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A Multi-Class Fluid Model for a Contact Center with Skill-Based
Routing

Ward Whitt

Abstract A multi-class deterministic fluid model is proposed
to describe and improve the performance of a customer con-
tact center with skill-based routing. The fluid model can be re-
garded as an approximation for a stochastic queueing system
with multiple customer classes and multiple server groups, with
customer abandonment and non-exponential service-time and
time-to-abandon distributions. The fluid model is attractive to
provide a rough analysis of large systems, with high arrival rate
and many servers. Even though the fluid model evolves deter-
ministically, the service-time distributions and time-to-abandon
distributions beyond their means play a critical role. The fluid
model can be used for staffing, routing and system design, be-
cause it is possible to formulate tractable optimization prob-
lems.

Keywordsdeterministic fluid models, multi-server queues with
abandonment, contact centers, call centers, skill-based routing.

1. Introduction

It is a pleasure to contribute to this special issue in honor
of Paul Kuehn on his65th birthday. The time our paths
first crossed twenty-eight years ago was a turning point in
my research career. Even though I had received a doctor-
ate in engineering, I had not yet developed the perspec-
tive of an engineer. I was doing academic research, writ-
ing research papers motivated by research papers. Being
vaguely aware that something was missing, I left academia
in 1977 and joined Bell Labs, the research branch of
AT&T, and began to see engineering in action. There were
many impressive people at Bell Labs, and among them,
Paul stood out. Paul was the epitome of an engineer: His
talks evoked organization, clarity and technical depth.

In those early Bell Labs days, my research was primar-
ily aimed at developing new methods for approximately
analyzing complex non-Markovian multi-class queueing
networks, which serve as models of communication net-
works, computer systems and manufacturing facilities.
That effort led to a software package calledThe Queueing
Network Analyzer(QNA) [25, 29, 30], and it led to related
theory and applications [10, 11, 25, 27, 28, 33, 34]. As
acknowledged in [29], there were important precedents;
notable among them was Kuehn [19].

In 2002 I left AT&T and joined the IEOR Department of
Columbia University. My main research focus has shifted
from communication networks to service systems, specif-
ically to customer contact centers. A contact center is
a collection of resources providing an interface between
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a service provider and its customers. The classical con-
tact center is a telephone call center, containing service
representatives (agents) who talk to customers over the
telephone. In modern call centers, agents are supported
by elaborate information-and-communication-technology
equipment, such as an interactive voice response unit, an
automatic call distributor (ACD), a personal computer and
assorted databases. The operational efficiency has been
improved through voice over IP.

With the rapid growth of e-commerce, contact is often
made via e-mail or the Internet instead of by telephone.
There often are many types of service requests, requiring
different service skills, such as knowledge of different lan-
guages or technical information, and the agents differ in
their ability to respond to these requests. The ACD is able
to route calls to different agents through skill-based rout-
ing (SBR), but there remains an opportunity to for better
design and control, including routing and staffing. Since
contact centers play a vital role throughout the service
sector, and since the service sector is a growing part of
the economy, there is great potential for new technologi-
cal contributions in this area. For background on contact
centers, see [12].

Even though contact centers are quite different from the
Internet and web server farms, many of the same mod-
elling techniques used to analyze the performance of com-
puter systems and communication networks apply. Indeed,
to a large extent, modern contact centers can be regarded
as special kinds of computer systems and communication
networks. But differences in detail lead to different mod-
elling approaches. Clearly, there is a difference in time
scale between the transmission time of a data packet and
the duration of a service contact: in a contact center the
relevant time scale is minutes or seconds, corresponding
to the duration of a service contact or the waiting time
before service can begin. In many ways, a contact cen-
ter is more like a classical circuit-switched telephone net-
work, because the items to be processed are again calls and
it is natural for the queues to have multiple servers (the
agents). That connection suggests considering stochastic
network models such as in [17, 23, 31], but the network
structure plays less of a role here (e.g., each customer
needs only a single server) and delay in providing service
is an important consideration.

In this paper we propose a new model to study and
improve the design and performance of customer contact
centers. It is a multi-class deterministic fluid model, which
arises as the limit of a multi-class many-server queueing
system as both the arrival rate and the number of servers
increase. The fluid model is appealing in contrast to fluid
models associated with single-server queues and networks
of such queues, e.g., see Section 5.3.1 of [34], because
the performance descriptions depend on important model
probability distributions beyond their means. The reason
these distributions beyond their means play a critical role



2 author: title
AEÜ Int. J. Electron. Commun.

51 (1997) No. 1, 1–1

is that the state of the fluid model does not just consist
of the numbers of customers of each class in queue and
in service at each service group at each time, but in addi-
tion contains the length of time each customer has been
in queue or in service.The system state is given an impor-
tant extra time dimension, which we are not accustomed to
seeing in fluid models. (What we do here should be con-
trasted with the customary state in Markovian many-server
queueing models [15, 17, 20, 21]. Precedents for adding
time to the state exist in the analysis of non-Markovian
many-server queues, e.g., [8, 18].) In detail, the multi-
class fluid model introduced here is quite different from
QNA in [29], but it is similar in spirit. We introduce an ap-
proximation that greatly reduces the complexity, and yet
still captures important system dynamics. In both cases,
there is an attempt to treat non-Markovian models and
to capture the impact of probability distributions beyond
their means.

The multi-class fluid model introduced here extends
a corresponding single-class fluid model introduced in
Whitt [36]. That single-class fluid model already has had
some applications: to study the impact of uncertain model
parameters [38], to study the impact on aggregate system
performance of delay announcements [2], and to study
outsourcing strategies [22]. Alternative fluid models to de-
velop new approaches to contact centers have been pro-
posed by Bassamboo, Harrison and Zeevi [3, 4, 14].

Here we start in Section 2 by specifying a reference
SBR queueing model. Next in Section 3 we introduce
the proposed fluid model, concentrating on describing
the equilibrium or steady-state behavior. In Section 4 we
consider optimization problems for system design, which
specify staffing and partially specify routing. In Section 5
we discuss issues arising in the implementation of fluid-
model results in actual contact centers, in particular, ac-
counting for stochastic fluctuations and producing associ-
ated routing strategies in the actual contact center. Finally,
in Section 6 we draw conclusions.

2. An SBR Queueing Model

In this section we define a multi-class queueing model
of an SBR contact center, which we denote by(G/GI +
GI)m/sn. This queueing model helps put the fluid model
we introduce in the next section in perspective, because
we can view the fluid model as an approximation of it.

In the queueing model there arem customer classes
andn service groups, withsj servers in service groupj,
1 ≤ j ≤ n, and thus a total ofs = s1 + · · ·+ sn servers.
The individual customer classes and service groups are
homogeneous: Customers from each customer class are
assumed to have common characteristics, and servers in
each server group are assumed to have common charac-
teristics. (The priority skill matrix in [26] is one way to
relax that requirement.) The servers have skills, specify-
ing which customer classes they can serve. For example,
service group3 might be able to serve customer classes
1 and4. There is a queue associated with each customer
class, where arriving customers of that class wait if they
do not enter service immediately upon arrival. There also

is a queue for each service group, where idle servers of
that service group wait if they are not assigned to serve
waiting customers immediately upon service completion.
These various queues might be virtual. For examples of
queueing models of contact centers, see [12, 26] and ref-
erences therein.

The system is operated by making decisions at two
transition epochs: (1) at the epochs ofcustomer arrivals,
and (2) at the epochs ofservice completions. First, upon
each arrival of a class-i customer, we consider whether we
should assign that customer to an idle server in one of the
service groups that can serve classi, if one is available,
or we put the customer in the class-i queue to wait. Sec-
ond, upon each service completion by a server from server
groupj, we consider whether we should assign that server
to one of the waiting customers in the customer classes
that server can serve or we put the server in the queue of
idle class-j servers. We assume that some non-preemptive,
non-anticipating policy is used to assign customers to idle
servers, defined to address both those two decisions. For
both queues - of waiting customers and idle servers - we
must have somequeue disciplinefor deciding which is to
be assigned next. One natural candidate is first-in first-out
(FIFO), but others are possible. For example, we might as-
sign the server that has the largest proportion of idle time
during the last half hour.

Now we define thestochastic model elements. Cus-
tomer classi has arrivals according to ageneral station-
ary point processAi ≡ {Ai(t) : t ≥ 0} with arrival-
rate λi; that is, we assume thatAi(t)/t → λi > 0 as
t → ∞ with probability one (w.p.1). It is natural to as-
sume that the arrival processes are mutually independent
Poisson processes, but we do not require it.

Each class-i customer who is required to wait before
starting servicebalks (leaves immediately upon arrival)
with probability βi, and elects to wait with probability
1−βi, independently of the current state and history. Each
class-i customer that cannot enter service immediately and
does not balk may subsequentlyabandon(leave after join-
ing the queue, before starting service). Successive times
to abandon of class-i customers areindependent and iden-
tically distributed(i.i.d.) random variables with acumu-
lative distribution function(cdf) Fi. That is natural with
invisible queues (when waiting customers cannot see the
state of the system, as is typical for contact centers without
delay announcements).

We assume that customers do not abandon after they
start service. The service times of class-i customers may
depend on the service group where they are served. Suc-
cessive service times of class-i customers by servers from
service groupj are i.i.d. random variables with a cdfGi,j .
We assume that the balking decisions, the times to aban-
don and the service times are all mutually independent
random variables, independent of the system history. (We
assume that balking and abandonment do not influence fu-
ture arrivals.)

Let Ti be a generic time to abandon for a class-i cus-
tomer, and letSi,j be a generic service time of a class-i
customer served by a server from service group-j. Then
our assumptions above imply thatFi(t) ≡ P (Ti ≤ t) and
Gi,j(t) ≡ P (Si,j ≤ t) for t ≥ 0. We assume that these
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random variables have finite means:ma,i ≡ E[Ti] and
ms,i,j ≡ E[Si,j ].

As advertised at the outset, an important goal is to cap-
ture the impact of probability distributions beyond their
means. It is significant that we do not assume that the
service-time cdf’sGi,j and the time-to-abandon cdf’sFi

are exponential. Statistical analysis of telephone-holding-
time data has shown that the probability distributions of
both service times and times to abandon often are not
nearly exponential [5, 7].

In running the SBR contact center, there are two de-
cisions to make: staffing and routing. The staffing is the
choice of the numberssj , for 1 ≤ j ≤ n, while the
routing specifies the assignment of servers to customers.
There also is a larger design question, specifying the cus-
tomer classes to be served, perhaps including the arrival
ratesλi, and the service groups to provide the service,
perhaps including the service-time cdf’sGi,j . Our approx-
imate fluid model in the next section is intended to focus
on the higher-level issues such as design, as opposed to de-
termining the optimal routing strategy for each individual
service interaction (call).

3. An Approximating Fluid Model

In this section we introduce a fluid model approximat-
ing the (G/GI + GI)m/sn SBR queueing model from
the last section. The fluid model arises by scaling up the
arrival rates and the numbers of servers, while holding
the balking probabilitiesβi, time-to-abandon cdf’sFi and
service-time cdf’sGi,j fixed, but we do not establish any
limits here.

We can do the scaling by introducing a family of models
indexed by a scaling parameterη, and then letη →∞. We
let the arrival rates and number of servers be functions of
η, and then let

λi(η)
η

→ λi and
sj(η)

η
→ sj as η →∞ . (1)

We then scale the customer number-in-service and queue-
length processes by dividing byη, converting individual
customers into “atoms of fluid” in the limit. Thusλi(η) ≈
ηλi is the arrival rate of customers in the queueing model
η, but λi becomes the arrival rate of class-i fluid in the
limit after scaling. Similarly,sj(η) ≈ ηsj is the number
of class-j servers in queueing systemη, while sj is the
class-j fluid service capacity in the limiting fluid model
obtained after scaling.

For the single-class (m = 1), single-service-group
(n = 1) case (where routing is not an issue), the fluid
model has been shown to be asymptotically correct in the
regime (1) in [36]. (So far, the asymptotic correctness has
only been verified for the MarkovianM/M/s + M spe-
cial case [21, 35] and a discrete-time analog of the gen-
eralGt(n)/GI/s + GI fluid model, allowing both time-
dependent and state-dependent arrivals [36], but since the
time increments can be arbitrarily short, that discrete-
time setting suffices for practical purposes.) The steady-
state behavior of the single-class fluid model has been

shown to yield accurate approximations for the corre-
sponding queueing systems with100 servers in over-
loaded scenarios through comparisons with exact numer-
ical results obtained from numerical algorithms and sim-
ulations [35, 36, 37]. At the same time, the fluid model
provides great simplification that makes it possible to in-
vestigate other more complicated questions. For additional
discussion of fluid models, see [1, 13, 14, 16, 20].

A major complication arising when we go from the
single-class fluid model in [36] to the multi-class fluid
model here is the routing. However, recent work indicates
that it is possible to treat the routing in a relatively “broad-
stroke” way; e.g., see [26]. With that in mind, we treat the
routing in a very elementary way. That leaves open the
question of how best to do the routing in practice. In Sec-
tion 5 we discuss how that might be done, but that remains
to be more fully explored.

Here is how we we handle routing (assign class-i fluid
to class-j service groups) in the fluid model: At the outset,
we allocate a proportionri,j of all class-i fluid to service
groupj. Thus,

∑n
j=1 ri,j = 1 for all i. Mathematically,

these proportions can be regarded as probabilities, but we
are not explicitly assuming that Markovian routing is be-
ing employed. We regard these proportionsri,j as deci-
sion variables, to be specified. They may be limited by the
available skills of the servers in the service groups.

Thus, our fluid model is characterized by the parame-
ter six-tuple(λ, β,F, r,G, s), whereλ ≡ (λ1, . . . , λm)
and β ≡ (β1, . . . , βm) are m-tuples of numbers,F ≡
(F1, . . . , Fm) is an m-tuple of cdf’s,r ≡ (ri,j : 1 ≤
i ≤ m, 1 ≤ j ≤ n) is anm × n matrix of numbers,
G ≡ (Gi,j : 1 ≤ i ≤ m, 1 ≤ j ≤ n) is anm × n matrix
of cdf’s, ands ≡ (s1, . . . , sn) is ann-tuple of positive
integers. The matrixr can be regarded as the transition
matrix of a discrete-time Markov chain, because the rows
are probability vectors. The way the parameters simplify
going from the queueing model to the fluid model pro-
vides insight. Note that the arrival processesAi enter in
only through their ratesλi, but the full cdf’sFi andGi,j

remain relevant in the description of the fluid model.
We now describe how the fluid model evolves over time.

Class-i fluid arrives at rateλi and, a priori, we know that
a proportionri,j of it will be served at service groupj,
so we can think of the queue for classi partitioned inton
parts, depending upon the ultimate destination. For some
classesi, the class-i fluid can enter service immediately
upon arrival, but for otheri the fluid must wait in queue.
Of the class-i fluid that has to wait before starting service,
a proportionFi(t) abandons by timet after it arrives if it
has not started service by that time. It will turn out that
all class-i fluid that is served will enter service at a fixed
deterministic timewi.

The fluid model can describe the evolution of perfor-
mance (flow through the system, queue lengths and times
spent) over time as a function of the initial conditions (and
the model elements), as discussed for the single-class,
single-service-group case in [36]. Indeed, a discrete-time
analog of the fluid model is introduced in Section 6 of
[36], which makes it possible to numerically calculate the
time-dependent performance of a fluid model with time-
dependent and state-dependent arrivals, as a function of
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the initial conditions. However, here we will only consider
the stationary fluid model in steady state. We intend to dis-
cuss the time-dependent fluid model elsewhere.

We start by describing the offered loads (requested ser-
vice times), noting that the amount of work depends on
the routing, since the required service time depends on the
routing. However, we now take the routing as specified by
the proportionsri,j The (i, j)-offered loadis the arrival
rate times the mean service time, i.e.,Li,j = λiri,jms,i,j .
The(i, j) offered load represents the type-j service capac-
ity needed to serve class-i customers, provided that we can
ignore stochastic fluctuations, which is precisely what the
fluid model does.

The model behavior is much more interesting if some
classes are not served immediately. Then balking and
abandonment play an important role. We now partition the
setC of customer classes into two subsets:I andC − I.
The customers in classesI get served immediately upon
arrival, while the customers in the remaining classes will
have to wait before starting service. We can explore the
different partitions separately. We now assume that one
specific partition has been selected, withC − I nonempty.
That will have implications on what happens for the(i, j)
pairs and for the system as a whole.

LetS ≡ {1, 2, . . . , n} be the set of all server groups and
let Si be the set of server groups that are allowed to serve
customers of classi, 1 ≤ i ≤ m. Let C ≡ {1, 2, . . . ,m}
be the set of all customer classes and letCj be the customer
classes that can be served by server groupj, 1 ≤ j ≤ n.
We require thati ∈ Cj if and only if j ∈ Si.

We assume that all the customers in classes belonging to
I can be served immediately, while the remainder cannot.
That leads to two different sets of constraints:

∑

i∈I∩Cj

λiri,jms,i,j = sj,I < sj (2)

∑

i∈(C−I)∩Cj

λiri,j(1− βi)ms,i,j > s′j ≡ sj − sj,I (3)

for all j, where sj,I is defined in (2). In (3) we have
assumed that the offered load after balking exceeds the
available capacity, after deleting the committed capacity
for those classes to be served immediately. We thus allow
balking and abandonment for classesi in C − I to reduce
the load faced by the servers, enabling the servers to meet
the requirements. We are thus thinking of our overall SBR
contact center as a queueing system with customer balk-
ing and abandonment operating in the so-calledefficiency-
driven (ED) heavy-traffic regime[6, 13, 35, 36, 39].

We also assume for each waiting classi (in C − I) that
all class-i fluid that is served enters service at a fixed pos-
itive time wi. We regard these waiting times as decision
variables, along with the routing proportionsri,j and the
capacitiessj , but these waiting timeswi must satisfy equa-
tions, just as for the one-dimensional fluid model in [36],
namely,

∑

i∈(C−I)∩Cj

Li,j(1− βi)F c
i (wi) = s′j (4)

for all j, 1 ≤ j ≤ n, wheres′j is the reduced service-
group-j capacity defined in (3) andF c

i (t) ≡ 1 − Fi(t)
is the complementary cdf (ccdf) associated with the cdf
Fi. Equation (4) says that the total reduced offered load at
each server group after balking and abandonment should
coincide with the available capacity there.

The steady-state behavior of the fluid model is deter-
mined by the systems of equations in (2) and (4), where
the variablessj , ri,j andwi are allowed to vary. Here is
what happens for class-i fluid that must wait before begin-
ning service: A proportionβi of all arriving class-i fluid
balks. All class-i fluid that is served waits preciselywi be-
fore entering service. A proportionri,j of all class-i input
is allocated to server groupj. LetP (Ai) be the proportion
of class-i fluid that abandons; letP (Si) be the proportion
of class-i fluid that is served; and letP (Si,j) be the pro-
portion of all class-i fluid that is served by service groupj.
ThenP (Ai) = (1− βi)Fi(wi), P (Si) = (1− βi)F c

i (wi)
andP (Si,j) = P (Si)ri,j .

The densityof class-i fluid that has been waiting for
time t is

qi(t) = λi(1− βi)F c
i (t), 0 ≤ t ≤ wi , (5)

with qi(t) = 0 for all t > wi. Thequeue contentfor class
i is

Qi = λi(1− βi)
∫ wi

0

F c
i (t) dt . (6)

Even though these queue-content descriptions are de-
terministic functions, the time-to-abandon cdf’sFi play a
prominent role in the description. Under assumption (3),
the abandonment cdf’s determine the final steady-state
performance via the critical system of equations (4), and
they influence the queue content via (6).

The service-time cdf’sGi,j enter in so far only via their
meansms,i,j . In steady state, the servers are all always
busy. Class-i fluid is processed from service groupj at rate
1/ms,i,j . Class-i fluid enters and leaves service groupj at
a total rate ofP (Si,j)/ms,i,j . The entire system is kept in
steady state by having the class-i arrival rateλi balanced
by the class-i balking, abandonment and service rates -
λiβi, λiP (Ai) andλiP (Si), respectively:λi = λiβi +
λiP (Ai) + λiP (Si).

We can also describe the density of the fluid that is in
service. For classesi ∈ (C−I)∩Cj , the density of class-i
fluid that has been in service at service groupj for time t,
and thus has been in the system for timewi + t is

bi,j(t) = λi(1− βi)F c
i (wi)ri,jG

c
i,j(t), t ≥ 0 . (7)

For classesi ∈ I ∩ Cj , the density of class-i fluid that
has been in service at service groupj (and thus also in the
system) for timet is bi,j(t) = λiri,jG

c
i,j(t), t ≥ 0. The

total fluid content that has been in the service at service
groupj for time t is bj(t) =

∑
i∈Cj

bi,j(t), t ≥ 0.
While the density of fluid content is deterministic, we

interpret the experience of individual customers or “atoms
of fluid” as stochastic, regarding these as i.i.d. (The strong
law of large numbers is acting behind the scenes to con-
vert the individual independent actions into an overall sys-
tem deterministic behavior.) Fori ∈ C − I, each “class-i
customer” abandons before timet with probabilityFi(t),
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provided that0 < t < wi. With probability F c
i (t), the

customer remains in the system after timet. However, any
customer that has not abandoned by timewi enters service
at that time. Thus, as stated above, the waiting time (before
entering service) is preciselywi for all class-i customers
that do enter service. The expected or average waiting time
for all class-i fluid is

E[Wi] = P (Si)wi +(1−βi)
∫ wi

0

x dFi(x) =
Qi

λi
, (8)

as shown in [36]. (The last relation can be viewed as a
consequence of Little’s law,L = λW ). The meanE[Wi]
is of course less than or equal to the waiting timewi of
the class-i fluid that is served. We regardWi as a random
variable because we interpret the experience of individual
customers (atoms of fluid) is random.

4. Costs and Benefits

We first consider the special case in which all customers
are served immediately upon arrival. Then afterwards we
consider the more interesting remaining cases.

4.1 The Case of No Waiting

When all customers are served immediately upon ar-
rival, we can serve all fluid without any congestion if the
number of servers in each service group exactly matches
the offered load at that service group, i.e., if

∑m
i=1 Li,j =

sj for all j, 1 ≤ j ≤ n.
In this case, there is no balking or abandonment, so

the balking probabilitiesβi and the abandonment cdf’sFi

play no role. In this context, we can use the fluid model to
design the system, i.e., to choose the numbers of servers
sj and the scheduled routingri,j in order to meet speci-
fied demand, specified in terms of the arrival ratesλi and
the mean service timesms,i,j . To do so, we formulate an
optimization problem.

Let vi,j(x) be the rate value is accrued from serving a
quantityx of class-i fluid by service groupj and letcj(y)
be the cost rate of providing a quantityy of capacity for
service groupj. Theoptimization problemis to maximize
the net reward rateR ≡ R(r, s), where

R(r, s) ≡
m∑

i=1

n∑

j=1

vi,j(λiri,j)−
n∑

j=1

cj(sj) , (9)

over all allowedri,j andsj , subject to the constraintsthat
∑

i∈Cj

λiri,jms,i,j = sj for all j , (10)

∑

j∈Si

ri,j = 1,
∑

j∈S−Si

ri,j = 0 for all i ,

wheresj ≥ 0 andri,j ≥ 0 for all i andj.
If the functionsvi,j and cj appearing in the objective

function (9) are linear, then the optimization is alinear
program, but we think it may be important to consider
nonlinear rewards and costs. By introducing a sequence

of linear approximations for the nonlinear objective func-
tion, it may be possible to develop an effective iterative
optimization algorithm.

For the many applications with few customer classes
and few service groups, it may be possible to essen-
tially evaluate the performance of all cases, by perform-
ing a search, by performing evaluations over successive
finite grids.. For example, with two classes and two ser-
vice groups, we have four proportionsri,j to define, but
r1,1 = 1 − r1,2 and r2,2 = 1 − r2,1. We thus can let
r1,2 = j1/k and r2,1 = j2/k, and consider alternative
vectors(j1, j2), with 0 ≤ ji ≤ k, i = 1, 2.

4.2 Some Classes Are Not Served Immediately

The model behavior is much more interesting if some
classes are not served immediately. Then balking and
abandonment play an important role. In the fluid model
specified above there are four sets of decision variables:
The fluid steady-state depends on (1) the partition of the
set C of customer classes into the subsetI that will be
served immediately and the complementC − I that will
have to wait, (2) the service-group capacitiessj , (3) the
routing proportionsri,j and (4) the waiting timeswi for
each classi ∈ C − I. These decision variables are collec-
tively required to satisfy the systems of equations in (2)
and (4). (We also require condition (3) to ensure that all
service groups inC −I operate in the overloaded regime.)
But there typically are many immediate-service subsetsI
and sets of these variablessj , ri,j andwi that will yield
a valid steady-state for the fluid model. To discriminate
between them, we can impose costs and benefits, similar
to those in (9). We consider how we might do that in this
section.

Suppose that a reward rate (positive value)v(i, j, t) is
earned per unit of fluid per unit time for serving class-i
fluid by service groupj after these customers have waited
time t. This reward is presumably decreasing in the wait-
ing time t. Suppose that a cost ratecb(i) is incurred per
unit of fluid per unit of time for having class-i fluid balk.
(Under assumption (3), that cannot be controlled.) Sup-
pose that a cost rateca(i, t) is incurred per unit of fluid
per unit time for having class-i fluid abandon after having
waited timet. This cost is presumably increasing in the
time t. Suppose that there is a holding cost ratech(i, x)
incurred per unit time for havingx units of class-i fluid
waiting in queue. This cost rate is presumably increasing
in the levelx.

Then thetotal reward rate per unit time, as a function
of the decision variablesI, s ≡ (sj), r ≡ (ri,j) andw ≡
(wi : i ∈ C − I) is

R ≡ R(I, s, r,w) =
∑

i∈I


λi

∑

j∈Si

ri,jv(i, j, 0)


 (11)

+
∑

i∈C−I


λi(1− βi)F c

i (wi)
∑

j∈Si

ri,jv(i, j, wi)

− λiβic
b
i − λi(1− βi)

∫ wi

0

ca(i, t) dFi(t)− ch(i, Qi)
)

,
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whereQi is given in (6). Given values of the decision vari-
ablesI, r ≡ (ri,j), s ≡ (sj) andw ≡ (wi), we can calcu-
late the total reward and its components. It is also natural
to consider theoptimization problem:

maximize R(I, r,w, s) (12)

over the decision variablesI, r ≡ (ri,j), s ≡ (sj) and
w ≡ (wi), subject to the constraints

∑

i∈I∩Cj

λiri,jms,i,j ≡ sj,I < sj

∑

i∈(C−I)∩Cj

Li,j(1− βi)F c
i (wi) = s′j ≡ sj − sj,I ,

∑

j∈Si

ri,j = 1,
∑

j∈S−Si

ri,j = 0 , (13)

with sj ≥ 0 andri,j ≥ 0 for all i andj, assuming condi-
tion (3). The first two constraints in (13) are just (2) and
(4).

5. Implementation

We briefly discuss two issues in relating the fluid model
to actual service systems: (1) coping with stochastic fluc-
tuations, and (2) routing consistent with the fluid model.

5.1 Stochastic Fluctuations

Since the fluid model ignores all uncertainty and
stochastic fluctuations, it is natural to consider some ad-
justments to take account of the stochastic fluctuations.
That might not be necessary, because balking and aban-
donment should act to prevent overload. But as a means
to address stochastic fluctuations directly, we suggest
augmenting the staffing by asquare-root safety factor
[6, 9, 13, 26, 32].

Given that we have found the desired staffing vector
s = (s1, . . . , sn), we let the total staff bẽs ≡ s + γ

√
s,

wheres ≡ s1 + · · · + sn and γ is a quality-of-service
(QoS) parameter, with higherγ yielding higher quality of
service. Then, as in equations (5.1) and (5.2) of [26], we
allocate the spare capacity to the service groups propor-
tionally according to their square roots; i.e., we let

s̃j = sj + x
√

sj , 1 ≤ j ≤ n , (14)

where

x =
s̃− s∑n
j=1

√
sj

=
γ
√

s∑n
j=1

√
sj

. (15)

The QoS parameterγ can be chosen assuming the load
in entire system has a normal distribution with mean and
variances.

5.2 Routing

The fluid model is consistent with many different rout-
ing schemes, but the performance of the approximation

may well depend upon the method used. For example, the
routing could be Markovian with routing probabilities co-
inciding with the proportionsri,j . That Markovian rout-
ing is evidently asymptotically correct in the heavy-traffic
regime (1), but it might not perform so well in practice.
One natural improvement is to perform a form of gener-
alized round robin, that deterministically allocated class-i
customers to class-j service groups in the right propor-
tions. Such a generalized round-robin scheme eliminates
the randomness associated with Markovian routing. But
neither of these two routing schemes responds flexibly to
the actual state of the system.

As an alternative routing scheme that responds flexibly
to the system state, we propose adynamic priority scheme
based on atracking index. Let r̂i,j(t) be the proportion of
class-i customers that have been routed to service groupj
during the last time interval of lengtht (among those that
have been routed to some service group during that time).
We can then construct a dynamic priority index, such as

pi,j(t) ≡ ri,j

r̂i,j(t)
. (16)

With the dynamic priority index in (16), a new arriving
class-i customer at some time would select a free server
from among the eligible service groups with free servers,
with the service group chosen being the one having the
highest priority indexpi,j(t) at that arrival instant (among
all eligible service groups). A server from service groupj
who becomes free at some time would select a customer to
serve from one of the customer-class queues, with the cus-
tomer class chosen being the one having the highest prior-
ity index pi,j(t) at that arrival instant (among all eligible
customer classes). The idea, of course, is that the dynamic
priority scheme should assign customers to servers in a
way that will produce the desired proportions in the long
run, but at the same time, avoid unnecessary server idle-
ness when there are customers requiring service. That is,
with the dynamic priority scheme, we hope to ensure that
we obtain the available economies of scale from sharing
among service groups.

We have only illustrated one way in which a routing
policy can be generated from the proportions chosen in
the fluid model. It remains to examine alternative routing
schemes, to see if they are roughly consistent with the fluid
model and if they perform desirably.

6. Conclusions

We have introduced a multi-class deterministic fluid
model of an SBR contact center havingm customer
classes andn service groups, which can be used to study
problems of design and control. An important realistic fea-
ture is the use of balking and abandonment to ensure sta-
ble model behavior, where the net input is balanced by
the net output. Another important realistic feature is the
use of non-exponential service-time and time-to-abandon
distributions. The key to successfully treating the result-
ing complex non-Markovian model is to: first, consider
an idealized view of a large system (with high arrival rate
and many servers), which is formalized by the asymptotic
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regime (1) and, second, to augment the system state by
including the time in service and the time in queue.

In this short space we have only been able to present a
framework that can be used for further analysis, but we
believe that there is much that can be done within that
framework. Moreover, within that framework, we have
only described the steady-state behavior of a stationary
fluid model. As indicated in [36], the framework can also
be used to describe time-dependent behavior, of both a
non-stationary model (having time-dependent input) and
a stationary model with different initial conditions. Fur-
ther work on time-dependent behavior and supporting
stochastic-process limits is in progress.
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