Compared
to stop-and-refuel, charge-while-driving helps EVs reduce
the size of their batteries and the associated cost. More-
over, charge-while-driving solution becomes increasingly at-
tractive and important for EVs on highways because it re-
leases EVs from the stop-and-refuel process during their
long-distance inter-city travels [6]. In addition, since the
WPT for EVs has been under the standardization in re-
cent years [7], we foresee that the DWC system will be able
to provide undifferentiated WPT services for EVs from dif-
ferent brands in the near future.

Despite the advantages of the DWC system for EV drivers,
there are economical and technical challenges from infras-
tructure planning and operation for the DWC system. Firstly,
the construction cost of the DWC system is extremely high
because not only the roads need to be rebuilt to install the
wireless chargers beneath [7][8], but additional power supply
infrastructure (e.g., transformers and cables) is also required
to upgrade the power capacity for the DWC system [9]. From
the technical perspective, it is difficult to evaluate the per-
formance of the DWC system because the system parame-
ters, such as the average speed of EVs, are load-dependent
due to the traffic congestion on the WPT-enabled roads.
Additionally, the analysis needs to take into account all the
limitations from the power grid, EV traffic, and the DWC in-
frastructure. For example, the capacity of the DWC system
is restricted by the power congestion (i.e., insufficient power
capacity), the traffic congestion (i.e., slowdown of the vehicle
speed) and the length of the WPT-enabled road. Further-
more, the DWC system has low flexibilities to optimize the
charging operations of EVs [10]. This is because the charg-
ing service must be provided promptly while the EV is on



top of the WPT-enabled road. Therefore, the DWC opera-
tor loses the capability of shifting the EV charging demand
over time, namely, the deferrable property, to control the
charging process. Moreover, a relatively high charging rate
is required for each EV so that it can receive a substantial
amount of energy from the DWC system.

In this paper, we focus on steady-state performance anal-
ysis of the DWC system based on analytical models. Our
contributions are three-fold. First, we propose to model the
DWC system as an M/G/s/s state-dependent queue. The
coupling of the transportation system, power system and
DWC system is shown explicitly by determining the param-
eters of the queueing model. Second, steady-state analysis is
performed on the EV traffic and the power consumption. An-
alytical results are derived based on the proposed queueing
model. Third, by evaluating the performance of the DWC
system under various power and transportation system con-
ditions, we identify and discuss the important factors for
improving the system performance and the opportunities for
revenue maximization in the short-term operation. In addi-
tion, different layout designs of the WPT-enabled road are
analyzed and compared, and useful insights are provided for
the long-term infrastructure planning based on the proposed
queueing model.

2. RELATED WORKS
Although the concept and principles of WPT can date

back to the pioneering work by Nikola Tesla century ago, ap-
plying WPT to the highways just draws the attention from
the industry and academy in recent years. At this initial
stage, the first stream of studies focus on validating the fea-
sibility of the DWC system. Many research entities, such as
the Highways England [6], Oak Ridge National Laboratory
(ORNL) [7] and the Korea Advanced Institute of Science
and Technology (KAIST) [8], have developed prototypes of
the DWC system to study the effectiveness and efficiency
of the WPT for EVs. It has been demonstrated that a high
efficiency of 70 − 80 percent at more than 50 kW charging
rate can be achieved between the chargers buried beneath
the road and the receivers equipped by the EVs [7][11].

In the literature on performance evaluation of the DWC
system, the core difficulty is how to model the EV traf-
fic on the WPT-enabled road. [9] proposes to use meso-
scopic approach to simulate the road traffic and assess the
energy consumption of the DWC system accordingly. [12]
integrates the road traffic simulation into the power flow
analysis of the power system and investigates the impact
of EV traffic on the power flow and voltage of the power
grid. Although simulation-based methods can evaluate the
performance of the DWC system when all the system pa-
rameters are given, the influences and interactions of these
parameters on the resulting performances cannot be well un-
derstood. Thus, analytical models and their corresponding
analysis for the DWC system are desired for optimizing the
operations and planning the infrastructure of the DWC sys-
tem. Recent works [13] and [14] propose to model the DWC
system as an M/G/∞ queue and an M/M/s loss queue, re-
spectively. Although these two queueing models are easy to
analyze, they ignore the road traffic congestion, which is the
key characteristic of the DWC system. In particular, it is
assumed that each EV can drive at a constant speed on the
WPT-enabled road [13][14] and this speed can be controlled
directly by the DWC operator [14]. However, these two as-
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Figure 1: Illustration of the DWC system on highways.

sumptions are both impractical. First, in the transportation
traffic engineering, the speed of vehicles on the road is non-
increasing in the vehicular density (i.e., number of EVs for a
fixed length of the road). Thus, the traffic congestion on the
WPT-enabled road may greatly affect the service time and
hence has to be taken into account. Secondly, it is imprac-
tical for the DWC operator to control the speed of all the
vehicles unless all the EVs are enabled autonomous driving.
A realistic case is to decide the posted speed limit of the
road. However, under different traffic conditions, the real-
ized speeds of vehicles on the road may deviate far from the
speed limit.

3. A STATE-DEPENDENT QUEUEING MODEL
FOR THE DWC SYSTEM

Consider the DWC system on highways as shown in Fig.
1. A segment of one lane from the highway is rebuilt to
enable the wireless charging capability. Let L denote the
length of the WPT-enabled road. All EVs, which are driving
along the WPT-enabled road, are charged with the same
constant charging rate r. For simplicity of presentation, EVs
in this section refer to the EVs that have charging requests
and have been equipped with wireless chargers. We assume
that the communication has been established between the
EVs and the DWC operator by technologies such as cellular
network or dedicated short-range communication. When an
EV approaches the entrance of the DWC system, it submits
a request for entering the DWC system, and then the DWC
operator decides whether this EV can be admitted to enter
the system based on its available capacity s. The admitted
EVs start to charge immediately after they enter the WPT-
enabled road, and receive the charge-while-driving service
until reaching their energy requirement or driving to the end
of the WPT-enabled road. The rejected EVs are considered
to be blocked by the DWC system and can resort to other
nearby refueling systems. Note that EVs are not allowed
to enter but can leave the DWC system in the middle of
the WPT-enabled road. This restriction is a simplification
of the real model and can be relaxed by considering more
complex models. Details of this simplification are discussed
in Remark 2.

3.1 An M/G/s/s State-dependent Queue
The DWC system is modeled as an M/G/s/s queue with

state-dependent service rates. Particularly, the EVs with
wireless charging requests are the customers of the DWC
system. As shown in Fig. 2 based on the measured data in
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Figure 2: Illustration of the histogram of the interarrival
time of vehicles that enter Decoto Rd. from 10 am to 5 pm.
The interarrival time distribution can be approximated by
an exponential function with an average rate 670 EVs/hour.

[15], these EV arrivals are assumed to follow the Poisson ar-
rival process with an average rate λ. The WPT-enabled road
is modeled as s parallel servers, which basically means at
most s EVs are allowed to drive and charge simultaneously
on the WPT-enabled road. 0 ≤ s ≤ c is the available capac-
ity determined by the DWC operator and c is the capacity
of the DWC system. Any arrival that finds all s servers busy
is blocked. The service time for each EV is the time period
during which EV drives on the WPT-enabled road. There-
fore, the service time directly depends on the speed of EVs
in the DWC system. In order to take into account the traffic
congestion on the WPT-enabled road, we model the average
speed of EVs to be state (i.e., the number of EVs) depen-
dent. Thus, the service time of the M/G/s/s queue is state-
dependent as well. Denote by µ(n), n = 1, . . . , s the average
service rate when n EVs are driving on the WPT-enabled
road. Based on [16][17], the steady-state probabilities of a
state-dependent M/G/s/s queue are expressed as follows,

pn =
λn

n!Πn
m=1µ(m)

p0, (1)

where p0 =
[
1 +

∑s
n=1

λn

n!Πn
m=1µ(m)

]−1

. Note that when the

average service rates are not state-dependent, namely µ(n) =
µ, Eq. (1) reduces to the Erlang B formula for the M/G/s/s
loss system with the i.i.d service time distribution. It can be
observed that the steady state distribution of the M/G/s/s
state-dependent queue depends on the average arrival rate λ,
the available capacity s and the average service rates µ(n).
Given a fixed λ, both s and µ(n) are determined by the
parameters from the transportation system, power system,
and DWC system. Before going into the specifications of
these parameters, we address the advantages and relation-
ship of the proposed state-dependent queue with other sim-
ilar queueing models.

Remark 1. The proposed M/G/s/s state-dependent
queue has the following advantages for modeling the DWC
system: i) (insensitivity) The steady-state probabilities only
depend on the means of the service time distribution and can
be calculated by efficient algorithms based on this property.
ii) The departure process is also Poisson process. This prop-
erty facilitates a natural extension to analyze a network of
DWC systems.

Remark 2. The state-dependent queueing model is a
trade-off between the practice and theory. Recall that we
assume that EVs are only admitted to enter the DWC sys-
tem at the entrance. However, other admission rules may
be more practical. For example, EVs may be allowed to en-
ter the DWC system at any position alongside the WPT-
enabled road as long as the instantaneous number of EVs on
the road is smaller than the available capacity. In this case,
the rejected EVs with charging requests keep driving on the
normal lanes alongside the charging lane, and are consid-
ered in the waiting buffer of the DWC system. Furthermore,
these EVs in the buffer will be abandoned once they pass
through the end of the DWC system. Under this admission
rule, the DWC system can be modeled as a state-dependent
M/G/s/d+G queueing model, where d is the total capacity
including the buffer and the second G represents that the
EVs in the buffer will be abandoned from the system fol-
lowing a general distribution. However, the performance of
this queueing model is much more difficult to evaluate. The
other extreme case is that we assume the M/G/s/s queue
is state independent, which means that service time follows
i.i.d general distribution. In this case, the model is reduced
to the Erlang B model, which possesses various nice theo-
retical properties. However, the Erlang B model ignores the
impact of traffic congestion on the speed of EVs, which over-
simplifies the practical system. Thus, in order to model the
DWC system with tractable solution methods and practical
features, we choose the M/G/s/s state-dependent queueing
model.

3.2 Capacity of the DWC System
The available capacity s is an operational parameter, which

is decided by the DWC operator for admission control of the
DWC system. However, s cannot be arbitrarily large because
it is upper-bounded by the capacity of the DWC system.
The capacity c is the maximum number of EVs that can be
accommodated simultaneously by the DWC system. This
capacity is decided by both the power capacity and traffic
capacity. Particularly, due to the limited power supply of
the power grid, the maximum number of EVs in the DWC
system is restricted to be lower than cp = bCp/rc, where
Cp is the power capacity and bxc denotes the largest integer
less than x. Note that Cp is the maximum available power
supply to the DWC system. The setting of Cp is determined
to optimize the reliability and efficiency of the power grid
in the infrastructure planning stage. In order to derive the
traffic capacity, we start from the basic relationship among
the traffic flow, speed and density. The EV traffic flow on the
WPT-enabled road is determined by θ = ρv, where ρ is the
EV density (i.e., average number of EVs per unit distance)
and v is the average speed. Moreover, the average speed of
all the EVs on the WPT-enabled road is a function of the
EV density and the upper speed limit u, namely,

v = g(ρ, u), (2)

where u ≤ u ≤ u is the upper speed limit (or simply speed
limit) of the WPT-enabled road [16][18]. In the transporta-
tion traffic engineering [22], g(ρ, u) is non-increasing in ρ
because a larger ρ indicates a smaller distance between two
EVs and thus requires a lower safety speed. u and u are
the minimum and maximum speed limits, respectively. u is
decided by the DWC operator to optimize the system per-
formance such as safety and efficiency. Define the jam den-



Table 1: Function forms of speed-density relationship

Model Function forms Parameters
Linear v(n) = u× (1− n−1

α1
) u, α1

Exponential v(n) = u× exp(−(n−1
α1

)α2) u, α1, α2

Two-regime v(n) =

{
u(1− n−1

α1
), n < n1

u1(1− n
α2

), n ≥ n1

α1, α2,
u, u1, n1
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Figure 3: Illustration of the speed-density relationship.

sity of the WPT-enabled road by ρ, for which g(ρ, u) = 0.
In this case, the traffic flow is zero, which means that the
WPT-enabled road is too congested to admit additional
EVs. Therefore, the traffic capacity is expressed as ct =
bρLc. Based on empirical studies, the jam density ρ varies
under different testing conditions and can be approximated
in the range of 185− 265 veh/mile/lane [22]. However, for a
practical setting of the DWC system on highways, a lower
speed limit v is also posted to ensure that the vehicles can at
least drive at a speed of v. For example, speed limit of high-
ways in the U.S. is required not to be below 35 miles/hour,
which is the same value as the speed limit in the urban areas.
In this case, the limit density ρ(v) satisfies g(ρ(v), u) = v
and the traffic capacity is ct = bρ(v)Lc. In summary, the
capacity of the DWC lane is

c = min{cp, ct}. (3)

The capacity of the DWC system is decided in the infrastruc-
ture planning stage and is typically set to be large enough
to accommodate various EV traffic. Moreover, we find the
speed limit u is also a controllable parameter for the DWC
operator. Once u is set, the average speed of EVs is purely
decided by the instantaneous EV density.

3.3 State-dependent Service Rates
Recall that the service time depends on the charging time

to reach the target energy requirement and the driving time
to drive through the DWC system. Both charging time and
driving time depend on the speeds of the EVs, which are
determined by the EV density and speed limit as shown in
Eq. (2). Thus, in the following, we first show the method
of deriving the speed-density relationship for a given speed
limit based on the empirical model and measured data, and
then derive the state-dependent service rates.

3.3.1 Speed-density Relationship for Road Traffic
Let v(n) = g(n/L, u) denote the average speed when n

Table 2: System parameters

Parameters Value
Battery capacity 16 kWh
Initial SoC N (0.3,0.15,0.05,0.8)
Target SoC 0.9
Length of lane L 10 miles
Driveline efficiency ηd 1
Ancillary power ra 0.8 kW
Power transmission rate r 50 kW
Wireless charging efficiency ηc 0.75
Resistance to motion ξ 0.227 kWh/mile
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Figure 4: State-dependent service rates with different speed-
density function forms and speed limits.

EVs drive on the WPT-enabled road given fixed road length
L and speed limit u. In the literature, various deterministic
or stochastic models [18][19] have been proposed to capture
the relationship of density and speed by fitting the empiri-
cal data. Based on these empirical studies, we can approxi-
mate the average speed v(n) as a deterministic function of n
with scenario-dependent parameters. Some well-recognized
approximation functions are listed in Tab. 1 [18]. One com-
mon feature of these functions is that the average speed has
a non-increasing relationship in the number of EVs.

Fig. 3 shows an example of the speed-density relationship.
The measured data are collected at the location Decoto Rd.
by loop detector [15]. The parameters of the linear, exponen-
tial and two-regime functions are estimated by curve fitting
based on the data. The speed limit is set to be 55 miles/hour
in the fitted curves.

3.3.2 Service Time Distribution
Given that n EVs are driving on the WPT-enabled road

at an average speed of v(n), the driving time is denoted by

td(n) =
L

v(n)
. (4)

For the EVs with energy requirement E, the charging time
can be determined by

tc(n) =
E

rηc − ξv(n)/ηd − ra
, (5)

where rηc−ξv(n)/ηd−ra is the net charging rate of the DWC
system. Particularly, r is the constant charging rate trans-
mitted from the WPT-enabled road and ηc is the efficiency
of WPT. Thus, rηc denotes the effective charging rate that



each EV receives. ξv(n)/ηd + ra is the energy consumption
rate when the EVs drive at a speed of v(n). Specifically, ξ
is the resistance to motion, which quantifies the energy con-
sumption rate per unit of speed [9][14]. ηd is the driveline
efficiency. ra is the energy consumption rate that is not re-
lated to EV motion such as lighting and air conditioning. All
the parameters in the net charging rate are independent of
the speed v(n). Combining Eq. (4) and Eq. (5), the service
time is determined by

t(n) = min{tc(n), td(n)}. (6)

Thus, the state-dependent average service rate with n EVs
on the WPT-enabled road is µ(n) = 1/E[t(n)].

Fig. 4 illustrates the state-dependent service rates under
different speed-density function forms and speed limits. Sys-
tem parameters are listed in Tab. 2. In order to estimate the
distribution of the energy requirement E, we assume that all
the EVs have the same battery capacity and have the same
target state-of-charge (SoC). In addition, when the admit-
ted EVs enter the DWC system, their initial SoC follows
the same truncated normal distribution. In Fig. 4, it can be
observed that all the state-dependent service rates have simi-
lar trends under different scenarios. In the fast speed regime
(i.e., the region with a small number of EVs), the service
rate decreases as the increase of the number of EVs because
in this regime, most of the EVs are unable to charge to the
target SoC before it reaches the end of the WPT-enabled
road. Therefore, their service time is dominated by the driv-
ing time td(n) and the service rate decreases as the increase
of the number of EVs. When the speed of the EVs is fur-
ther reduced below a certain threshold (i.e., the number of
EVs increases above some threshold), the net charging rate
increases to a large enough value. In this case, the service
time is dominated by the charging time tc(n). The service
rate increases gradually with the decrease of the speed as
the result of the increase in the number of EVs as shown in
Fig. 4. In addition, it can be observed that in the fast speed
regime, the service rates under high speed limits are much
higher than those under low speed limits. However, in the
slow speed regime, the service rates under different speed
limits are close. This indicates that the control of the speed
limit can be more effective when the system is in the fast
speed regime.

3.4 Performance Metrics
After the derivation of the capacity and the state-dependent

service rates, the steady-state probabilities of the number of
EVs in the DWC system can be determined based on Eq. (1).
Although the steady state probabilities have closed form ex-
pressions, numerical calculation for large available capacity
s (e.g., hundreds or thousands) will encounter severe over-
flow issues and rounding errors [20] because pn involves large
powers and factorials. Thus, we propose to calculate the
steady-state probabilities by Alg. 1, which is based on the
general recursive approach to calculate the stationary prob-
abilities of birth-death process in [20]. The key idea is to put
the normalization step inside the for loop, which can avoid
the numerical overflow at the expense of higher computa-
tional complexity. Then, important performance metrics of
the DWC system can be calculated accordingly.

3.4.1 Blocking Probability
Given the available capacity s and speed limit u, the

Algorithm 1 Computing the Steady-state Probability of
the M/G/s/s Queue with State-dependent Service Rates

Input: Number of servers s, average arrival rate λ, and
state-dependent service rates µ(n), n = 1, 2, . . . , s.
Output: Steady-state probabilities pn, n = 0, 1, . . . , s.
Initialize p0 = 1.
for n = 1 to s do
pn = λ

nµ(n)
pn−1;

Σ = 1 + pn;
pm = pm/Σ, m = 0, 1, . . . , n;

end for

blocking probability is

B(s, u) = ps =
λs

s!Πs
m=1µ(m)

p0. (7)

Observing the similarity between B(s, u) and the Erlang
B loss formula, the calculation of B(s, u) can be further sim-
plified into the following recursive equation, which is a gen-
eralization of the recursive approach to compute the Erlang
B loss probability,

B(s, u) =
λB(s− 1, u)

sµ(s) + λB(s− 1, u)
, s = 1, 2, . . . , (8)

and B(0, u) = 1. The derivation of Eq. (8) is as follows.
Firstly, B(0, u) = 1 is clear because no server means all the
customers are blocked. Based on Eq. (7), we have

1

B(s, u)
=

1 +
∑s
n=1

λn

n!Πn
m=1µ(m)

λs

s!Πs
m=1µ(m)

(9)

=
1 +

∑s−1
n=1

λn

n!Πn
m=1µ(m)

+ λs

s!Πs
m=1µ(m)

λs

s!Πs
m=1µ(m)

(10)

=
sµ(s)

λ

1 +
∑s−1
n=1

λn

n!Πn
m=1µ(m)

λs−1

(s−1)!Πs−1
m=1µ(m)

+ 1 (11)

=
sµ(s)

λB(s− 1, u)
+ 1. (12)

Then, we have the recursion expression (8).
The blocking probability indicates the proportion of EVs

that cannot be served by the DWC system and hence rep-
resents the quality of service (QoS) of the DWC system.
In order to provide good services for the customers, DWC
operators need to ensure the blocking probability under a
certain threshold.

3.4.2 Carried Load
The carried load, which is the average number of EVs in

the DWC system, can be calculated by

N(s, u) =
∑s

n=1
pnn. (13)

Because each EV is charged at the same charging rate, N(s, u)
reflects the total energy transfer from the DWC system per
time unit. When the DWC system makes profits by selling
electricity to the EVs, N(s, u) indicates the capability of the
system to generate profits.

3.4.3 Average Transferred Energy per EV



If a fixed amount of energy is transferred from the DWC
system to EVs, the energy may be transferred to either a
small number of EVs with adequate individual received en-
ergy or many EVs, each of which receives only a small por-
tion of the total energy. Although these two cases make no
differences to the DWC operator, EVs receive totally differ-
ent services. Thus, we propose to capture this performance
by the average transferred energy per EV, which is calcu-
lated by

T (s, u) = E[W ]
∑s

n=1
pn(rηc − ξv(n)/ηd − ra). (14)

where E[W ] = N(s, u)/λ(1 − B(s, u)) represents the aver-
age service time based on Little’s law. In order to provide
good services, a service-level agreement is needed to quantify
the average transferred energy that the DWC system pro-
vides for each EV. Moreover, to maintain a fixed N(s, u),
the DWC operator needs to decide whether to block more
EVs to guarantee T (s, u) or admit more EVs to guarantee
B(s, u). This trade-off will be shown and discussed in details
in the next section.

4. PERFORMANCE EVALUATION AND DIS-
CUSSIONS

In order to improve the performance of the DWC sys-
tem, the DWC operator needs to take into account both
the short-term operational parameters and the long-term
infrastructure parameters. According to the vehicular traffic
condition in the short run, the available capacity s and the
speed limit u can be conveniently controlled by DWC op-
erators to optimize the revenue-related or QoS-related per-
formance metrics. In contrast, the infrastructure parameters
(e.g., the length L and the charging rate r of the DWC sys-
tem) typically will not change for years once the infrastruc-
ture is constructed. However, the infrastructure parameters
are not designed for a fixed EV traffic condition because on
the one hand, the highway traffic varies with time within one
day. While on the other hand, the EV penetration changes
from year to year, and hence the traffic condition changes
gradually. These changes in the EV traffic may degrade the
system performance significantly if the DWC operator has
too limited operational opportunities when facing different
traffic conditions under the same infrastructure parameters.
Thus, in the long run, the infrastructure parameters need to
take into account both the construction cost and the flexi-
bilities of short-term operations based on the prediction of
EV arrivals in the future.

In this section, we first show the effectiveness of the short-
term operational parameters on the system performance and
illustrate the operational flexibility in the short run based
on a QoS-guaranteed revenue maximization problem. After-
wards, we investigate the trade-offs in the long-term param-
eters in the infrastructure planning of the DWC system.

4.1 Impact of Short-term Parameters
In this section, we consider that the DWC system has

already been built and the long-term parameters are fixed.
We aim to study how the short-term parameters, namely,
the available capacity s and the speed limit u affect the
performance of the DWC system and to provide insights for
the DWC operator to perform admission control and speed
regulation.

Fig. 5 illustrates the impact of the available capacity s
and speed limit u on the blocking probability B(s, u), car-
ried load N(s, u) and average transferred energy T (s, u) un-
der different traffic conditions. The lower bound of the speed
limit is set to be 0 and other system parameters are listed
in Tab. 2. In the light and moderate traffic conditions which
are presented by triangle and circle markers respectively,
three important messages are conveyed. First, we can see
the three performance metrics are improved as the increase
of the available capacity s until s exceeds a certain value.
Therefore, in order to achieve the best performance, the
available capacity is not necessarily to be chosen as the ca-
pacity of the DWC system. Second, the speed regulation has
a controversial impact on the blocking probability and the
carried load. From the DWC operator’s perspective, a larger
carried load typically means higher profit opportunity and
a larger blocking probability means a bad service. Thus, the
DWC operator expects the system to be operated with a
high carried load and a low blocking probability. However,
the increase of the speed limit reduces both the blocking
probability and the carried load of the DWC system. Thus,
the setting of the speed limit is non-trivial. Third, when the
DWC system is transferring the energy at the high power
rate, it does not mean the individual EV can receive enough
energy after passing through the DWC system. The reason is
as stated in the previous section, the total transferred energy
can either be divided by a small number of EVs with high
T (s, u) or be shared by a large number of EVs but each of
them only receives a small amount of energy. As can be seen
from the curves with low available capacities in Fig. (5b), all
these cases have the same carried load. However, blocking
probabilities and average transferred energy of these cases
are differentiated by speed limits and traffic conditions. The
DWC operator needs to decide whether to provide high en-
ergy for admitted EVs by sacrificing blocking probability,
or to serve as many EVs as possible by bearing possible low
transferred energy per EV. A trade-off between these factors
needs to be further explored. Thus, QoS of the DWC system
is defined by both the blocking probability and the average
transferred energy.

Although the observations in the light and moderate traf-
fic cases are as expected, the results do not necessarily hold
in the heavy traffic case which is shown by the black curves
with cross markers. For example, the trade-off between the
blocking probability and the carried load is not that signif-
icant when the available capacity is large enough. In this
case, increasing the speed limit can raise the carried load
without affecting the blocking probability. The reason for
this unexpected result is due to the state dependence of the
service rates, which change with the increase of EV traffic.
As shown in Fig. 4, the service rates in the low speed limit
case (e.g., the dashed blue line) surpass these in the high
speed limit case (e.g., the solid blue line) when the traffic is
intensive (i.e., around 1000 EVs).

In many cases, when we discuss the control of speed limits,
we only consider the upper speed limit. However, the lower
speed limit is also important to avoid traffic congestion on
the road. In fact, the lower speed limit is included in the
decision of the available capacity because the average speed
of the EVs is non-increasing in the number of EVs in the
system. When a lower speed limit is set, the upper bound
of available capacity is determined accordingly. Fig. 6 illus-
trates the impact of the lower speed limit. Particularly, all
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Figure 5: Illustrating the impact of short-term parameters on the DWC system. No lower speed limit is required.
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Figure 6: Illustrating the impact of short-term parameters on the DWC system. The lower speed limit is set to be 35
miles/hour.

the parameters of Fig. 6 are set to be the same as those in
Fig. 5 but the speed is set to be larger than 35 miles/hour,
which is also a common value for the upper speed limit of
urban areas. The key observation from Fig. 6 is that the
effectiveness of the speed control is reduced significantly af-
ter the lower speed limit is imposed. Specifically, in order
to guarantee the lower speed limit, the DWC system is only
able to utilize a small portion of the whole capacity of the
system. Furthermore, with the decrease of the upper speed
limit, the upper bound of the available capacity decreases.
As shown in Fig. (6b), the carried load is nearly not affected
by the upper speed limit in the moderate and heavy traffic
conditions. This phenomenon greatly restricts the capability
of the DWC operator to decide the trade-off between block-
ing probability and carried load in the heavy traffic cases.

4.2 Revenue Model and QoS
As shown in the last subsection, given the EV traffic and

infrastructure parameters, the performance metrics of the
DWC system depend on the available capacity s and the
speed limit u, which can be controlled by the DWC operator
to optimize its revenue and QoS. In particular, the revenue of
the DWC system within a time duration of τ can be defined

as

R(s, u) = rN(s, u)τ(qc − qe)− fτ (sr), (15)

where qc is the DWC service price charged to EVs in the
unit of $/kWh, qe is the electricity price from the power
grid and fτ (·) is the peak power cost function of the whole
time duration τ . The first term of (15) denotes the profits
by transferring an amount of energy rN(s, u)τ . The second
term denotes the peak power cost when s is chosen as the
available capacity. Note that rN(s, u)τ is the transmitted
energy from the DWC system because the EVs are consid-
ered to pay for the power loss through the WPT.

Besides maximizing the revenue by providing WPT ser-
vices, the DWC system operator also needs to understand
and guarantee its QoS as a service provider. Thus, for the
DWC operator, a joint admission control and speed regula-
tion problem to maximize its revenue with QoS guarantee
can be formulated as

max
s,u

R(s, u) (16)

s.t. B(s, u) ≤ ε, (17)

T (s, u) ≥ e, (18)

1 ≤ s ≤ c, u ≤ u ≤ u. (19)

where ε and e are the blocking probability threshold and
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Figure 7: Illustration of the maximum revenue under different blocking probability and average transferred energy require-
ments.

energy threshold, respectively. They are predetermined by
the DWC operator to guarantee its QoS. In the U.S., the
speed limit on highways is required not to be lower than
u = 35 miles/hour. In addition, the speed limit typically
increases by 5 miles/hour each time up to 65−70 miles/hour.
Thus, the search space of the speed limit only contains 7−8
discrete values. As for the available capacity, we have s ≤
c ≤ ct = bρLc. For the WPT-enabled road with a length of
10 miles, the size of the search space for s is no larger than
2650. Thus, the problem (16) can be solved by brute force
search over s and u without much effort.

Fig. 7 shows the maximum revenue with different blocking
probabilities and average transferred energy requirements.
The average EV arrival rates are set to be λ = 2000, λ =
3000 and λ = 4000 EVs/hour in Figs. (7a) - (7c), respec-
tively. The charging price is set to be qc = 0.1 $/kWh.
Based on the electricity tariff in [21], the energy price is
qe = 0.0837 $/kWh. In addition, the peak power cost func-
tion is fτ (sr) = qpsr with a time duration of half a year and
the peak power price is qp = 19.27 $/kW. By calculating the
maximum revenue when the energy requirement is changed
in the range of [5.0, 9.0] kWh and the blocking probability
requirement varies in [0, 0.5]. It can be observed that the rev-
enue of the DWC system can be maximized by setting the
blocking probabilities larger than ε∗ and the energy require-
ment to be smaller than e∗ kWh. For example, ε∗ = 0.02
and e∗ = 7.7 can numerically be obtained in Fig. 7a. More
importantly, ε∗ and e∗ quantify the operational flexibility of
the DWC system. A smaller ε∗ and a larger e∗ indicate that
the DWC operator can guarantee the QoS more easily with-
out sacrificing its maximum revenue by choosing s and u as
the optimal solution of problem (16). It can also be observed
that the operational flexibility decreases as the increase of
the EV traffic by comparing Figs. (7a) - (7c). Especially, ε∗

becomes rather large in the heavy traffic case, which means
the system cannot guarantee the blocking probability to be
a small value. This fact is also shown in Fig. (6a). Thus, the
infrastructure parameters are not appropriate for accommo-
dating the traffic condition with an average EV arrival rate
of λ = 4000.

4.3 Trade-offs in Long-term Parameters
In this section, we mainly investigate two important pa-

rameters in the infrastructure planning of the DWC system,
namely, the road length L and the charging rate r of the

Layout-I: Single long lane

Layout-II: double short lanes

Layout-III: single lane with idle zones

Figure 8: Illustration of three types of layouts for the DWC
system.

DWC system. In the following, we evaluate the performance
of three possible types of layouts of the DWC system, which
have the same construction cost but different values of road
length and charging rate. By comparing these three layouts,
we aim to understand the trade-offs in choosing the long-
term infrastructure parameters. Assuming that there is a
budget to build a WPT-enabled road with a length of L and
charging rate r, we have three possible layouts for the design
of the WPT-enabled road as shown in Fig. 8.

• Layout-I: Single long lane with a length of L and
charging rate r.

• Layout-II: Double short lanes, each of which has a
length of L/2 and charging rate r. The arrival traffic
splits equally into the two short lanes. EVs are not
allowed to change lanes in the WPT-enabled roads.

• Layout-III: Single long lane with idle zones. The
charging and idle zones are deployed alternately. For
the idle zone with a total length of I, the length of the
WPT-enabled road is L+ I with an average charging
rate L

L+I
r.

4.3.1 Comparison of Layout-I and Layout-II

According to our proposed queueing model, Layout-I is
an M/G/s/s state-dependent queue while Layout-II can
be modeled as two separate queues, each of which has s/2
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Figure 9: Comparison of Layout-I and Layout-II.
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(c) Average delivered energy per EV

Figure 10: Comparison of Layout-I and Layout-III.

servers. Layout-I is equivalent to combining all the servers
of Layout-II together and forming a big queue. If the ser-
vice rates do not depend on the number of EVs and the road
length of the DWC system, Layout-I is known to perform
better compared to Layout-II because the service multi-
plexing of Layout-I can avoid the waste of idle servers
in Layout-II. However, when the state-dependent service
rates are considered, the performance of the system also
heavily depends on the EV arrival rate. The small queue
of Layout-II faces a small EV traffic which improves its
service rates. Meanwhile, each small queue has faster ser-
vice rates than the big queue due to its short length. Thus,
there is no absolute answer on which layout is better.

Fig. 9 illustrates the performance of the two layouts un-
der different traffic conditions. We set L = 20 miles and
r = 50 kW for the long lane of Layout-I, and L = 10 miles
and r = 50 kW for each of the short lanes of Layout-II.
A lower speed limit of 35 miles/hour is restricted. Roughly
speaking, Layout-II has lower blocking probabilities but
has lower carried load and average transferred energy com-
pared to Layout-I. Particularly, in the moderate and heavy
traffic cases, the carried loads of Layout-I and Layout-II
are relatively close to each other. However, they have op-
posite performances in blocking probabilities and average
transferred energy. In the light traffic case, the performance

of Layout-II under different speed limits is shown. It can
be observed that higher average transferred energy can be
achieved by controlling the speed limit and sacrificing the
blocking probability. However, there is no opportunity for
Layout-I to control the speed limit to reduce the blocking
probability because the speed limit has already been set to
be the maximum value. From this point of view, Layout-
II is superior to Layout-I because the DWC operator can
have more opportunities to operate the system under differ-
ent traffic conditions to optimize the system performance.

4.3.2 Comparison of Layout-I and Layout-III

From the result of the last subsection, a long lane gen-
erally outperforms two short lanes in average transferred
energy but underperforms in blocking probability. In this
section, we aim to investigate whether Layout-III, which
extends the length of the charging lane by sacrificing its
charging rate, can help improve the average transferred en-
ergy without affecting the blocking probability too much. In
particular, by controlling the total length of the idle zones
I in Layout-III, we can achieve different DWC lanes with
different road lengths and charging rates. In this subsection,
we set L = 10 miles and r = 50 kW for Layout-I, and
consider two specific layouts of Layout-III:

• Layout-III-A: L = 10 miles, I = 5 miles and equiva-



lent charging rate r = 33.3 kW.

• Layout-III-B: L = 10 miles, I = 10 miles and equiv-
alent charging rate r = 25 kW.

Fig. 10 compares the performance metrics of Layout-I, Layout-
III-A and Layout-III-B. Because different layouts adopt
different average charging rate, for fair comparison, we trans-
form the horizontal axis of the figures to available power ca-
pacity by multiplying the available capacity with its corre-
sponding average charging rate. In addition, instead of com-
paring the average transferred energy, we turn to focusing on
the average delivered energy (i.e., including the energy con-
sumption due to driving). This change is to eliminate the
influence from the power consumption of driving through
the WPT-enabled roads because EVs drive through differ-
ent distances in different layouts. In Fig. (10a), it can be
observed that the blocking probabilities of the three layouts
are close to each other especially in the light traffic cases,
and the layout with longer length and lower charging rate
has a relatively higher blocking probability. However, the
average total power consumption and delivered energy per
EV are increased by Layout-III as shown in Figs. (10b) and
(10c). More importantly, the impact of Layout-III is larger
in the slow speed regime. If we post a lower speed limit (e.g.,
35 miles/hour as shown in the Fig. 10), Layout-III-A im-
proves all the three performance metrics while Layout-III-
B makes no difference. This means the performance gains
by Layout-III are constrained by the lower speed limits.
Therefore, given the lower speed limit of the DWC system,
the total length of the idle zones I in Layout-III can be
designed to optimize all the performance metrics. Further-
more, in the slow speed regime of the heavy traffic cases,
we can clearly observe that trade-offs between the blocking
probability and average delivered energy in the Layout-III-
A and Layout-III-B. Thus, if the DWC system is allowed
to operate in slow speed regime, the two QoS-related met-
rics can be controlled via admission control to achieve the
target trade-offs.

By taking the characteristics of the three types of lay-
outs into consideration, the DWC infrastructure planner can
choose the layout as follows. i) If the EV traffic is predicted
to stay in the light traffic case, or increase slightly, Layout-
III should be chosen as long as the blocking probability
can be guaranteed. In this case, a relatively low blocking
probability can be guaranteed easily. Both high carried load
and high average delivered energy can be achieved. Based
on the predicted traffic and the lower speed limit, a proper
length of the idle zone I should be determined by numeri-
cal evaluation to improve the carried load, and achieve the
trade-offs between the blocking probability and average de-
livered energy per EV. ii) If the EV traffic is predicted to
increase dramatically, Layout-II is chosen to guarantee the
blocking probability. Moreover, each short lane of Layout-
II can also adopt the concept of Layout-III based on the
predicted traffic and lower speed limit.

5. CONCLUSIONS
This paper has modeled the DWC system as an M/G/s/s

state-dependent queue and evaluated its performance by a
revenue-related metric (i.e., carried load), and QoS-related
metrics (i.e., blocking probability and average transferred
energy per EV). By analyzing the impact of the speed limit
and the available capacity on the performance of the DWC

system, we have shown the effectiveness of admission control
and speed regulation in maximizing the system revenue with
QoS guarantee. In addition, useful insights in choosing the
long-term infrastructure parameters have been provided by
comparing different layouts of the WPT-enabled road.
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