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1 Course Overview

This will be a research course in which the participants will read research papers, conduct individual

research projects and make presentations to the class. Students already engaged in research can

present their own recent research results as well as important background papers and new research

papers in the same area. Other students can present new research as well as research papers. There

will be no tests or homework problem sets.

Consistent with my recent research and the research of my current students, the main themes

for the seminar will be: (i) heavy-traffic approximations based on stochastic-process limits, (ii)

queues with time-varying arrival rates and (iii) applications of queueing models to service systems.

Planned special topics for 2017 are: queueing networks: (i) approximations based on robust

optimization and (ii) scheduling and routing; conservation laws; fitting queueing models to system

data; the single-server queue with time-varying arrival rates; rare-event simulation; and using

optimization to examine queueing approximations. These topics coincide with the research of

current students.

The following sections point out relative background and recent research efforts in these areas.

The papers provide links to the previous literature. My book [45] and almost all of my papers are

available for downloading from my web page. For the full book, use the link:

http://www.columbia.edu/∼ww2040/jumps.html

Students may also pursue a research topic of their own choosing. Former student Song-Hee Kim

(now at the USC Marshall Business School) started her research interest in healthcare by electing

to study queueing models in healthcare in a similar seminar several years ago. Queueing theory
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can be usefully applied to many problems. To illustrate one nonstandard application, I refer to my

papers on managing the pace of play in golf [7, 14, 50].

The seminar will be run from the instructor’s web page: http://www.columbia.edu/∼ww2040

2 Probability Foundations

2.1 Background on Probability, Stochastic Processes and Queueing Theory

The seminar assumes a background roughly equivalent to completing the IEOR first-year core

doctoral course on stochastic models, IEOR 6711 and 6712. A good (relatively advanced) textbook

at this level is Asmussen [2]. Understanding of the basics about stochastic processes and queueing

models will be assumed, but could be picked up along the way, given the appropriate mathematical

experience. Among the good textbook introductions to queueing theory are Cooper [8], Kleinrock

[21, 26] and Wolff [60].

2.2 Heavy-Traffic and Stochastic-Process Limits

Queueing models can often be better understood and approximated with the aid of heavy-traffic

limits. These heavy-traffic limits draw on the theory of convergence of measures on function spaces

or, equivalently, the theory of convergence of stochastic processes, as discussed in the textbooks

by Billingsley [5, 6]. An overview of that theory without many proofs appears in my own [45].

The book [45] focuses on applications of that theory to establish heavy-traffic limits for queueing

models. The book focuses on conventional heavy-traffic limits in which a finite number of servers is

held fixed while the traffic intensity is allowed to increase toward its critical value. Another useful

book that focuses more on the reflected Brownian motion (RBM) limit process is Harrison [18]. A

book on similar topics from a more applied point of view is Newell [37].

Recently I have been focusing on many-server heavy-traffic limits, in which both the arrival rate

and the the number of servers increase without bound. An early paper on that is [17]. A survey

paper on the martingale methods often used to establish many-server heavy-traffic limits is [38].

3 Robust Queueing

Robust queueing is a new approach to develop useful approximations for hard queueieng problems,

initiated by Bertsimas and his students [4]. The key idea is to develop bounds and approximations
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by replacing a hard stochastic problem by an optimization problem that is easier to analyze.

Currrent student Wei You and I have begun trying to contribute to this area [54, 55, 56].

4 Time-Varying Queues

Just like the heavy-traffic limits, the literature on queues with time-varying arrival rates divides

into two main categories: (i) queues with many servers and (ii) queues few servers, e.g., only one.

4.1 Many-Server Queues

Many-server queues tend to be easier to analyze than single-server queues, especially if we ap-

proximate them by infinite-server queues. There is now a quite large literature on infinite-server

queues with time-varying arrival rates, largely stemming from my earlier papers with W. A. Massey

[11, 12, 33] and continuing with more recent two-parameter heavy-traffic limits with former students

Guodong Pang [39] and Yunan Liu [1, 29].

4.1.1 Staffing to Stabilize Performance

For many-server queues, an important problem is staffing (choosing the time-varying number of

servers) to stabilize performance. This line of research began with my paper with Jennings, Man-

delbaum and Massey [20] and continued with [13] and then [19, 27, 28] with students Andrew Li

(now at MIT), Yunan Liu (now at NCSU) and Jingtong Zhao,. These use the modified-offered-load

(MOL) approach, which is reviewed in the short survey papers [46, 48].

4.1.2 The Time-Varying Little’s Law

Little’s law (LL, L = λW ) is intimately connected to infinite-server queues; see p. 238 of my

review paper [44]. Background on LL and the time-varying gneralization (TVLL) can be found in

my survey paper [44] and in [24, 25] with former student Song-Hee Kim. Research on the time-

varying Little’s law is now being conducted with current student Xiaopei Zhang [57, 58]. It emerged

from analyzing data from an Isreali emergency department [59].

4.2 Single-Server Queues

4.2.1 Understanding the Performance

For developing a fundamental understanding of the behavior of time-varying queues, the seminal

papers were by Newell [34, 35, 36]. Heavy-traffic limits have been established by Mandelbaum and

Massey [32] and in my more recent short contributions [49, 53].
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4.2.2 Time-Varying Robust Queueing

Time-varying robust queueing (TVRQ) is being studied with current student Wei You [54]. A

robust queueing approach to the transient behavior of stationary queues is proposed by [3].

4.2.3 Staffing to Stabilize Performance

A service-rate control used to stabilize performance in a single-server queue is studied in my recent

[51]. Further work is underway with Ni Ma.

4.2.4 Simulation Methods

Current student Ni Ma has been studying and applying simulation methods, including a rare-event

method, to study single-server queues with time-varying arrivals [30, 31].

5 Fitting Queueing Models to Service System Data

A major focus of my recent work has been on methods to fit queueing models to service system

data. Examples are [22, 23] with Song-Hee Kim and [59] with current student Xiaopei Zhang. A

new direction is fitting birth-and-death processes to the sample path of a queue length process.

This is discussed in [9, 10, 47, 52], the second and third with former IEOR undergraduate James

Dong (now in the graduate progem at Cornell).

6 Applications to Service Systems

Much of my recent research has been motivated by applications to service systems, such as call

centers and healthcare systems.

6.1 Assigning Arrivals to Servers

Former students Itai Gurvich (now at Cornell NY) and Ohad Perry (now at Northwestern Univer-

sity) worked on rules for assigning arriving customers to servers, e.g., [15, 16] and [40, 41]. Current

student Xu Sun has also been working in this area. We have developed a way to use routing rules

to create work breaks for agents from available idleness [42].

Xu Sun has also been studying scheduling and routing in a time-varying many-server environ-

ment [43].
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