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Background and Motivation

Effective arrival processes of GI/GI/1 queues very frequently do not
fit a simple probability distribution.

Previous approximation techniques (QNA, QNET)

Robust Queueing treats arrivals and departures as belonging to an
uncertainty set, rather than a renewal process.

RQ then approximates a queue by finding the worst-case system time
for the nth job in a system.
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Lindley Recursion

A significant motivator for RQ is the Lindley recursion, which provides
a basic framework for treating queueing as an optimization problem.

System time of the nth job in a single-server, FIFO (first-in first-out)
queue can be described by the Lindley recursion,

Sn = Wn + Xn = max(Wn−1 + Xn−1 − Tn, 0) + Xn (1)

= max
1≤k≤n

(
n∑

i=k

Xi −
n∑

i=k+1

Ti

)
, (2)
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Motivation for Uncertainty Sets

Assume inter-arrival times (T) and service times (X) are i.i.d, with
means 1

λ and 1
µ , and finite variances σ2

a and σ2
s .

By the CLT, we know that

lim
n→∞

n∑
i=k+1

Ti − n−k
λ

σa
√
n − k

∼ N (0, 1), (3)

and

lim
n→∞

n∑
i=k+1

Xi − n−k
µ

σs
√
n − k

∼ N (0, 1), (4)

We wil use this fact to bound our arrival and service uncertainty sets.
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RQ Assumptions for Single-Server Queues

1 The inter-arrival times {T1, . . . ,Tn} belong to the uncertainty set

Ua =

(T1, . . . ,Tn)

∣∣∣∣∣∣∣∣
n∑

i=k+1

Ti − n−k
λ

√
n − k

≥ −Γa, 0 ≤ k ≤ n − 1

 ,

where Γa is a variability parameter for interarrival times.

2 The service times {X1, . . . ,Xn} belong to the uncertainty set

Us =

(X1, . . . ,Xn)

∣∣∣∣∣∣∣∣
n∑

i=k

Xi − n−k+1
µ

√
n − k + 1

≤ Γs , 0 ≤ k ≤ n − 1

 .

where Γs is a variability parameter for service times.
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RQ Assumptions for Single-Server Queues

The variability parameters Γa and Γs are used to control the
robustness of the optimization.

Although the underlying distributions for Ti and Xi are generally
assumed to be i.i.d., the uncertainty sets are not assumed to be
independent.

We model multi-server queues by modifying the service uncertainty
set, and to model heavy-tailed distributions (infinite variance), we
change the terms

√
n − k and

√
n − k + 1 to (n − k)1/αa and

(n − k + 1)1/αs , where αa and αs are the tail coefficients of the
arrival and service distributions.

For our pursposes, we will assume αa = αs = 2.
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Performance Analysis under RQ

We look to approximate the system time of the nth job, Sn, by
finding the worst-case system time it could experience.

We do this by solving the optimization problem

Ŝn = max
T∈Ua

(
max
X∈Us

Sn

)
(5)

= max
T∈Ua

(
max
X∈Us

max
1≤k≤n

(
n∑

i=k

Xn −
n∑

i=k+1

Tn

))
(6)

≤ max
T∈Ua

(
max

1≤k≤n
max
X∈Us

(
n∑

i=k

Xn −
n∑

i=k+1

Tn

))
. (7)
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Performance Analysis under RQ

Importantly, the bound in 7 is tight; that is, if we let

X̂i = 1
µ + Γs

[√
(n − i + 1)−

√
(n − i)

]
, 1 ≤ i ≤ n, then

n∑
i=k

X̂i = max
X∈Us

n∑
i=k

Xi =
n − k + 1

µ
+ Γs

√
n − k + 1, 1 ≤ k ≤ n.

Furthermore, the service times X̂i are non-decreasing; that is,
X̂1 ≤ X̂2 ≤ . . . ≤ X̂n.

Similarly, we can find a sequence of T̂i such that

n∑
i=k+1

T̂i = max
T∈Ua

n∑
i=k+1

Ti =
n − k

λ
+ Γs

√
n − k , 1 ≤ k ≤ n − 1.
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System Time Bound for Single-Server Queues

Since X and T are independent of each other, we can rewrite the
system time optimization as

Ŝn = max
1≤k≤n

{
n − k + 1

µ
+ Γs

√
n − k + 1− n − k

λ
+ Γa

√
n − k

}
(8)

≤ max
1≤k≤n

{
(Γa + Γs)

√
n − k + 1− n − k

λ
+

n − k + 1

µ

}
(9)

= max
1≤k≤n

{
(Γa + Γs)

√
n − k + 1− n − k

λ
+

n − k + 1

µ
+

1

λ
− 1

λ

}
(10)

= max
1≤k≤n

{
(Γa + Γs)

√
n − k + 1 + (n − k + 1)

λ− µ
λµ

+
1

λ

}
(11)

= max
1≤k≤n

{
(Γa + Γs)

√
n − k + 1 + (n − k + 1)

1− ρ
λ

}
+

1

λ
. (12)
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System Time Bound for Single-Server Queues

Letting x = (n − k + 1), β = (Γa + Γs), and δ = 1−ρ
λ , the above

optimization becomes

Ŝn = max
1≤x≤n

β
√
x − δx +

1

λ
≤ max

x∈R
β
√
x − δx +

1

λ
=

1

4

β2

δ
+

1

λ
. (13)

Subsituting our original values in for x , β, and δ, we have the
following:

Worst-Case System Time in a Single-Server FIFO Queue

In a single-server FIFO queue with T ∈ Ua,X ∈ Us , and ρ < 1,

Ŝn ≤
λ

4

(Γa + Γs)2

1− ρ
+

1

λ
.
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Extension to Networks of Queues

In order to extend our analysis to networks of queues, we need to
derive three important characteristics:

The characterization of departures from a queue
The characterization of a superposition of arrival processes
The characterization of a splitting of a departure process
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Departure Characterization

Departure Characterization in RQ

Consider a single-server queue with inter-arrival times T ∈ Ua, and service
times X ∈ Us , with ρ < 1. Under adversarial service times, the
inter-departure times D = {D1, . . . ,Dn} belong to the uncertainty set

Ud ⊆ Ua =

(D1, . . . ,Dn)

∣∣∣∣∣∣∣∣
n∑

i=k+1

Di − n−k
λ

√
n − k

≥ −Γa, 0 ≤ k ≤ n − 1

 .

This is analagous to Burke’s theorem for M/M/1 queues.
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Superposition of Arrivals

Superposition of Arrivals in RQ

Consider a queue fed by p separate arrival processes, each characterized by
an arrival uncertainty set with rate λj and variability parameter Γa,j . Then
these arrival processes form a merged arrival process, that is characterized
by the uncertainty set

Ua
sup =

(T sup
1 , . . . ,T sup

n )

∣∣∣∣∣∣∣∣
n∑

i=k+1

T sup
i − n−k

λsup

√
n − k

≥ −Γa,sup, 0 ≤ k ≤ n − 1

 ,

where λsup =
p∑

j=1
λj , and Γa,sup = 1

λsup

√√√√( p∑
j=1

(λjΓa,j)2

)
.
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Superposition of Arrivals
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Splitting of Departure

Splitting of the Departure Process in RQ

Consider an arrival process characterized by the above uncertainty set,
with rate λ and variability parameter Γa. Then, the ”thinned” process,
comprised of a fraction f of those arrivals, is described by the uncertainty
set

Ua
split =

(T split
1 , . . . ,T split

n )

∣∣∣∣∣∣∣∣
n∑

i=k+1

T split
i − n−k

λsplit

√
n − k

≥ −Γa,split , 0 ≤ k ≤ n − 1

 ,

where λsplit = λf , and Γa,split = Γa√
f

.
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Queueing Network Characterization in RQ

RQNA

Consider a network of single-class, single-server FIFO queues, with arrival
and service processes characterized above, and a routing matrix P. Then,
the behavior of the network is equivalent to a collection of independent
queues, where the arrival process at each node j belongs to the uncertainty
set

Ua
j =

(T j
1, . . . ,T

j
n)

∣∣∣∣∣∣∣∣
n∑

i=k+1

T j
i −

n−k
λ̄j

√
n − k

≥ − ¯Γa,j , 0 ≤ k ≤ n − 1

 ,

where {λ̄1, . . . , λ̄M} and { ¯Γa,1, . . . , ¯Γa,M} satisfy the following set of
equations:

λ̄j = λj +
M∑
i=1

(λ̄iPij), ¯Γa,j =
1

λ̄j

√√√√(λjΓa,j)2 +
M∑
i=1

(λ̄i ¯Γa,i )2Pi ,j . (14)
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Problems with RQ Framework

Setting values for Γa,j and Γs,j

Departure characterization

Accuracy of the approximation
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Determining Γa,j and Γs,j

The original Bandi et al paper determined the variability parameters
using linear regression, setting

Γa,j = σj (15)

Γs,j = f (ρ, σa, σs , α), (16)

where

f (ρ, σa, σs , α) = (θ0 + θ1 ∗ σ2
s /m + θ2σ

2
aρ

2m)(α−1)/α − σam(α−1)/α,

m is the number of servers in the queue, and θ0, θ1, θ2 are parameters
to be determined via linear regression.

However, this approach quickly leads to overfitting, and works poorly
in general.
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Other Methods of Determining Variability Parameters

Whitt and You (2018) developed a framework similar to BBY15, only
with a single uncertainty set for both arrivals and departures, and a
single variabiliy parameter for both.

Showed that, if chosed, correctly, their RQ bound exactly matches the
Kingman bound (1962). In the BBY15 formulation, this is not
possible due to the dual variability parameters.
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Departure Characterization in BBY

When expanding analysis to cover a network of queues, BBY also
faces a problem with the departure characterization.

In QNA (AND OTHERS), the departure variance is usually
approximated as a combination of the arrival and service variance;
however, in BBY, the departures are considered to belong to the
exact same uncertainty set as the arrivals.

in GI/GI/1 queues this is very frequently not the case.
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Problems with BBY15

ρ1 ρ2 E [W1] E [W2] BBY(W1) BBY(W2)

0.3 0.3 .0127 .0301 .1964 .1964

0.3 0.6 .0128 .3442 .1964
0.3 0.9
0.6 0.3
0.6 0.6
0.6 0.9
0.9 0.3
0.9 0.6
0.9 0.9

Table: Comparison of original BBY15 bound to simulation in an open series of 2
queues.
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Improving on BBY Framework

Instead of determing Γa,j and Γs,j using linear regression, we set

Γa,j = kσja, Γs,j = kσjs . This provides a reasonable amount of
robustness to the uncertainty sets, and provides reasonably accurate
approximations in practice.

This is the same approach used in Whitt and You (2018); however,
whereas they chose to set k =

√
2 to match up with the Kingman

bound, we have chosen to let k = 1, which performs better in
practice.

Rather than treating the departures the same as arrivals, we will
instead assume the departure uncertainty set has the following form:

Ud ⊆ Ua =

(D1, . . . ,Dn)

∣∣∣∣∣∣∣∣
n∑

i=k+1

Di − n−k
λ

√
n − k

≥ −Γd , 0 ≤ k ≤ n − 1


where Γd =

√
ρ2Γ2

s + (1− ρ2)Γ2
a.
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Improving on BBY Framework

To reflect this change, we will modify our set of linear equations to be

λ̄j = λj+
M∑
i=1

(λ̄iPij), xj =
1

λ̄2
j

(λjΓa,j)
2+

M∑
i=1

(λ̄iyiPi ,j , yj = Γ2
s,j+

(
1−

(
λ̄j
µj

)2
)
xj ,

where xj = Γ̄2
a,j , and yj = Γ̄2

d ,j .

Lastly, we modfiy the original Ŝn from BBY to be

Ŝn =
λ

4

(Γa + Γs)2

1− ρ
+

1

µ
.

This change makes more intuitive sense (now the system time is split
up into wait time and service time). It also vastly improves the
approximation in most cases, and makes it feasible to approximate
CQNS with few jobs in the system.
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Comparing Original RQ to Modified RQ

ρ1 ρ2 BBY(W1) BBY(W2) MRQ(W1) MRQ(W2)

0.3 0.3 .0127 .0301 .1964 .1964

0.3 0.6 .0128 .3442 .1964
0.3 0.9
0.6 0.3
0.6 0.6
0.6 0.9
0.9 0.3
0.9 0.6
0.9 0.9

Table: Comparison of original BBY15 bound to simulation in an open series of 2
queues.
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Applying RQNA to CQNs

To use RQNA for CQNs, we will use the fixed-population-mean
method (Whitt).

However, rather than the original FPM, which only required one
parameter (λ), our framework requires two parameters (λ and Γa).
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RQFPM Process

As before, we choose one node to be the ”cut” node; however, instead
of choosing any arbitrary node, we instead choose a bottleneck node.

For our purposes, a bottleneck node is defined as a node i∗, such that

i∗ = max
1≤i≤n

λ̄i
µi
.

It is computationally very easy to find this node, since all we have to
do is solve equation, for which we don’t need to know either of our
unknown parameters. This also tends to maximize the accuracy of
the approximation.
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Applying RQNA to CQNs

Once we have our cut node i∗, all flows heading into node i∗ are
replaced with a single arrival uncertainty set, with parameters λ̄i∗ and
Γ̄a,i∗.

Instead of keeping Γ̄a,i∗ a free variable, we instead set its initial value
to

Γ̄a,i∗ =

√√√√ 1

λ̄i∗

J∑
i=1

λ̄iPi ,i∗Γ2
s,i .

Use a linear-algebra software package to solve the system of
equations, and use the equation

E [S ] =
J∑

i=1

λ̄i

λ̄i∗
E [Si ] ≈

J∑
i=1

λ̄i

λ̄i∗

 λ̄i (Γ̄a,i + Γs,i )
2

4(1− λ̄i
µi

)
+

1

µi

 .
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Applying RQNA to CQNs

Once we have our E [S ], we can apply Little’s Law, and find the root
of the equation

f (λ̄i∗) = K − λ̄i∗E [S ].

f (λ̄i∗) usually has multiple roots; however, if we restrict our domain
to [0, µi∗), we will be able to find our throughput approximation λ̄i∗.
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Examples

We will look at two examples to showcase our results.

First, we consider a network of 9 queues in series; the first 8 queues
have service times distributed as rate-.5 Erlang distributions, and the
last queue has a rate-1 hyperexponential distribution.

Second, we will look at a closed-queueing version of Kuehn’s
nine-node network [KEUHN]; in this network, departures from node 7
are instead routed to node 1, departures from node 9 are routed to
node 2, and departures from node 6 are routed to node 3. We will
look at the case when nodes 1,2, and 3 have the same distribution,
with µ = 0.4, and nodes 4-9 have the same distribution, with
µ = 1.0. We will consider a variety of different distributions and scvs.
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Numerical Results

(c2
s,1, c

2
s,2) K Simulated Throughput Approximate Throughput Relative Error

(1, 4) 18 .3513 .4017 0.1435
(1, 8) 18 .3444 .3943 0.1449
(1, 4) 36 .4135 .4386 0.0607
(1, 8) 36 .4083 .4339 0.0627
(.5, 4) 18 .395 .4339 0.0985
(.5, 8) 18 .3834 .4255 0.1098
(.5, 4) 36 .4469 .4618 0.0333
(.5, 8) 36 .4408 .457 0.0368
(.25,4) 18 .4279 .457 0.0680
(.25,8) 18 .4145 .4482 0.0813
(.25,4) 36 .4688 .4766 0.0166
(.25,8) 36 .4619 .4719 0.0216

Table: RQFPM results for a series of 9 queues.
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Numerical Results

(c2
s,1, c

2
s,2) K Simulated Throughput Approximate Throughput Relative Error

Table: RQFPM results for Keuhn’s 9-node network.
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Alternative Methods

The results from RQ-FPM are mostly very accurate, but in small
networks the error is much larger than larger networks.

In large networks, however, the algorithm takes significantly more
time.

Problem is exacerbated by the messy nature of the system of
equations, which quickly becomes difficult to analyze numerically by
some software packages.

Lastly, many of the problems present in BBY15 are not dealt with
entirely in RQ-FPM; how to properly set the variability parameters is
still an issue, and probably the most significant to the accuracy of the
algorithm, but departure characterization is also problematic.
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Iterated FPM

The results from RQ-FPM are very promising, but there are some
casees where the error exceeds 10 percent.

If we run RQ-FPM multiple times, updating our guess of Γ̄a,i∗ each
time, we will converge to a steady value of Γ̄a,i∗.

Calculating our approximate throughput this way also allows us to
consider the entire network at once.

However, the convergent value of Γ̄a,i∗ generally leads to less accurate
approximations as of now.
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Example

Consider our first example, with c2
s,1 = 1, c2

s,2 = 8, and K = 18. Our

initial guess for Γ̄a,i∗ is

Γ̄a,i∗ =

√√√√ 1

λ̄i∗

J∑
i=1

λ̄iPi ,i∗Γ2
s,i (17)

=

√√√√ J∑
i=1

Pi ,i∗Γ2
s,i = Γs,9 =

√
8 ≈ 2.828. (18)

After running RQ-FPM, our approximate throughput would be
λ̄1 ≈ .3943. If we treat the departure variance from node 9 as our
new guess for Γ̄a,i∗, we have

Γ̄a,i∗ ≈
√

4.5437 = 2.1316. (19)

After 2 more iterations, our Γ̄a,i∗ converges to roughly 2.1316, with
an approximate throughput of λ̄i∗ = .3684.
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