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1 Course Overview

This will be a research course in which the participants will read research papers, conduct individual
research projects and make presentations to the class. Students already engaged in research can
present their own recent research results as well as important background papers and new research
papers in the same area. Other students can present new research as well as research papers. There
will be no tests or homework problem sets.

Consistent with my recent research and the research of my current students, the main themes
for the seminar will be: queueing networks, robust queueing, bounds and approximations, heavy-
traffic methods, queues with time-varying arrival rates, applications of queueing models to service
systems

Planned special topics for 2018 are: queueing networks: (i) the robust queueing network ana-
lyzer (Wei You), (ii) closed queueing networks (Austin Palmer), (iii) scheduling and routing (Xu
Sun); (iv) extremal queues (Yan Chen); (v) statistical approaches, including machine learning, for
forecasting arrivals (Xiaopei Zhang); (vi) the single-server queue with time-varying arrival rate and
rare-event simulation (Ni Ma)

The following sections point out relative background and recent research efforts in these areas.
The papers provide links to the previous literature. My book [46] and almost all of my papers are
available for downloading from my web page. For the full book, use the link:

http://www.columbia.edu/~ww2040/jumps.html

Students may also pursue a research topic of their own choosing. Former student Song-Hee Kim

(now at the USC Marshall Business School) started her research interest in healthcare by electing



to study queueing models in healthcare in a similar seminar several years ago. Queueing theory
can be usefully applied to many problems. To illustrate one nonstandard application, I refer to my
papers on managing the pace of play in golf [7, 14, 51].

The seminar will be run from the instructor’s web page: http://www.columbia.edu/~ww2040

2 Probability Foundations

2.1 Background on Probability, Stochastic Processes and Queueing Theory

The seminar assumes a background roughly equivalent to completing the IEOR first-year core
doctoral course on stochastic models, IEOR 6711 and 6712. A good (relatively advanced) textbook
at this level is Asmussen [2]. Understanding of the basics about stochastic processes and queueing
models will be assumed, but could be picked up along the way, given the appropriate mathematical
experience. Among the good textbook introductions to queueing theory are Cooper [8], Kleinrock

[21, 26] and Wolft [66].
2.2 Heavy-Traffic and Stochastic-Process Limits

Queueing models can often be better understood and approximated with the aid of heavy-traffic
limits. These heavy-traffic limits draw on the theory of convergence of measures on function spaces
or, equivalently, the theory of convergence of stochastic processes, as discussed in the textbooks
by Billingsley [5, 6]. An overview of that theory without many proofs appears in my own [46].
The book [46] focuses on applications of that theory to establish heavy-traffic limits for queueing
models. The book focuses on conventional heavy-traffic limits in which a finite number of servers is
held fixed while the traffic intensity is allowed to increase toward its critical value. Another useful
book that focuses more on the reflected Brownian motion (RBM) limit process is Harrison [18]. A
book on similar topics from a more applied point of view is Newell [37].

Recently I have been focusing on many-server heavy-traffic limits, in which both the arrival rate
and the the number of servers increase without bound. An early paper on that is [17]. A survey

paper on the martingale methods often used to establish many-server heavy-traffic limits is [38].



3 Robust Queueing

Robust queueing is a new approach to develop useful approximations for hard queueieng problems,
initiated by Bertsimas and his students [4]. The key idea is to develop bounds and approximations
by replacing a hard stochastic problem by an optimization problem that is easier to analyze. Current
student Wei You and I have been working on these problems. See recent papers: [56, 57, 58, 59,
60, 61, 62].

4 Time-Varying Queues

Just like the heavy-traffic limits, the literature on queues with time-varying arrival rates divides
into two main categories: (i) queues with many servers and (ii) queues few servers, e.g., only one.

See the long survey [55].

4.1 Many-Server Queues

Many-server queues tend to be easier to analyze than single-server queues, especially if we ap-
proximate them by infinite-server queues. There is now a quite large literature on infinite-server
queues with time-varying arrival rates, largely stemming from my earlier papers with W. A. Massey
[11, 12, 33] and continuing with more recent two-parameter heavy-traffic limits with former students

Guodong Pang [39] and Yunan Liu [1, 29].
4.1.1 Staffing to Stabilize Performance

For many-server queues, an important problem is staffing (choosing the time-varying number of
servers) to stabilize performance. This line of research began with my paper with Jennings, Man-
delbaum and Massey [20] and continued with [13] and then [19, 27, 28] with students Andrew Li
(now at MIT'), Yunan Liu (now at NCSU) and Jingtong Zhao,. These use the modified-offered-load

(MOL) approach, which is reviewed in the short survey papers [47, 49].
4.1.2 The Time-Varying Little’s Law

Little’s law (LL, L = AW) is intimately connected to infinite-server queues; see p. 238 of my
review paper [45]. Background on LL and the time-varying gneralization (TVLL) can be found in
my survey paper [45] and in [24, 25] with former student Song-Hee Kim. Research on the time-
varying Little’s law is now being conducted with current student Xiaopei Zhang [63, 64]. It emerged

from analyzing data from an Israeli emergency department [65].



4.2 Single-Server Queues

4.2.1 Understanding the Performance

For developing a fundamental understanding of the behavior of time-varying queues, the seminal
papers were by Newell [34, 35, 36]. Heavy-traffic limits have been established by Mandelbaum and

Massey [32] and in my more recent short contributions [50, 54].
4.2.2 Time-Varying Robust Queueing

Time-varying robust queueing (TVRQ) is being studied with current student Wei You [56]. A

robust queueing approach to the transient behavior of stationary queues is proposed by [3].
4.2.3 Staffing to Stabilize Performance

A service-rate control used to stabilize performance in a single-server queue is studied in my recent

[52]. Further work is underway with Ni Ma.
4.2.4 Simulation Methods
Current student Ni Ma has been studying and applying simulation methods, including a rare-event

method, to study single-server queues with time-varying arrivals [30, 31].

5 Fitting Queueing Models to Service System Data

A major focus of my recent work has been on methods to fit queueing models to service system
data. Examples are [22, 23] with Song-Hee Kim and [65] with current student Xiaopei Zhang. A
new direction is fitting birth-and-death processes to the sample path of a queue length process.
This is discussed in [9, 10, 48, 53|, the second and third with former IEOR undergraduate James

Dong (now in the graduate progem at Cornell).

6 Applications to Service Systems

Much of my recent research has been motivated by applications to service systems, such as call

centers and healthcare systems.

6.1 Assigning Arrivals to Servers

Former students Itai Gurvich (now at Cornell NY) and Ohad Perry (now at Northwestern Univer-

sity) worked on rules for assigning arriving customers to servers, e.g., [15, 16] and [40, 41]. Current



student Xu Sun has also been working in this area. We have developed a way to use routing rules

to create work breaks for agents from available idleness [43]. We have also studied service differen-

tiation with time-varying arrival rates [44]. Based on last year’s seminar, we have also completed a

paper on optimal battery purchasing and charging at an electric vehicle battery swap station; see

[42].
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