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A FLUID LIMIT FOR AN OVERLOADED X MODEL VIA
AN AVERAGING PRINCIPLE
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CWI and Columbia University

We prove a many-server heavy-traffic fluid limit for an overloaded
Markovian queueing system having two customer classes and two ser-
vice pools, known in the call-center literature as the X model. The
system uses the fixed-queue-ratio-with-thresholds (FQR-T) control,
which we proposed in a recent paper as a way for one service system
to help another in face of an unexpected overload. Under FQR-T,
customers are served by their own service pool until a threshold is
exceeded. Then, one-way sharing is activated with customers from
one class allowed to be served in both pools. After the control is
activated, it aims to keep the two queues at a pre-specified fixed
ratio. For large systems that fixed ratio is achieved approximately.
For the fluid limit, or FWLLN, we consider a sequence of properly
scaled X models in overload operating under FQR-T. Our proof of
the FWLLN follows the compactness approach, i.e., we show that the
sequence of scaled processes is tight, and then show that all converg-
ing subsequences have the specified limit. The characterization step is
complicated because the queue-difference processes, which determine
the customer-server assignments, remain stochastically bounded, and
need to be considered without spatial scaling. Asymptotically, these
queue-difference processes operate in a faster time scale than the
fluid-scaled processes. In the limit, due to a separation of time scales,
the driving processes converge to a time-dependent steady state (or
local average) of a time-varying fast-time-scale process (FTSP). This
averaging principle (AP) allows us to replace the driving processes
with the long-run average behavior of the FTSP.

1. Introduction. In this paper we prove that the deterministic fluid
approximation for the overloaded X call-center model, suggested in [38] and
analyzed in [39], arises as the many-server heavy-traffic (MS-HT) fluid limit
of a properly scaled sequence of overloaded Markovian X models under the
fixed-queue-ratio-with-thresholds (FQR-T) control. The X model has two
classes of customers and two service pools, one for each class, but with both
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pools capable of handling customers from either class. The service-time dis-
tributions depend on both the class and the pool. The FQR-T control was
suggested in [37] as a way to automatically initiate sharing (i.e., sending
customers from one class to the other service pool) when the system en-
counters an unexpected overload, while ensuring that sharing does not take
place when it is not needed.

1.1. A Series of Papers. This paper is the fourth in a series. First, in
[37] we heuristically derived a stationary fluid approximation, whose pur-
pose was to approximate the steady-state of a large many-server X system
operating under FQR-T. More specifically, in [37] we assumed that a convex
holding cost is incurred on both queues whenever the system is overloaded,
and our aim was to develop a control designed to minimize that cost. We
further assumed that the system becomes overloaded due to a sudden, un-
expected shift in the arrival rates, and that the staffing of the service pools
cannot be changed quickly enough to respond to that sudden overload. Un-
der the heuristic stationary fluid approximation, it was shown that FQR-T
outperforms the fluid-optimal static (fixed numbers of servers) allocation,
even when the new arrival rates are known.

Second, in [38] we applied a heavy-traffic averaging principle (AP) as an
engineering principle to describe the transient (time-dependent) behavior of
a large overloaded X system operating under FQR-T. The suggested fluid
approximation was expressed via an ordinary differential equation (ODE),
which is driven by a stochastic process. Specifically, the expression of the
fluid ODE as a function of time involves the local steady state of a stochastic
process at each time point t ≥ 0, which we named the fast-time-scale process
(FTSP). As the name suggests, the FTSP operates in (an infinitely) faster
time scale than the processes approximated by the ODE, thus converges
to its local steady state instantaneously at every time t ≥ 0. Extensive
simulation experiments showed that our approximations work remarkably
well, even for surprisingly small systems, having as few as 25 servers in each
pool.

Third, in [39] we investigated the ODE suggested in [38] using a dynamical-
system approach. The dynamical-system framework could not be applied
directly, since the ODE is driven by a stochastic process, and its state space
depends on the distributional characteristics of the FTSP. Nevertheless, we
showed that a unique solution to the ODE exists over an interval [0, δ) for
some δ > 0, and that this interval can be extended as long as the FTSP
is positive recurrent, typically all the way to +∞. The stationary fluid ap-
proximation, derived heuristically in [37], was shown to exist as the unique
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fixed point (or stationary point) for the fluid approximation. We also pro-
vided easily-verifiable conditions for the solution of the ODE to converge
to this stationary point, with the convergence being exponentially fast. In
addition, a numerical algorithm to solve the ODE was developed, based on a
combination of a matrix-geometric algorithm and the classical forward Euler
method for solving ODE’s.

1.2. Overview. In this fourth paper, we will prove that the solution to the
ODE in [38, 39] is indeed the MS-HT fluid limit of the overloaded X model,
which we also call a functional weak law of large numbers (WLLN); see The-
orem 6.1; and see §3 for the key assumptions. In doing so, we will also prove
the AP which in turn will provide a strong version of state-space collapse
(SSC) for the two-dimensional queue process and the server-assignment pro-
cesses; for the SSC results, see Theorems 4.1, 4.2, 5.6 and 7.1. In a subsequent
paper [40] we prove a functional central limit theorem (FCLT) refinement
of the FWLLN here, which describes the stochastic fluctuations about the
fluid path.

We only consider the X model during the overload incident, once sharing
has begun; that will be captured by our main Assumptions 1 and 3 in §3.
As a consequence, the model is stationary but the evolution is transient.
Because of customer abandonment, the stochastic models will all be stable,
approaching proper steady-state distributions. We will be proving a MS-HT
limit for the system processes.

Convergence to the fluid limit will be established in roughly three steps:
(i) representing the sequence of systems (§4), (ii) proving that the sequence
considered is C-tight (§8.1), and (iii) uniquely characterizing the limit ([39]
and much of the rest of §3-§8).

The first representation step in §4 starts out in the usual way, involving
rate-1 Poisson processes and martingales, as reviewed in [36]. However, the
SSC in Theorem 4.1 requires a delicate analysis of the unscaled sequence;
see §7, especially Lemma 7.4.

The second tightness step in §8.1 is routine, but the final characterization
step is challenging. These last two steps are part of the standard compact-
ness approach to proving stochastic-process limits; see [8], [13], [36] and
§11.6 in [48]. As reviewed in [13] and [36], uniquely characterizing the limit
is usually the most challenging part of the proof, but it is especially so here.
Characterizing the limit is difficult because the FQR-T control is driven by
a queue-difference process which is not being scaled and hence does not con-
verge to a deterministic quantity with spatial scaling. However, the driving
process operates in a different time scale than the fluid-scaled processes,



4 O. PERRY AND W. WHITT

asymptotically achieving a (time-dependent) steady state at each instant of
time, yielding the AP.

As was shown in [39], the AP and the FTSP also complicate the analysis
of the limiting ODE. First, it requires that the steady state of a continuous-
time Markov chain (CTMC), whose distribution depends on the solution
to the ODE, be computed at every instant of time. (As explained in [39],
this argument may seem circular at first, since the distribution of the FTSP
is determined by the solution to the ODE, while the evolution of the so-
lution to the ODE is determined by the behavior of the FTSP. However,
the separation of time scales explains why this construction is consistent.)
The second complication is that the AP produces a singularity region in
the state space, causing the ODE to be discontinuous in its full state space.
Hence, both the convergence to the MS-HT fluid limit, and the analysis of
the solution to the ODE depend heavily on the state space of the ODE,
which is characterized in terms of the FTSP. For that reason, many of the
results in [39] are needed for proving convergence, and we summarize the
essential results in §5 below.

1.3. Literature. Our previous papers discuss related literature; see espe-
cially §1.2 of [37]. Our FQR-T control extends the FQR control suggested
and studied in [16–18], but the limits there were established for a different
regime under different conditions. Here we propose FQR-T for overload con-
trol and establish limits for overloaded systems. Unlike that previous work,
here the service rates may depend on both the customer class and the service
pool in a very general way. In particular, our X model does not satisfy the
conditions of the previous theorems even under normal loads.

There is a substantial literature on averaging principles; e.g., see [26] and
references therein. However, there are only a few papers in the queueing
literature involving averaging principles; see p. 71 of [48] for discussion.
Two notable papers are [11], which considers the diffusion limit of a polling
system with zero switch-over times, and [21], which considers large loss net-
works under a large family of controls. Reference [21] is closely related to
our work since it considers the fluid limits of such loss systems, with the
control-driving process moving at a faster time scale than the other pro-
cesses considered. However, the proof techniques here and in [21] are very
different. In particular, the AP in [21] is proved via the martingale problem,
building on [28]. In contrast, here we rely heavily on stochastic bounds, e.g.,
see Lemmas 7.1, 8.9 and 8.10.

There is now a substantial literature on fluid limits for queueing models,
some of which is reviewed in [48]. For recent work on many-server queues,
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see [25, 23]. Because of the separation of time scales here, our work is in the
spirit of fluid limits for networks of many-server queues in [5, 6], but again
the specifics are quite different. Their separation of time scales justifies using
a pointwise stationary approximation asymptotically, as in [47, 32].

2. Preliminaries. In this section we specify the queueing model, which
we refer to as the X model. We then specify the FQR-T control. We then
provide a short summary of the MS-HT scaling and the different regimes.
We conclude with our conventions about notation.

2.1. The Original Queueing Model. The Markovian X model has two
classes of customers, arriving according to independent Poisson processes
with rates λ1 and λ2. There are two queues, one for each class, in which
customers that are not routed to service immediately upon arrival wait to
be served. Customers are served from each queue in order of arrival. Each
class-i customer has limited patience, which is assumed to be exponentially
distributed with rate θi, i = 1, 2. If a customer does not enter service before
he runs out of patience, then he abandons the queue. The abandonment
keep the system stable for all arrival and service rates.

There are two service pools, with pool j having mj homogenous servers (or
agents) working in parallel. This X model was introduced to study two large
systems that are designed to operate independently under normal loads, but
can help each other in face of unanticipated overloads. We assume that all
servers are cross-trained, so that they can serve both classes. The service
times depend on both the customer class i and the server type j, and are
exponentially distributed; the mean service time for each class-i customer
by each pool-j agent is 1/µi,j . All service times, abandonment times and ar-
rival processes are assumed to be mutually independent. The FQR-T control
described below assigns customers to servers.

We assume that, at some unanticipated time, the arrival rates change in-
stantaneously, with at least one increasing. At this time the overload incident
has begun. We consider the system only after the overload incident has be-
gun, assuming that it remains in effect. We further assume that the staffing
cannot be changed (in the time scale under consideration) to respond to
this unexpected change of arrival rates. Hence, the arrival processes change
from Poisson with rates λ̃1 and λ̃2 to Poisson processes with unknown (but
fixed) rates λ1 and λ2, where λ̃i < mi/µi,i, i = 1, 2 (normal loading), but
λi > µi,imi for at least one i (the unanticipated overload). Without loss of
generality, we assume that pool 1 (and class-1) is the overloaded (or more
overloaded) pool. The fluid model (ODE) is an approximation for the sys-
tem performance during the overload incident, so that we start with the
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new arrival rate pair (λ1, λ2). (The overload control makes sense much more
generally; we study its performance in this specific scenario.)

The two service systems may be designed to operate independently under
normal conditions (without any overload) for various reasons. In [37, 38] we
considered the common case in which there is no efficiency gain from service
by cross-trained agents. Specifically, in [37] we assumed the strong inefficient
sharing condition

(2.1) µ1,1 > µ1,2 and µ2,2 > µ2,1.

Under condition (2.1), customers are served at a faster rate when served in
their own service pool than when they are being served in the other-class
pool. However, many results in [37] hold under the weaker basic inefficient
sharing condition: µ1,1µ2,2 ≥ µ1,2µ2,1.

If (2.1) holds then it is disadvantageous (from the standard quality-of-
service perspective) for customers to be served in the other-class pool, since
their service tends to be longer. Indeed, it is shown in [38] that there can
be serious performance degradation, even in normal loading, if both pools
are allowed to serve the other class. Without customer abandonment, the
sharing can cause the system to become unstable, causing the queue lengths
to diverge to infinity.

When there is no sharing (before the overload has occurred), the two sep-
arate systems can each be modeled as an Erlang-A (M/M/mi + M) model,
having a Poisson arrival process with rate λ̃i, mi servers, exponential service
times having mean 1/µi,i and exponential times to abandon having mean
1/θi. Then standard performance analysis methods apply. We are concerned
with the performance with sharing in face of the overload, including devel-
oping an effective control.

It is easy to see that some sharing can be beneficial if one system is
overloaded, while the other is underloaded (has some slack), but sharing
may not be desirable if both systems are overloaded. In order to motivate the
need for sharing when both systems are overloaded, in [37] we considered a
convex-cost framework. With that framework, in [37] we showed that sharing
may be beneficial, even if it causes the total queue length (queue 1 plus queue
2) to increase.

Let Qi(t) be the number of customers in the class-i queue at time t,
and let Zi,j(t) be the number of class-i customers being served in pool j
at time t, i, j = 1, 2. Given a stationary routing policy, the six-dimensional
stochastic process X6 ≡ {(Qi(t), Zi,j(t) : i, j = 1, 2) : t ≥ 0} becomes a
six-dimensional CTMC. (≡ means equality by definition.) In principle, the
optimal control could be found from the theory of Markov decision processes,
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but that approach seems prohibitively difficult. For a complete analysis,
we would need to consider the unknown transient interval over which the
overload occurs, and the random initial conditions, depending on the model
parameters under normal loading. In summary, there is a genuine need for
the simplifying approximation we develop.

2.2. The FQR-T Control for the Original Queueing Model. The purpose
of FQR-T is to prevent sharing when the system is not overloaded, and
to rapidly start sharing when the arrival rates shift. For any given arrival
rates, if sharing is desired, then we allow sharing in only one direction, so
that Z1,2(t)Z2,1(t) = 0 for all t ≥ 0. When sharing takes place, FQR-T
aims to keep the two queues at a certain ratio, depending on the direction
of sharing. Thus, there is one ratio, r1,2, which is the target ratio if class
1 is being helped by pool 2, and another target ratio, r2,1, when class 2 is
being helped by pool 1. As explained in [37], appropriate ratios can be found
using the steady-state fluid approximation In particular, the specific FQR-T
control is optimal in the special case of a separable quadratic cost function.
More generally, fixed ratios are often approximately optimal.

We now describe the control. The FQR-T control is based on two pos-
itive thresholds, k1,2 and k2,1, and the two queue-ratio parameters, r1,2

and r2,1. We define two queue-difference stochastic processes D̃1,2(t) ≡
Q1(t) − r1,2Q2(t) and D̃2,1 ≡ r2,1Q2(t) − Q1(t). As shown in [37], there
is no incentive for sharing simultaneously in both directions. These ratio
parameters should satisfy r1,2 ≥ r2,1; see Proposition EC.2 and (EC.11) of
[37].

As long as D̃1,2(t) ≤ k1,2 and D̃2,1(t) ≤ k2,1 we consider the system
to be normally loaded (i.e., not overloaded) so that no sharing is allowed.
Hence, in that case, the two classes operate independently. Once one of
these inequalities is violated, the system is considered to be overloaded, and
sharing is initialized. For example, if D̃1,2(t) > k1,2, then class 1 is judged
to be overloaded and service-pool 2 is allowed to start helping queue 1.
As soon as the first class-1 customer starts his service in pool 2, we drop
the threshold k1,2, but keep the other threshold k2,1. Now, the sharing of
customers is done as follows: If a type-2 server becomes available at time t,
then it will take its next customer from the head of queue 1 if D̃1,2(t) > 0.
Otherwise, it will take its next customer from the head of queue 2. If at
some time t after sharing has started queue 1 empties, or D̃2,1(t) = k2,1

then the threshold k1,2 is reinstated. The control works similarly if class 2 is
overloaded, but with pool-1 servers helping queue 2, and with the threshold
k2,1 dropped once it is crossed.
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In addition, we impose the one-way sharing rule: at no time do we allow
that Z1,2(t)Z2,1(t) > 0. That is, if at some time t0 ≥ 0 the threshold k2,1

is crossed, we do not allow class-2 customers to be sent to service pool 1
if Z1,2(t0) > 0, and similarly in the other direction. The one-way sharing
rule prevents sharing in both direction that may occur due to stochastic
fluctuations in the finite stochastic systems.

It can be of interest to consider alternative variants of the FQR-T control
just defined. In very large systems, the thresholds can be chosen to be large
enough compared to the stochastic fluctuations, so that they are very rarely
crossed under normal loads. At the same time, the thresholds can be chosen
to be small enough compared to the queue size when the system becomes
overloaded so that they do not affect the cost during the overload; see §2.3
and the scaling in (2.5). In such circumstances one can choose to rely on the
thresholds alone to prevent unwanted two-way sharing, without applying the
one-way sharing rule. We might also elect not to drop the threshold after it
is crossed.

During the overload, after the sharing has begun in one specified direction
and remains in effect, the six-dimensional stochastic process

(2.2) X6(t) ≡ (Qi(t), Zi,j(t); i, j = 1, 2), t ≥ 0

is a CTMC. This is a stationary model, but we are concerned with its tran-
sient behavior, because it is not starting in steady state. We aim to describe
that transient behavior. The control keeps the two queues at approximately
the target ratio, e.g., if queue 1 is being helped, then Q1(t) ≈ r1,2Q2(t).
If sharing is done in the opposite direction, then r2,1Q2(t) ≈ Q1(t) for all
t ≥ 0. That is substantiated by simulation experiments, some of which are
reported in [37, 38]. In this paper we will prove that the ≈ signs are replaced
with equality signs in the fluid limit.

2.3. Many-Server Heavy-Traffic (MS-HT) Scaling. We develop the fluid
limit for the system after sharing has begun, which we assume is during
an overload incident. To develop the fluid limit, we consider a sequence
of X systems, {Xn

6 : n ≥ 1} defined as in (2.2), indexed by n (denoted by
superscript), with arrival rates and number of servers growing proportionally
to n, i.e.,

(2.3) λ̄n
i ≡

λn
i

n
→ λi and m̄n

i ≡
mn

i

n
→ mi as n →∞,
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and the service and abandonment rates held fixed. We then define the asso-
ciated fluid-scaled stochastic processes

Q̄n
i (t) ≡ Qn

i (t)
n

and Z̄n
i,j(t) ≡

Zn
i,j(t)
n

, i, j = 1, 2, t ≥ 0,

(2.4) X̄n
6 (t) ≡ (Q̄n

i (t), Z̄n
i,j(t) : i, j = 1, 2), t ≥ 0.

In this framework, with additional regularity conditions, we will prove that
X̄n

6 ⇒ x6 in an appropriate framework (see §2.5), where x6 is a deterministic
continuous function. We call this a FWLLN. We do not state this FWLLN
until §6, because the limit x6 is quite complicated.

We now return to the description of our systems. For each system n, there
are thresholds kn

1,2 and kn
2,1, scaled as suggested in [37, 38]:

(2.5)
kn

i,j

n
→ 0 and

kn
i,j√
n
→∞ as n →∞, i, j = 1, 2.

The first scaling by n is chosen to make the thresholds asymptotically neg-
ligible in MS-HT fluid scaling, so they have no asymptotic impact on the
steady-state cost. The second scaling by

√
n is chosen to make the thresholds

asymptotically infinite in MS-HT diffusion scaling, so that asymptotically
the thresholds will not be exceeded under normal loading. It is significant
that MS-HT scaling shows that we should be able to simultaneously satisfy
both conflicting objectives in large systems.

Primarily motivated by [37], we will also consider additional variants of
the model. Specifically, We intorduce shifting thresholds κn

i,j , satisfying

(2.6)
κn

i,j

n
→ κi,j ≥ 0 as n →∞, i, j = 1, 2.

These shifting thresholds can be of order n, i.e., κi,j > 0, if a version of
FQR-T, the shifted FQR-T control, is employed. Shifted FQR-T is designed
to keep the relation between the queues at Q1 ≈ r1,2Q2 + κ1,2, or Q1 ≈
r2,1Q2 + κ2,1, which is the optimal relation in the stationary fluid model for
the important class of separable quadratic cost functions; see EC.4 in [37].

We use the original thresholds kn
1,2 and kn

2,1 to activate sharing. If thresh-
old kn

1,2 is passed to activate sharing, then instead of simply dropping it, we
replace it with the new shifting threshold κn

1,2 (and similarly in the other
direction). When the shifting thresholds are of order O(n), they implement
shifted FQR-T, as discussed above. These shifting constants can also stand
for the original thresholds kn

i,j , i, j = 1, 2, if we choose not to drop them



10 O. PERRY AND W. WHITT

once sharing is initialized (for the reasons described in §2.2 above). In that
case, the scale of κn

i,j is as in (2.5). The basic model is included by simply
having κn

1,2 = κn
2,1 = 0. To summarize, we consider κn

i,j = O(n), but without
specifying their exact scale.

Sharing with pool 2 helping class 1 is allowed when first D̃n
1,2 > kn

1,2, but
because we use the shifting thresholds, a class-1 customer will be assigned
to pool 2 only when D̃n

1,2 > kn
1,2 ∨ κn

1,2. If κn
1,2 → ∞, then D̃n

1,2 → ∞ as
n → ∞. Hence, we redefine the queue-difference process, hereafter referred
to simply as difference process, by subtracting κn

1,2 from Qn
1 , i.e.,

(2.7) Dn
1,2(t) ≡ (Qn

1 (t)− κn
1,2)− r1,2Q

n
2 (t), t ≥ 0.

We now apply FQR using the process Dn
1,2 in (2.7): if Dn

1,2(t) > 0, then every
newly available agent (in either pool) takes his new customer from the head
of the class-1 queue. If Dn(t) ≤ 0, then every newly available agent takes
his new customer from the head of his own queue. As before, the sharing
is terminated altogether at time t if either Qn

1 (t) = 0 or if D̃n
2,1(t) = kn

2,1.
(Note that we use the original queue-difference process D̃n

2,1 and threshold
kn

2,1.) Because of the one-way sharing rule, sharing in the opposite direction,
with pool 1 helping class 2, can start only after Zn

1,2 = 0. Once the sharing
has been terminated, the startup procedure for sharing is as specified above,
essentially the same in each direction.

2.4. The MS-HT ED Regime. For a Markovian I model, having one ser-
vice pool, one customer class and customer abandonment, i.e., the M/M/m+
M model (also called the Erlang-A model), three different MSHT limiting
regimes were identified in [14]: If the system is asymptotically overloaded,
then it is called the efficiency-driven (ED) limiting regime; if the system is
asymptotically critically loaded, then it is called the quality-and-efficiency-
driven (QED) limiting regime; if the system is asymptotically underloaded,
then it is called the quality-driven (QD) limiting regime. These same cases
without abandonment had been specified by [19]. For one class and one pool,
it is natural to let n be the total number of servers (mn = n for all n). Then
the regimes are determined by the limit (1− ρn)

√
n → β as n →∞, where

ρn ≡ λn/nµ is the traffic intensity in model n. The regimes (i) ED, (ii) QED,
and (iii) QD then occur, respectively, if the limit holds with (i) β = −∞,
(ii) −∞ < β < ∞, and (iii) β = +∞.

Let

(2.8) ρn
i ≡

λn
i

µi,imn
i

, and ρi ≡ lim
n→∞ ρn

i =
λi

µi,imi
, i = 1, 2.
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Then ρn
i is the traffic intensity of class i to pool i, and ρi can be thought of

as its fluid counterpart.
Our results depend on the system being overloaded. However, in our case,

a system can be overloaded even if one of the classes is not overloaded by
itself. We define the following quantities:

(2.9) qa
i ≡

(λi − µi,imi)+

θi
and sa

i ≡
(

mi − λi

µi,i

)+

, i = 1, 2,

where (x)+ ≡ max{x, 0}. It is easy to see that qa
i sa

i = 0, i = 1, 2. Note
that qa

i is the steady-state of the class-i fluid-limit queue when there is no
sharing, i.e., when both classes operate independently. Similarly, sa

i is the
steady state of the class-i fluid-limit idleness process. For the derivation of
the quantities in (2.9) see Theorem 2.3 in [49], especially equation (2.19),
and §5.1 in [37]. See also §6 in [39].

2.5. Conventions About Notation. We use the usual R, Z and N notation
for the real numbers, integers and nonnegative integers, respectively. Let Rk

denote all k-dimensional vectors with components in R. For a subinterval
I of [0,∞), let Dk(I) ≡ D(I,Rk) be the space of all right-continuous Rk

valued functions on I with limits from the left everywhere, endowed with
the familiar Skorohod J1 topology. We let dJ1 denote the metric on Dk(I).
Since we will be considering continuous limits, the topology is equivalent to
uniform convergence on compact subintervals of I. Let Ck be the subset of
continuous functions in Dk. Let e be the identity function in D ≡ D1, i.e.,
e(t) ≡ t, t ∈ I. The function 0 ∈ D will be denoted simply by 0, when the
context is clear, or by 0e. Let ⇒ denote convergence in distribution.

We use the familiar big-O and small-o notations for deterministic func-
tions: For two real functions f and g, we write

f(x) = O(g(x)) whenever lim sup
x→∞

|f(x)/g(x)| < ∞,

f(x) = o(g(x)) whenever lim sup
x→∞

|f(x)/g(x)| = 0.

The same notation is used for sequences, replacing x with n ∈ N.
For a ∈ R, let (a)+ ≡ max{0, a} and (a)− ≡ max{0,−a}. For a function

x : [0,∞) → R and 0 < t < ∞, let

‖x‖t ≡ sup
0≤s≤t

|x(s)|.

Let Y ≡ {Y (t) : t ≥ 0} be a stochastic process, and let f : [0,∞) → [0,∞) be
a deterministic function. We say that Y is OP (f(t)), and write Y = OP (f),
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if ‖Y ‖t/f(t) is stochastically bounded (SB), i.e., if

lim
a→∞ lim sup

t→∞
P

(‖Y ‖t

f(t)
> a

)
= 0.

We say that Y is oP (f(t)) if ‖Y ‖t/f(t) converges in probability (and thus,
in distribution) to 0, i.e., if ‖Y ‖t/f(t) ⇒ 0 as t → ∞. If f(t) ≡ 1, then
Y = OP (1) if it is SB, and Y = oP (1) if ‖Y ‖t ⇒ 0. We define OP (f(n))
and oP (f(n)) in a similar way, but with the domain of f being N, i.e.,
f : N→ [0,∞).

For a sequence {Y n : n ≥ 1} (of stochastic processes, random variables
or real numbers) we denote its fluid-scaled version by Ȳ n ≡ Y n/n. The
fluid limit of stochastic processes Ȳ n is denoted by Ȳ . The diffusion-scaled
sequence of stochastic processes, centered about their fluid limit, is denoted
by Ŷ n ≡ (Y n − nȲ )/

√
n, and its limit by Ŷ . We let Y̆ n ≡ Y n/

√
n be the√

n-scaled processes without the centering about the fluid limit.

3. The Main Assumptions. We now specify the three main assump-
tions: Assumptions 1, 2 and 3 below. These three assumptions are assumed
to hold throughout the paper.

First, we have the three assumptions already made, (2.3), (2.5) and (2.6).
(Here we do not require (2.1).) Our first new assumption is on the asymptotic
behavior of the rates; it specifies the essential form of the overload. For the
statement, recall the definitions in (2.3), (2.6) and (2.9), which describe the
asymptotic behavior of the rates.

Assumption 1. (system overload, with class 1 more overloaded)

The rates in the overload are such that the limiting rates satisfy

(1) θ1(qa
1 − κ1,2) > µ1,2s

a
2.

(2) qa
1 − κ1,2 > rqa

2 .

Condition (1) in Assumption 1 ensures that class 1 is asymptotically over-
loaded, even after receiving help from pool 2. To see why, first observe that,
since sa

2 ≥ 0, qa
1 > κ1,2 ≥ 0, so that λ1 > µ1,1m1 and ρ1 > 1. Hence, class 1

is overloaded. Next observe that µ1,2s
a
2 = µ1,2(1− ρ2)+, and that (1− ρ2)+

is the amount of (steady-state fluid) extra service capacity in pool 2, if it
were to serve only class-2 customers. Thus, Condition (1) in Assumption 1
implies that enough class-1 customers are routed to pool 2 to ensure that
pool 2 is overloaded when sharing is taking place. This conclusion will be
demonstrated in §7. Note that Condition (1) in Assumption 1 is slightly
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stronger than Condition (I) of Assumption A in [39]. because here there is
a strong inequality instead of a weak inequality.

Condition (2) in Assumption 1 ensures that class 1 is more overloaded
than class 2 if class 2 is also overloaded. This condition helps ensure that
there is no incentive for pool 1 to help pool 2, so that Zn

2,1 should remain at
0.

We now expand upon the centering constants. Given Assumption 1, we
can simplify the notation, dropping the subscripts from κn

1,2 and κ1,2.

Assumption 2. (centering constants)

For the sequence {κn : n ∈ N} of centering constants, we require that

(1) κn ≥ 0 for all n and κn/n → κ, where 0 ≤ κ < ∞.
(2) If κ = 0, then in addition we require that κn → c1 and κn/ log n → c2

as n →∞, where 0 ≤ ci ≤ ∞ for i = 1, 2.

In Assumption 2, the first condition is the standard scaling for the center-
ing constants. If κ = 0, then we have FQR after sharing has been activated
by passing the thresholds; if κ 6= 0, then we have shifted FQR after sharing
has been activated by passing the thresholds. From the perspective of the
centering constants alone, it would suffice to consider κn = nκ. However,
we have imposed additional conditions for the case κ = 0. We did this so
that we could consider the FQR-T control with the original thresholds re-
tained. As discussed in §2.3, we want those thresholds to be o(n) but large
compared to O(

√
n); e.g., we might have κn = np for 1/2 < p < 1. The

regularity conditions involving scaling by log n is for results in §7 showing
that the idleness is at most O(log n).

Our third assumption is about the initial conditions. For the initial condi-
tions, we assume that the overload, whose asymptotic character is specified
by Assumption 1, has begun some time in the past and is ongoing. In addi-
tion, sharing with pool 2 allowed to help class 1 has been activated by having
the threshold kn

1,2 exceeded by the queue difference process D̃n
1,2 and is in

process. Thus actual sharing is being controlled by the difference process
Dn

1,2 in (2.7). The initial time 0 might be the time that Dn
1,2 first becomes

strictly positive, and a class 1 customer is sent to pool 2, but we allow more
general initial conditions.

We require that a fluid-scale limit exists at time 0, where the limit x(0)
satisfies the initial conditions required for the existence of a unique solution
to the ODE, established in [39]. The ODE and the FSTP will be reviewed
here in §5. Specifically, Assumption 3 refers to the set A defined in (5.16)
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and expressed in (5.22). We will be explaining Assumption 3 in the next two
sections. For the statement, recall the definition of the six-dimensional fluid-
scaled process X̄n

6 in (2.4) and let X̄n ≡ (Q̄n
1 , Q̄n

2 , Z̄n
1,2) be the associated

three-dimensional process. (In §4 we show that it suffices to consider X̄n.)
We also need to separately specify initial conditions for the queue-difference
processes in (2.7).

Let

(3.1) Bn ≡ {Zn
1,1(0) = mn

1 , Zn
2,1(0) = 0, Zn

1,2(0) + Zn
2,2(0) = mn

2}.
Assumption 3. (initial conditions) As n →∞,

P (Bn) → 1, Dn
1,2(0) ⇒ L and X̄n(0) ⇒ x(0) ∈ A,

where Bn is defined in (3.1), Dn
1,2 is defined in (2.7), L is a proper random

variable and x(0) is a deterministic element of R3.

If the system is initialized not in A, then other fluid models hold during
the initial period before A is hit; See §8 in [39]. In this paper we concentrate
on time intervals on which the averaging principle is operating.

4. Representation of Xn
6 . The statements of our asymptotic results

are easier to understand if we first exhibit the representation of Xn
6 that we

will use in our proof.

4.1. Starting with Rate-1 Poisson Processes. Let An
i (t) count the num-

ber of class-i customer arrivals, let Sn
i,j(t) count the number of service com-

pletions of class-i customers by agents in pool j, and let Un
i (t) count the

number of class-i customers to abandon from queue, all in model n during
the time interval [0, t]. the fundamental evolution equations for the queue
lengths are:

(4.1) Qn
i (t) = An

i (t)− Sn
i,1(t)− Sn

i,2(t)− Un
i (t), t ≥ 0, i = 1, 2,

where the processes Sn
i,j(t) depend on the service processes Zn

i,j(t) and the
routing rule.

Following common practice, as reviewed in §2 of [36], we represent the
counting processes in terms of mutually independent rate-1 Poisson pro-
cesses. We represent the counting processes An

i , Sn
i,j and Un

i as

An
i (t) ≡ Na

i (λn
i t),

Sn
i,j(t) ≡ N s

i,j

(
µi,j

∫ t

0
Zn

i,j(s) ds

)
,

Un
i (t) ≡ Nu

i

(
θi

∫ t

0
Qn

i (s) ds

)
, t ≥ 0,

(4.2)
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where Na
i , N s

i,j and Nu
i for i = 1, 2; j = 1, 2 are eight mutually independent

rate-1 Poisson processes.
Within this framework, the evolution of the four service processes Zn

i,j ,
and thus Xn in (2.4), depends on the routing and the state of the service pro-
cesses. Suppose that one-way sharing has been activated with pool 2 allowed
to help class 1. Thus we have previously had Dn

1,2(t) > 0 and Zn
2,1(t) = 0.

Since then, we assume that the other retained threshold kn
2,1 has not been

crossed, so that Zn
2,1 has remained at 0. At the present (later) time, we need

to know whether or not Dn
1,2(t) > 0. If Dn

1,2(t) > 0, then each newly avail-
able server should take a customer from the head of queue 1. However, if
Dn

1,2(t) ≤ 0, then a pool-2 server will only take a customer from class 2.

4.2. Simplification via SSC. However, since the system is assumed to be
overloaded, it is reasonable to expect that the idleness processes in the two
service pools are asymptotically negligible in diffusion (and thus in fluid)
scale. That means that Zn

1,1(t) + Zn
2,1(t) ≈ mn

2 and Zn
2,2(t) + Zn

1,2(t) ≈ mn
2

for all t > 0, provided that those approximations hold at t = 0. Also, since
we assume that class 1 is more overloaded than class 2, it is reasonable to
expect that Zn

1,2 becomes positive before the threshold kn
2,1 is crossed (for

large n), so that Zn
2,1(t) = 0, at least on some initial interval [0, τ ], τ > 0.

If that is true, then Zn
1,1(t) ≈ mn

1 and Zn
2,2(t) ≈ mn

2 − Zn
1,2(t), t ∈ [0, τ ].

The approximation signs will be replaced with equality with both diffusion
and fluid scaling, producing a SSC result. Specifically, the dimension of the
service process reduces from four to one in the limit with diffusion scaling.
That will be proved in Theorem 7.1 below.

We now state a result which will allow us to represent the system in
a relatively simple form, building on the SSC for the service process just
explained (and which will be proved in §7). Recall that Xn

6 has been defined
in §2.3, the assumptions in §3 are in force, dJ1 denotes the standard Skorohod
J1 metric and Y̆ n ≡ Y n/

√
n for any Y n ∈ Dk.

Theorem 4.1. (Representation via SSC) As n →∞, dJ1(X̆
n
6 , X̆n,∗) ⇒ 0

in D6, where Xn,∗ ≡ Xn
6 ≡ (Qn

1 , Qn
2 , Zn

1,1, Z
n
2,1, Z

n
1,2, Z

n
2,2) under the extra

condition that Zn
1,1 = mn

1 , Zn
2,1 = 0 and Zn

1,2 + Zn
2,2 = mn

2 , with Xn ≡
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(Qn
1 , Qn

2 , Zn
1,2) being represented via

Zn
1,2(t) ≡ Zn

1,2(0) +
∫ t

0
1{Dn

1,2(s)>0} dSn
2,2(t)−

∫ t

0
1{Dn

1,2(s)≤0} dSn
1,2(t)

= Zn
1,2(0) + N s

2,2

(
µ2,2

∫ t

0
1{Dn

1,2(s)>0}(mn
2 − Zn

1,2)(s) ds

)

−N s
1,2

(
µ1,2

∫ t

0
1{Dn

1,2(s)≤0}Zn
1,2(s) ds

)
, t ≥ 0,

(4.3)

Qn
1 (t) ≡ Qn

1 (0) + An
1 (t)−

∫ t

0
1{Dn

1,2(s)>0} dSn(t)

−
∫ t

0
1{Dn

1,2(s)≤0} dSn
1,1(t)− Un

1 (t)

= Qn
1 (0) + Na

1 (λn
1 t)−N s

1,1(µ1,1Z
n
1,1t)

−N s
1,2

(
µ1,2

∫ t

0
1{Dn

1,2(s)>0}Zn
1,2(s)) ds

)

−N s
2,2

(
µ2,2

∫ t

0
1{Dn

1,2(s)>0}(mn
2 − Zn

1,2(s)) ds

)

−Nu
1

(
θ1

∫ t

0
Qn

1 (s) ds

)
, t ≥ 0,

(4.4)

Qn
2 (t) ≡ Qn

2 (0) + An
2 (t)−

∫ t

0
1{Dn

1,2(s)≤0} dSn
2,2(t)

−
∫ t

0
1{Dn

1,2(s)≤0} dSn
1,2(t)− Un

2 (t) t ≥ 0

= Qn
2 (0) + Na

2 (λn
2 t)

−N s
2,2

(
µ2,2

∫ t

0
1{Dn

1,2(s)≤0}(mn
2 − Zn

1,2(s)) ds

)

−N s
1,2

(
µ1,2

∫ t

0
1{Dn

1,2(s)≤0}Zn
1,2(s) ds

)

−Nu
2

(
θ2

∫ t

0
Qn

2 (s) ds

)
, t ≥ 0.

(4.5)

With a slight abuse of notation, henceforth we use Xn ≡ (Qn
1 , Qn

2 , Zn
1,2)

to refer to both its direct representation in D3 and (by virtue of Theorem
4.1) the essentially three-dimensional process Xn,∗ in D6.

Theorem 4.1 is achieved as a corollary of Theorem 7.1, which will be stated
in §7. Without it, we could not write the representation (4.3)-(4.5). In fact,
if we do not know that Zn

2,1 is asymptotically negligible, then the evolution
of Xn

6 becomes intractable. Specifically, the system may oscillate between
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different directions of sharing, with Zn
1,2 being positive at some instances,

and Zn
2,1 being positive at other instances. The system may also get “stuck”

with Zn
2,1(t) > 0 and Zn

1,2(t) = 0 for all t > t0, for some t0 > 0, even though
we want to have sharing in the other direction. (See Lemma 7.2 below. If at
some t0 ≥ 0 we have that z2,1(t0) > 0 then z2,1(t) > 0 for all t > t0, where
z2,1 is the fluid limit of Z̄n

2,1.) These situations are ruled out by Theorems
7.1 and 4.1.

4.3. Simplification via Martingales. We now obtain further simplifica-
tion using the familiar martingale representation, again see [36]. Consider
the representation of Xn in (4.3) - (4.5) above, and let

Mn,a
i (t) ≡ Na

i (λn
i t)− λn

i t,

Mn,u
i (t) ≡ Nu

i

(
θi

∫ t

0
Qn

i (s)) ds

)
− θi

∫ t

0
Qn

i (s) ds,

Mn,s
i,2 (t) ≡ N s

i,2(J
n
i,2(t))− Jn

i,2(t),

(4.6)

where Jn
i,2(t) are the compensators of the Poisson-processes N s

i,2(t) in (4.3)-
(4.5), i = 1, 2, e.g.,

Jn
1,2(t) ≡ µ1,2

∫ t

0
1{Dn

1,2(s)<0}Zn
1,2(s) ds.

The quantities in (4.6) can be shown to be martingales (with respect to an
appropriate filtration); See [36]. However, we will not use any martingale
property, and call those terms martingales for convenience.

The following lemma follows easily from the FSLLN for Poisson processes
and the C-tightness to be established in Lemma 8.1:

Lemma 4.1. (fluid limit for the martingale terms) As n →∞,

n−1(Mn,a
1 ,Mn,a

2 ,Mn,u
1 ,Mn,u

2 ,Mn,s
1,2 , Mn,s

2,2 ) ⇒ 0 in D6.

Proof. By Lemma 8.1, the sequence {X̄n
6 : n ≥ 1} is tight in D. Thus any

subsequence has a convergent subsequence. By the proof of Lemma 8.1, the
sequences {Jn

i,j/n} are also C-tight, so that {Jn
i,j/n}, i = 1, 2, all converge

along a converging subsequence as well. Consider a converging subsequence
{Xn} and its limit X̄, which is continuous by Lemma 8.1. Then the claim
of the lemma follows for the converging subsequence from the FSLLN for
Poisson processes and the continuity of the composition map at continuous
limits, e.g., Theorem 13.2.1 in [48]. In this case, the limit of each fluid-
scaled martingale is the zero function 0e ∈ D, regardless of the converging
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subsequence we consider, and is thus unique. Hence we have completed the
proof.

We can thus obtain an alternative martingale representation for X̄n. In
particular, we can let

(4.7) M̄n ≡ X̄n − C̄n,

where X̄n is defined in (4.3)-(4.5) and, with an abuse of notation, C̄n ≡
(Q̄n

1 , Q̄n
2 , Z̄n

1,2) for

Z̄n
1,2(t) ≡ Z̄n

1,2(0) + µ2,2

∫ t

0
1{Dn

1,2(s)>0}(m̄n
2 − Z̄n

1,2(s)) ds

− µ1,2

∫ t

0
1{Dn

1,2(s)≤0}Z̄n
1,2(s) ds,

Q̄n
1 (t) ≡ Q̄n

1 (0) + λ̄n
1 t− m̄n

1 t− µ1,2

∫ t

0
1{Dn

1,2(s)>0}Z̄n
1,2(s)) ds

− µ2,2

∫ t

0
1{Dn

1,2(s)>0}(m̄n
2 − Z̄n

1,2(s)) ds− θ1

∫ t

0
Q̄n

1 (s) ds,

Q̄n
2 (t) ≡ Q̄n

2 (0) + λ̄n
2 t− µ2,2

∫ t

0
1{Dn

1,2(s)≤0}(m̄n
2 − Z̄n

1,2(s)) ds

− µ1,2

∫ t

0
1{Dn

1,2(s)≤0}Z̄n
1,2(s) ds− θ2

∫ t

0
Q̄n

2 (s)) ds.

(4.8)

(We have used the same notation (Q̄n
1 , Q̄n

2 , Z̄n
1,2) in the definition of the

different procsses X̄n in (4.3)-(4.5) and C̄n in (4.8) above. The following
result shows that this anomaly causes no problem. Recall that dJ1 denotes
the standard J1 metric.

Theorem 4.2. As n →∞, M̄n ⇒ 0, so that dJ1(X̄
n, C̄n) ⇒ 0 in D3 as

n →∞, where X̄n is defined in (4.3)-(4.5) and C̄n is defined in (4.8).

Proof. Since the weak limit of the centered fluid-scaled Poisson processes
in (4.6) is the (continuous) 0 function, the sum of any two or more of those
processes also converges to 0 ≡ 0e in D, by the continuity of addition at
continuous limits, and is therefore oP (1). Hence we get M̄n ⇒ 0 as n →∞
directly from Lemma 4.1, from which the remaining convergence follows
directly.

As a consequence of Theorem 4.2, henceforth we can focus on C̄n in
(4.8) instead of X̄n in (4.3)-(4.5). We will do so, but redefining X̄n: We let
X̄n ≡ C̄n; i.e., henceforth we let X̄n ≡ (Q̄n

1 , Q̄n
2 , Z̄n

1,2) in (4.8).
Theorem 4.2 reduces the expression of X̄n to the random rates of the

Poisson processes, and reveals the basic structure of the limiting ODE in
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(5.13). Due to Theorem 4.1, the representation in (4.8) is equivalent to the
representation of the six-dimensional process X̄n

6 , for Xn
6 in (2.4). Hence,

proving that X̄n converges to a unique deterministic limit, will imply the
convergence of X̄n

6 to a limit in a three-dimensional hyperplane of D6, which
is homeomorphic to D3. It is thus enough to work with the three-dimensional
process in (4.8). Given Theorems 4.1 and 4.2, we will show that

X̄n ≡ (Q̄n
1 , Q̄n

2 , Z̄n
1,2) ⇒ x ≡ (q1, q2, z1,2) in D3([0, δ]) as n →∞

for some δ > 0, where x is a deterministic element of C3, with x(t) ∈ A for
all t ∈ [0, δ].

5. The FTSP and the ODE. Even though Theorems 4.1 and 4.2
allow us to consider only the three-dimensional process Xn in (4.8), we
still must cope with the indicator functions in the integrands in (4.8), which
appear because of the FQR routing. Thus, the key to a successful analysis of
Xn is understanding the behavior of the stochastic queue-difference process
Dn

1,2 ≡ (Qn
1 − κn) − r1,2Q

n
2 in (2.7) when some, but not all, type-2 servers

are helping class-1 customers, and the system is overloaded in the sense of
Assumption 1.

In [39] we presented and analyzed a three dimensional ODE (which we
refer to simply as “the ODE” since it is the only ODE under consideration).
This ODE was conjectured to arise as the limit of the fluid-scaled version of
Xn in (4.3)-(4.5). In this paper we will prove that conjecture. Specifically,
we will show that X̄n indeed converges weakly to the solution of that three-
dimensional ODE, so that the fluid limit of X̄n and the solution to the
ODE coincide. However, the ODE is well defined and its solution exists as
an element of C3, regardless of any convergence results.

Since an understanding of the ODE, its state space and its solution is
required in order to characterize the fluid limit, we begin by defining the
ODE (motivated by the sequence X̄n). In doing so, we will be reviewing
[39]; see [39] for a complete analysis of the ODE. Recall that the ODE is
driven by a stochastic process, whose local steady-state distributions govern
the evolution of the solution to the ODE. We thus start by defining the
driving process, which we call the FTSP. To understand the FTSP, we need
to better understand the queue-difference process.

5.1. The Drift Rates of the Queue-Difference Processes. In this subsec-
tion we specify the transition rates of the queue-difference process {Dn

1,2(t) :
t ≥ 0} in (2.7) at any time t0 conditional on Xn(t0) = Γn, where sharing is
taking place; i.e., we consider the transition rates of the process

(5.1) Dn ≡ Dn(Γn) ≡ {Dn(Γn, t) : t ≥ t0} ≡ {Dn
1,2(X

n(t0), t) : t ≥ t0}
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at time t0 conditional on Xn(t0) = Γn, where Γn is a deterministic state,
under the assumption that sharing is taking place. (We will explain when
sharing will be taking place in the following subsections.) The initial dif-
ference at time t0 is Dn

1,2(X
n(t0), t0) = Qn

1 (t0) − κn − r1,2Q
n
2 (t0), where

(Qn
1 (t0), Qn

2 (t0)) is part of Xn
6 (t0). To be well defined, the state Γn should

be for the full CTMC Xn
6 . The transition rates are independent of time t0

for any given process state Γn. However, because of §4, it suffices to focus
on the three-dimensional process X̄n. In other words, we can think of Γn

as a state of Xn, i.e., a vector in N2 × [0,mn
2 ]. Thus the transition rates

in (5.2)-(5.5) below, under this simplifying assumption, are asymptotically
correct with o(n) terms as n →∞ (which we omit).

To simplify analysis, we will work with an integer state space. Thus we
assume that the shifting thresholds κn

1,2 in (2.7) are integers and that r1,2 is
rational, in particular, r1,2 = j/k for positive integers j and k. We then look
at queue differences measured in units of 1/k. Hence, we have transitions of
±j and ±k instead of the original values of ±1 and ±r.

When Dn(Γn, t0) = m ≤ 0, let the transition rates be λ
(j)
− (n,m, Γn),

λ
(k)
− (n,m, Γn), µ

(j)
− (n,m, Γn) and µ

(k)
− (n,m, Γn) for transitions of +j, +k,

−j and −k, respectively. When Dn(Γn, t0) = m > 0, let the transition
rates be λ

(j)
+ (n,m, Γn), λ

(k)
+ (n,m,Γn), µ

(j)
+ (n,m, Γn) and µ

(k)
+ (n,m, Γn) for

transitions of +j, +k, −j and −k, respectively.
First, for Dn(Γn, t0) = m ≤ 0 with Γn ≡ (Qn

1 , Qn
2 , Zn

1,2), the upward rates
are

λ
(k)
− (n,m, Γn) ≡ λn

1 , and

λ
(j)
− (n,m, Γn) ≡ µ1,2Z

n
1,2 + µ2,2(mn

2 − Zn
1,2) + θ2Q

n
2 ,

(5.2)

corresponding, first, to a class-1 arrival and, second, to a departure from the
class-2 queue, caused by a type-2 agent service completion (of either cus-
tomer type) or by a class-2 customer abandonment. Similarly, the downward
rates are

(5.3) µ
(k)
− (n,m,Γn) ≡ µ1,1m

n
1 + θ1Q

n
1 and µ

(j)
− (n,m, Γn) ≡ λn

2 ,

corresponding, first, to a departure from the class-1 customer queue, caused
by a class-1 agent service completion or by a class-1 customer abandonment,
and, second, to a class-2 arrival.

Next, for Dn(Γn, t0) = m ∈ (0,∞), we have upward rates

(5.4) λ
(k)
+ (n,m, Γn) ≡ λn

1 and λ
(j)
+ (n,m, Γn) ≡ θ2Q

n
2 ,
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corresponding, first, to a class-1 arrival and, second, to a departure from
the class-2 customer queue caused by a class-2 customer abandonment. The
downward rates are

µ
(k)
+ (n,m,Γn) ≡ µ1,1m

n
1 + µ1,2Z

n
1,2 + µ2,2(mn

2 − Zn
1,2) + θ1Q

n
1 and

µ
(j)
+ (n,m,Γn) ≡ λn

2 ,
(5.5)

corresponding, first, to a departure from the class-1 customer queue, caused
by (i) a type-1 agent service completion, (ii) a type-2 agent service comple-
tion (of either customer type), or (iii) by a class-1 customer abandonment
and, second, to a class-2 arrival.

Using these transition rates, we can define the drift rates for Dn(Xn(t), t) ≡
Dn(Γn, t), conditional upon Xn(t) = Γn. Let these drift rates in the regions
(0,∞) and (−∞, 0] be denoted by δn

+(Xn(t)) and δn−(Xn(t)), respectively,
Combining (5.20) and (5.2)-(5.5), we obtain

δn
+(Xn(t)) ≡ j[λn

1 − µ1,1m
n
1 + (µ2,2 − µ1,2)Zn

1,2(t)− µ2,2m
n
2 (t)− θ1Q

n
1 (t)]

− k[λn
2 − θ2Q

n
2 (t)],

δn
−(Xn(t)) ≡ j[λn

1 − µ1,1m
n
1 − θ1Q

n
1 (t)]

− k[λn
2 + (µ2,2 − µ1,2)Zn

1,2(t)− µ2,2m
n
2 − θ2Q

n
2 (t)].

(5.6)

In order to have sharing, we will want to have δn
+(Γn) < 0 < δn−(Γn).

5.2. The FSTP. The FTSP can perhaps be best understood as being
the limit of a family of time-expanded queue-difference processes, defined for
each n ≥ 1 by

(5.7) Dn
e (Γn, s) ≡ Dn

1,2(t0 + s/n), s ≥ 0.

where we condition on Xn(t0) = Γn for some deterministic vector Γn as-
suming possible values of Xn(t0) ≡ (Qn

1 (t0), Qn
2 (t0), Zn

1,2(t0)). (The time t0
is an arbitrary initial time.) We choose Γn so that sharing will occur (or will
occur eventually for n large enough). Since we divide s in (5.7) by n, we
are effectively dividing the rates by n. We are applying a “microscope” to
“expand time” and look at the behavior after the initial time more closely.
That is in contrast to the usual time contraction with conventional HT lim-
its. See [46] for a previous limit using time expansion. We will explain the
limit in detail in §5.6 below.

With that in mind, we see that the FTSP should have the same state
space as Dn

1,2. When we relate the FTSP to the expanded queue-difference
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process in §5.6 below, we will also relate the initial differences, which so far
are unspecified here. Since we already converted to an integer state space,
the FTSP will be a continuous-time Markov chain (CTMC) on Z. With
that convention, the FTSP {D(γ, s) : s ≥ 0} has transition rates among the
integers determined at any time s (in the newly introduced “infinitesimal”
time scale) by both its current state D(γ, s) ≡ m and the vector γ. The
vector γ is a possible state of the fluid model x(t) ≡ (q1(t), q2(t), z1,2(t)) at
some time t, where averaging may take place. Thus γ ∈ [0,∞)2 × [0,m2].
Specifically, γ can be any vector in the subset A defined in (5.16) below.

Given the current state m, we let the rates of the FTSP D as a function
of γ be the limit of the rates of Dn(Γn, ·) divided by n, where the rates of
Dn(Γn, ·) are themselves a function of the current state Dn(Γn, 0) = m with
Γn/n → γ as n → ∞. Since Γn/n → γ as n → ∞, there will be sharing in
all systems for all n sufficiently large. (For the corresponding rates of the
queue-difference process Dn(Γn, ·) itself, see (5.2)-(5.5).)

Since the drift rates of Dn(Γn, t) in (5.6) are linear functions of the state
Xn(t), we have

(5.8) δn
+(Xn(t)) ⇒ δ+(X̄(t)) and δn

−(Xn(t)) ⇒ δ−(X̄(t))

whenever X̄n(t) ⇒ X̄(t) in R, which we will have (for all t along a convergent
subsequence, because along that subsequence we have X̄n ⇒ X̄ in D3 as a
consequence of tightness).

Directly, we let the FTSP {D(γ, s) : s ≥ 0} be a CTMC with transi-
tion rates λ

(j)
− (m, γ), λ

(k)
− (m, γ), µ

(j)
− (m, γ) and µ

(k)
− (m, γ) for transitions of

+j, +k, −j and −k, respectively, when D(γ, s) = m ≤ 0. Similarly, let
the transition rates be λ

(j)
+ (m, γ), λ

(k)
+ (m, γ), µ

(j)
+ (m, γ) and µ

(k)
+ (m, γ) for

transitions of +j, +k, −j and −k, respectively, when D(γ, s) = m > 0.
Paralleling the definitions in (5.2)-(5.5), we define the transition rates for

D(γ) as follows: First, for D(γ, s) = m ∈ (−∞, 0] with γ ≡ (q1, q2, z1,2), the
upward rates are

λ
(k)
− (m, γ) ≡ λ1, and

λ
(j)
− (m, γ) ≡ µ1,2z1,2 + µ2,2(m2 − z1,2) + θ2q2.

(5.9)

Similarly, the downward rates are

(5.10) µ
(k)
− (m, γ) ≡ µ1,1m1 + θ1q1 and µ

(j)
− (m, γ) ≡ λ2

Next, for D(γ, s) = m ∈ (0,∞), we have upward rates

(5.11) λ
(k)
+ (m, γ) ≡ λ1 and λ

(j)
+ (m, γ) ≡ θ2q2.
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The downward rates are

µ
(k)
+ (m, γ) ≡ µ1,1m1 + µ1,2z1,2 + µ2,2(m2 − z1,2) + θ1q1 and

µ
(j)
+ (m, γ) ≡ λ2.

(5.12)

5.3. The ODE. We can now present the three-dimensional ODE in terms
of the FTSP D. Let ẋ ≡ (q̇1, q̇2, ż1,2), where ẋ(t) is the derivative evaluated
at time t, and

q̇1(t) ≡ λ1 −m1µ1,1 − π1,2(x(t)) [z1,2(t)µ1,2 + z2,2(t)µ2,2]− θ1q1(t)
q̇2(t) ≡ λ2 − (1− π1,2(x(t))) [z2,2(t)µ2,2 + z1,2(t)µ1,2]− θ2q2(t)

ż1,2(t) ≡ π1,2(x(t))z2,2(t)µ2,2 − (1− π1,2(x(t)))z1,2(t)µ1,2,

(5.13)

with π1,2(x(t)) ≡ P (D(x(t),∞) > 0) for each t ≥ 0, where D(x(t),∞) has
the limiting steady-state distribution as s → ∞ of the FTSP D(γ, s) for
γ = x(t).

Equivalently, we have the following integral representation of the ODE in
(5.13):

z1,2(t) ≡ z1,2(0) + µ2,2

∫ t

0
π1,2(x(s))(m2 − z1,2(s)) ds

− µ1,2

∫ t

0
(1− π1,2(x(s)))z1,2(s) ds,

q1(t) ≡ q1(0) + λ1t−m1t− µ1,2

∫ t

0
π1,2(x(s))z1,2(s)) ds

− µ2,2

∫ t

0
π1,2(x(s))(m2 − z1,2(s)) ds− θ1

∫ t

0
q1(s) ds,

q2(t) ≡ q2(0) + λ2t− µ2,2

∫ t

0
(1− π1,2(x(s)))(m2 − z1,2(s)) ds

− µ1,2

∫ t

0
(1− π1,2(x(s)))z1,2(s) ds− θ2

∫ t

0
q2(s)) ds.

(5.14)

The integral representation is closely related to the integral representation of
X̄n ≡ (Q̄n

1 , Q̄n
2 , Z̄n

1,2) in (4.8); X̄n has been replaced by x and the indicators
1{Dn

1,2(s)>0} have been replaced by π1,2(x(s)).
Since γ = x(t), the relevant FTSP at time t depends on the solution of

the ODE at time t, x(t). Since the right side of the ODE has π1,2(x(t)), the
evolution of the ODE beyond t in turn depends on the FTSP, specifically,
upon the steady-state distribution of that FTSP. Given x(t) for some t > 0,
we can determine the FTSP {D(x(t), s) : s ≥ 0}. Given that FTSP, we can
determine the steady-state quantity π1,2(x(t)). Then π1,2(x(t)) appears on
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the right side of the ODE in (5.13), determining the future of the ODE. We
provided an efficient algorithm to solve this ODE coupled with the FTSP
in [39]. The efficiency is based on the quasi-birth-and-death (QBD) process
structure discussed in §5.5.

5.4. The State Space of the ODE. Since the ODE in (5.13) is driven by
the family of FTSP D(γ, ·) (just as the stochastic systems are driven by the
process Dn

1,2), we divide the state space of the fluid limit according to the
relation that holds between q1 and q2, and the behavior of the FTSP in the
different regions.

Denote by S the state space of the ODE. That is, S ≡ [0,∞)2× [0, m2] ≡
{γ ≡ (q1, q2, z1,2)}, and let

Sb ≡ {q1 − rq2 = κ}, S+ ≡ {q1 − rq2 > κ}, S− ≡ {q1 − rq2 < κ},
(5.15)

with S = Sb ∪ S+ ∪ S−.
The “boundary” subset Sb is a hyperplane in the state space S, and is

therefore a closed subset. It is the subset of S in which the AP is taking place,
and the function π1,2 can assume its full range of values, 0 ≤ π1,2(γ) ≤ 1,
γ ∈ Sb.

The region S+ “above the boundary” is an open subset of S. For all
γ ∈ S+, π1,2(γ) = 1. The region S− below the boundary is also an open
subset of S. For all γ ∈ S−, π1,2(γ) = 0.

Let A ⊂ Sb be the set in which D(x, ·) is positive recurrent. We have
0 < π1,2(γ) < 1 if and only if γ ∈ A. Thus, for each γ ∈ Sb, we define

(5.16) A ≡ {γ ∈ Sb : 0 < π1,2(γ) < 1}.

5.5. The Fundamental QBD structure. Characterizing the set A in (5.16)
is essential to our analysis. Our analysis is simplified by exploiting ma-
trix geometric methods, as in [29]. In particular, we represent the integer-
valued FTSP D ≡ {D(γ, s) : s ≥ 0} constructed above as a homogeneous
continuous-time QBD, as in Definition 1.3.1 and §6.4 of [29]. To do so, we re-
order the states appropriately. We order the states so that the infinitesimal
generator matrix Q can be written in block-tridiagonal form, as in Defini-
tion 1.3.1 and (6.19) of [29] (imitating the shape of a generator matrix of a
birth-and-death process). In particular, for each three-dimensional state γ,
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we write

(5.17) Q ≡ Q(γ) ≡




B A0 0 0 . . .
A2 A1 A0 0 . . .
0 A2 A1 A0 . . .
0 0 A2 A1 . . .
...

...
...

...




where the four component submatrices B, A0, A1 and A2 are all 2m × 2m
submatrices for m ≡ max {j, k} (and are also functions of γ). These 2m×2m
matrices B, A0, A1 and A2 in turn can be written in block-triangular form
composed of four m×m submatrices, i.e.,

(5.18) B ≡
(

A+
1 Bµ

Bλ A−1

)
and Ai ≡

(
A+

i 0
0 A−i

)

for i = 0, 1, 2. (All these matrices are also functions of γ.)
To achieve this representation, we need to re-order the states into levels.

The main idea is to represent transitions above 0 and below 0 within common
blocks. Let L(n) denote level n, n = 0, 1, 2, . . . We assign original states φ(n)
to positive integers n according to the mapping:

φ(2nm + i) ≡ nm + i and
φ((2n + 1)m + i) ≡ −nm− i + 1, 1 ≤ i ≤ m.

(5.19)

Then we order the states in levels as follows

L(0) ≡ {1, 2, 3, 4, . . . m, 0,−1,−2, . . . ,−(m− 1)},
L(1) ≡ {m + 1, m + 2, . . . , 2m,−m,−(m + 1), . . . ,−(2m− 1)}, . . .

With this representation, the generator-matrix Q can be written in the form
(5.17) above, where A1 groups all the transitions within a level, A0 groups
the transitions from level L(n) to level L(n+1) and A2 groups all transitions
from level L(n) to level L(n − 1). Matrix B groups the transitions within
the boundary level L(0), and is thus different than A1. An example is given
in §5.5.

QBD’s having a generator matrix Q of the form (5.17)-(5.18) will be re-
peatedly constructed in our proofs. We thus refer to the QBD structure,
represented by the generator matrix Q as specified by (5.18) as the funda-
mental QBD.
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To determine when the AP holds, we need to be able to determine when
the FTSP D is positive recurrent. Fortunately, QBD theory allows us to
determine that easily for each γ, as explained in §4.3 of [39] and summarized
below.

Let δ+ and δ− be the drift of the QBD in the positive and negative region,
respectively (see §4.3 in [39]. See [29] for the general theory); i.e., let

δ+(γ) ≡ j
(
λ

(j)
+ (γ)− µ

(j)
+ (γ)

)
+ k

(
λ

(k)
+ (γ)− µ

(k)
+ (γ)

)
,

δ−(γ) ≡ j
(
λ

(j)
− (γ)− µ

(j)
− (γ)

)
+ k

(
λ

(k)
− (γ)− µ

(k)
− (γ)

)
.

(5.20)

By our construction of the rates above, it holds that δ−(γ) > δ+(γ) for every
γ ∈ S. The following is Theorem 4.1 in [39]:

Theorem 5.1. The QBD representing the FTSP {D(γ, s) : s ≥ 0} is
positive recurrent if and only if

(5.21) δ−(γ) > 0 > δ+(γ).

For every γ ∈ R3, the set A in (5.16) where the AP is operating, is the
same set in which (5.21) holds, i.e.,

(5.22) A = {γ ∈ Sb : δ−(γ) > 0 > δ+(γ)}.

From the continuity of the QBD drift-rates in (5.20), if follows that A is
an open and connected subset of Sb. Hence, A can be regarded as an open
connected subset of R+

2 (since Sb is homoeomorphic to R+ × [0,m2]). Our
proofs (here and in [39]) rely on the fact that if x(s) ∈ A, then for some
h > 0, x(u) ∈ A, 0 < u < h. In particular, if x(0) ∈ A, then there exists a
δ > 0 such that {x(t) : 0 ≤ t < δ} ⊂ A. The following is Theorem 5.2 in
[39]:

Theorem 5.2. If x(0) ∈ A, then there exists a unique solution x ∈
C3([0, δ)) to the fluid ODE (5.13) for some δ > 0.

We will initially work on an interval [0, δ), δ > 0, over which we can
guarantee that the AP and Theorem 5.2 hold. After the convergence is
established, this interval can be extended, typically all the way to ∞; see
§7 in [39]. However, the extension of the initial interval [0, δ) depends only
on the solution to the ODE. Thus, it suffices to prove the convergence over
[0, δ) no matter how small δ is. We will characterize a δ > 0 in §8.3. For the
rest of the discussion, assume that δ > 0 is known.
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5.6. The FTSP Arising as a Limit. We now present some results in
which the FTSP D ≡ {D(γ, s) : s ≥ 0} arises as a limit. These results
connect the queue difference process Dn ≡ {Dn

1,2(t) : t ≥ 0} defined in (2.7)
and (5.1) and the time-expanded queue-difference processes Dn

e in (5.7) to
the FTSP defined above. These results help explain the main theorem.

We first formalize the separation of time scales using the time-expanded
queue-difference processes Dn

e defined in (5.7). The following result “ex-
plains” the AP, but does not complete the proof of the FWLLN. We prove
this theorem in Appendix A.

Theorem 5.3. If Γn/n → γ and Dn(Γn, 0) ⇒ D(γ, 0) in R as n →∞,
where γ ∈ A, then

(5.23) {Dn
e (Γn, s) : s ≥ 0} ⇒ {D(γ, s) : s ≥ 0} in D as n →∞,

where Dn
e is the time-expanded queue-difference process in (5.7) and D is the

FTSP; i.e., we have convergence of the sequence of non-Markov processes
{Dn

e : n ≥ 1} to a limiting time-homogeneous CTMC.

Of course, we are actually interested in the queue-difference processes.
We will obtain the following result in Corollary 8.5. Recall the definition of
stochastic boundedness (SB) in §2.5.

Theorem 5.4. Over an appropriate interval, [0, δ), the sequence of stochas-
tic processes {{Dn

1,2(t) : 0 ≤ t ≤ δ} : n ≥ 1} is SB in D, so that the sequence
of random variables {Dn

1,2(t) : n ≥ 1} is SB in R for each t, 0 ≤ t ≤ δ.

Nevertheless, one implication of Theorem 5.3 is that, as n increases, Dn
1,2

fluctuates “too much” in the neighborhood of every point t ∈ [0, δ) for
the sequence of stochastic processes {{Dn

1,2(t) : 0 ≤ t ≤ δ} : n ≥ 1} to
be D-tight. If the sequence were tight, then it would have a convergent
subsequence. If Dn

1,2 were to converge on [0, δ) to a process in D along that
subsequence, then the limiting process must have at most finitely many
discontinuities exceeding any constant ε > 0, see e.g., Lemma 1 on p. 122 of
[8]. However, for every neighborhood of any t ∈ [0, δ], there would necessarily
be infinitely many jumps of size 1 in the limit as n → ∞. Moreover, every
t would have to be a discontinuity point of the limit, but there can be only
countably many discontinuities. Hence, the limit process could not be an
element of D. Hence tightness does not hold.

However, we do obtain a proper limit for the sequence of random variables
{Dn

1,2(t) : n ≥ 1} in R for each fixed t by exploiting the AP. After we prove
Theorem 6.1, we will establish the following pointwise AP result, which
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helps explain the AP. See [47] for a similar result. We prove this theorem in
Appendix A after proving Theorem 5.3.

Theorem 5.5. (pointwise AP) Fix t ∈ [0, δ). As n → ∞, Dn
1,2(t) ⇒

D(x(t),∞) in R as n → ∞, where x(t) is the solution to the ODE at
time t and D(x(t),∞) has the limiting steady-state distribution of the FTSP
D(γ, s) for γ = x(t).

Remark 5.1. Even though the limit of X̄n turns out to be determin-
istic, Theorems 5.3 and 5.5 imply that the process Dn

1,2 does not become
deterministic as n → ∞. Given Theorems 5.3 and 5.5, we see that indeed
the deterministic ODE is driven by a stochastic process. More precisely, the
evolution of the (deterministic) solution to the ODE over [0, δ) is governed
by a stochastic process, although the ODE describing that evolution is itself
deterministic, depending on the time-dependent steady-state distribution of
the FTSP’s.

The limiting ODE and its solution are deterministic because two kinds of
averaging phenomena taking place simultaneously: The first is the typical
strong-law type of averaging, which is achieved by the spatial fluid scaling.
The second, more interesting one, is the AP, providing instantaneous long-
run averaging through the separation of time scales in the fluid limit.

As an immediate consequence of Theorem 5.4, we obtain the following
SSC result.

Corollary 5.1. (SSC of the queue process) As n →∞,

c−1
n ((Qn

1 − κn)− r1,2Q
n
2 ) ⇒ 0 in D([0, δ))

for any sequence {cn : n ≥ 1} satisfying cn →∞ as n →∞.

Corollary 5.1 shows that the two-dimensional scaled queue process is ef-
fectively a one-dimensional process as n →∞. Combining Theorem 4.1 and
Corollary 5.1 gives the following SSC result, which reduces the dimension of
the process from the original six dimension, to only two when we consider the
fluid-scaled or diffusion-scaled versions of the process Xn

6 in (2.4). In particu-
lar, asymptotically, the six-dimensional process X̄n

6 ∈ D6 actually exists in a
two-dimensional hyperplane of D6, which is homeomorphic to D2 over the in-
terval [0, δ). For D3 ≡ {(a1, a2, a3) : a1, a2, a3 ∈ D}, X̄n

3 is asymptotically an
element of the two-dimensional hyperplane {(a1, r1,2a1 +κ, a3) : a1, a3 ∈ D}
of D3.

Recall that for a sequence of processes {Y n} in D, Y̆ n ≡ Y n/
√

n.
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Theorem 5.6. (Complete SSC) As n →∞, dJ1(X̆
n
6 , X̆n

2 ) ⇒ 0 in D6([0, δ)),
where Xn

2 ≡ (Qn
1 , r1,2Q

n
1 + κn, Zn

1,2).

Remark 5.2. The SSC result in Theorem 4.1 is stated forD6 ≡ D6([0,∞)),
while the SSC in Corollary 5.1, and thus also Theorem 5.6, holds onD6([0, δ)).
However, the SSC result in Corollary 5.1 and Theorem 5.6 can be extended
as long as the solution to the ODE is in A, since the SSC of the queue
process is implied by the AP. (This will become clear in the proofs.) As we
mentioned above, the solution to the ODE is typically in A for all t ≥ 0; see
[39]

6. The FWLLN. We are now ready to state our main result in this
paper, which is a FWLLN for scaled versions of the vector stochastic process
(Xn

6 , Y n
8 ), where

(6.1) Xn
6 ≡ (Qn

i , Zn
i,j) ∈ D6 and Y n

8 ≡ (An
i , Sn

i,j , U
n
i ) ∈ D8, i, j = 1, 2.

For the FWLLN, we focus on the scaled vector process

(6.2) (X̄n
6 , Ȳ n

8 ) ≡ n−1(Xn
6 , Y n

8 ),

for Xn
6 and Y n

8 in (6.1). Recall that Assumptions 1-3 are in force.

Theorem 6.1. (FWLLN) There exists δ > 0 such that

(6.3) (X̄n
6 , Ȳ n

8 ) ⇒ (x, y) in D14([0, δ)) as n →∞,

where (x, y) is a deterministic element of C14([0, δ)) with

(6.4) x ≡ (qi, zi,j) and y ≡ (ai, si,j , ui), i = 1, 2; j = 1, 2;

z2,1 = s2,1 = m1 − z1,1 = m2 − z2,2 − z1,2 = 0e and (q1, q2, z1,2) being the
unique solution to the three-dimensional ODE in (5.13). The remaining limit
function y is defined in terms of x:

ai(t) ≡ λit, si,j(t) ≡ µi,j

∫ t

0
zi,j(s) ds,

ui(t) ≡ θi

∫ t

0
qi(s) ds for t ≥ 0, i = 1, 2; j = 1, 2.(6.5)

The time interval [0, δ) can be expanded to the largest interval (typically
[0,∞)) such that there exists a unique solution to the ODE in (5.13).
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Theorem 6.1 established convergence over some interval [0, δ). Theorem
6.1 concludes by stating that the interval can be extended whenever the
solution to the ODE can be extended. Ensuring convergence over [0, δ) will
usually imply convergence over an interval [0, T ), for some T À δ, often even
T = ∞. First, the convergence over [0, δ) implies that the SSC results in the
next section, §7, hold globally - see the explanation right above Lemma
7.3. Second, once the convergence is established, and the unique solution
to the ODE (5.13) is known to exist (Theorem 5.2 in [39]), we can use the
results in Section 7 of [39], to infer whether we can extend the convergence
to the whole halfline [0,∞) by analyzing the limiting ODE itself, and not the
stochastic sequence Xn. In particular, the solution to the ODE (5.13) can
be extended to the entire halfline [0,∞) by showing that x(t) ∈ A for all
t ≥ 0. Often, this can be done without even solving the ODE; see Theorem
5.4 and §7 in [39].

By Theorem 5.6, it is enough to present the fluid limit of (Q̄n
1 , Z̄n

1,2), since
each queue determines the other in the limit. Nevertheless, in Theorem 6.1
we presented the fluid limit for both queues. We did so, because the three-
dimensional framework applies in other regions. For example, in [39] we
analyzed that same ODE in all three regions. More importantly, even in our
settings, when Assumption 3 holds and the solution is in A over [0, δ), it is
helpful to solve the fluid equations without explicitly forcing the SSC relation
between the queues. Having the solution satisfying q1(t) − r1,2q2(t) = κ
strongly indicates that the numerical solution to the fluid ODE is correct;
See the last paragraph in §9.2 in [39].

Most of the rest of this paper is devoted to the proof of Theorem 6.1. Most
proofs of supporting theorems and lemmas appear in the Appendix (in order
of appearance in the main paper). The final §9 establishes a WLLN for the
stationary distributions.

7. SSC for the Service Process. In this section we establish state-
space collapse (SSC) for the service process Zn ≡ (Zn

1,1, Z
n
1,2, Z

n
2,1, Z

n
2,2); i.e.,

we show that we can consider the process (mn
1 , Zn

1,2, 0,mn
2 −Zn

1,2) instead of
Zn in diffusion scale (and thus, in fluid scale). Thus, the relevant dimension
of the stochastic service process is one instead of four. We accomplish this
goal by showing that Zn

2,1 is asymptotically null and that the idleness in
each pool is asymptotically negligible in diffusion scale (in preparation for a
future FCLT refinement of the FWLLN here).

Unlike our main convergence result - Theorem 6.1 - which is proved on
an initial interval, the SSC of the service process holds globally on [0,∞)
for FQR-T, given Assumptions 1-3. However, here we do not yet show that
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a limit of Z̄n
1,2 as n →∞ exists. We only show that, when analyzing Zn, it

is sufficient to consider Zn
1,2, prove that its fluid-scaled and diffusion-scaled

versions converge and then characterize the limits. That will be done for the
fluid-scaled case in the next section (and the Appendix).

Here is the SSC result to be established in this section. Note that it
directly implies Theorem 4.1.

Theorem 7.1. (global SSC of the service process) As n →∞,

n−1/2(mn
1 − Zn

1,1 − Zn
2,1, Zn

2,1, mn
2 − Zn

1,2 − Zn
2,2) ⇒ (0, 0, 0) in D3.

Let In
1 ≡ mn

1 − Zn
1,1 − Zn

2,1 and In
2 ≡ mn

2 − Zn
1,2 − Zn

2,2 be the idleness
processes in service pools 1 and 2, respectively, and let

(7.1) Īn
j ≡ In

j /n and În
j ≡ In

j /
√

n, j = 1, 2.

Theorem 7.1 will be proved in two steps. First, we show that Zn
2,1 ⇒ 0;

second, we show that În
1 and În

2 are asymptotically negligible. By the first
step, In

1 = mn
1 − Zn

1,1 + oP (1), so that we can disregard the oP (1) term in
the second step.

So far, we know only that the initial state converges by Assumption 3.
We do not yet have convergence results for any of the stochastic processes
we consider. Hence, the results in this section will be established by (i)
determining bounding stochastic processes (using sample-path stochastic
order) for which the limits are known or easy to establish, and (ii) using
extreme-value theory for the bounding processes to justify our claims. The
bounding processes established in step (i) will have a QBD form (or an
M/M/1 form, which can also be viewed as a trivial QBD). Hence we start
by establishing extreme-value limits for homogeneous QBD processes.

7.1. Extreme-Value Limits for QBD Processes. We are unaware of any
established extreme-value limits for QBD processes, so we establish the fol-
lowing result here. Recall that a QBD has states (i, j), where i is the level
and j is the phase. If we only consider the level we get the level process; it
is an elementary function of a QBD. The proof of this theorem, like most
others appears in the Appendix.

Theorem 7.2. (extreme value for QBD) If L is the level process of a pos-
itive recurrent (homogeneous) QBD process (with a finite number of phases),
then there exists c > 0 such that

lim
t→∞P (‖L‖t/ log t > c) = 0.
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Both the statement and the proof of Theorem 7.2 are complicated by
the discreteness of the integer-valued process L. The proof is also somewhat
complicated by the continuity of time. It is well known that the stationary
distribution of the QBD level is asymptotically geometric, e.g., see §9.1 in
[29]. Hence, we are unambiguously in the light-tailed case, but we do not
have the conventional convergence in law to the Gumbel distribution if we
subtract by c log t instead of divide. Indeed, there do not exist scaling func-
tions a(t) and b(t) such that a(t)(‖L‖t − b(t)) converges in law to a proper
limit as t → ∞; see Sections 1.5 and 1.7 of [30]. Even though the conven-
tional extreme-value limit cannot hold, Theorem 7.2 evidently is not in best
possible form. First, we should have ‖L‖t/ log t ⇒ c for a specific constant
c (which is easy to identify); second, we should have tightness of the family
{‖L‖t − c log t : t ≥ 1} for that same constant c; e.g., see Example C.2.6 of
[1] and Problem 4.2 of [4], but our weaker implication of such results suffices
for the application here and has a relatively simple proof; see §B.

7.2. Basic Stochastic-Order Bounds. As we mentioned before, the proofs
will involve stochastic-order bounds, using sample-path stochastic order,
involving coupling; see [45], Ch. 4 of [31] and §2.6 of [35]. We briefly discuss
those bounds for a sequence of stochastic processes {Y n : n ∈ N}. We will
bound the process Y n, for each n ≥ 1, by a process Y n

b ; i.e., for each n, we
will establish conditions under which it is possible to construct stochastic
processes Ỹ n

b and Ỹ n on a common probability space, with Ỹ n
b having the

same distribution as Y n
b , Ỹ n having the same distribution as Y n, and every

sample path of Ỹ n
b lies below (or above) the corresponding sample path of

Ỹ n. We will then write Y n
b ≤st (≥st)Y n. However, we will not introduce this

“tilde” notation; Instead, we will use the original notation Y n and Y n
b . As a

first step, we will directly give both processes, Y n and Y n
b identical arrival

processes, the Poisson arrival processes specified for Y n. We will then show
that the remaining construction is possible by increasing (decreasing) the
departure rates so that, whenever Y n = Y n

b , any departure in Y n also leads
to a departure in Y n

b . That is justified by having the conditional departure
rates, given the full histories of the systems up to time t, be ordered.

The stochastic-order bounds will be of the form

(7.2) Y n(t) = Y n(0) +
k∑

i=1

Ni

(∫ t

0
Jn

i (s) ds

)
, t ≥ 0,

where Ni, i = 1, 2, . . . , k, denote independent rate-1 Poisson processes, and
Jn

i is a stochastic process that serves as a random time change of the Poisson
process Ni. If we are concerned with the fluid limit of Y n, then we next
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divide both sides of (7.2) by n, subtract and then add back Jn
i to get the

representation

Ȳ n(t) ≡ Y n(t)/n = Ȳ n(0) + n−1
∫ t

0
Jn

i (s) ds

+ n−1
k∑

i=1

[
Ni

(∫ t

0
Jn

i (s) ds

)
−

∫ t

0
Jn

i (s) ds

]
.

(7.3)

The third step is to apply a version of the continuous mapping theorem to
(7.3) (The purpose of the bounds is to be able to use the continuous map-
ping theorem, which can not be used on Xn.) However, to avoid unnecessary
repetitions, we will not write the second step (7.3) and write only the repre-
sentation as in (7.2), with the understanding that the continuous mapping
theorem is actually applied to the version of Ȳ n in (7.3).

We now construct lower and upper stochastic-order bounds for the queues,
that will be repeatedly used in following proofs, including in the proof of the
AP. Throughout, Na

i , N s
i,j and Nu

i , i, j = 1, 2, denote independent rate-1
Poisson processes.

We start with the bound Xn
a ≡ (Qn

1,a, Q
n
2,a, Z

n
a ) in which Qn

1,a ≥st Qn
1 ,

Qn
2,a ≤st Qn

2 and Zn
a ≤st Zn

1,2. For later use, we will consider the evolution of
{Xn

a (t) : t ≥ y} for any y ≥ 0. To construct {Xn
a (t) : t ≥ y} for a fixed y ≥ 0,

we initialize with Xn
a (y) = Xn(y), and act as if all newly available pool-2

servers (after time y) take their next customers from the head of pool 2,
even if Qn

2,a(t) ≤ 0 (we allow the queues to become negative), so that queue
1 is served by pool-1 servers only. Then, for any y ≥ 0 and t ≥ y, Xn

a (t) can
be represented via

Qn
1,a(t) = Qn

1,a(y) + Na
1 (λn

1 t)−N s
1,1(µ1,1m

n
1 t)

−Nu
1

(
θ1

∫ t

0
(Qn

1,a(s) ∨ 0) ds

)
,

Qn
2,a(t) = Qn

2,a(y) + Na
2 (λn

2 t)−N s
1,2

(
µ1,2

∫ t

0
Zn

a (s) ds

)

−N s
2,2

(
µ2,2

∫ t

0
(mn

2 − Zn
a (s)) ds

)

−Nu
2

(
θ2

∫ t

0
(Qn

2,a(s) ∨ 0) ds

)
,

Zn
a (t) = Zn

a (y)−N s
1,2

(
µ1,2

∫ t

0
Zn

a (s) ds

)
.

(7.4)

Observe that Zn
a is non-increasing, and will eventually reach 0. By our con-

struction, Zn
a (y) = Zn

1,2(y), where Zn
1,2(y) is the number of pool-2 servers
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helping class-1 customers. Starting at time y, every server takes his new
customers from queue 2, so that the downward drift of Qn

2,a may become
negative. Since we have no reflection, Qn

2,a itself may become negative, and
if the downward drift is greater than the upward one, it will drift to −∞
as t → ∞. However, the above bounds will be used to bound Xn on small
intervals [y, y + ε), over which they will be meaningful. Note that the opera-
tors inside the integrants of Nu

i ensure that there is no abandonment when
Qn

i,a < 0, i = 1, 2.
Next, we construct the bounding system Xn

b ≡ (Qn
1,b, Q

n
2,b, Z

n
b ), having

Qn
1,b ≤st Qn

1 , Qn
2,b ≥st Qn

2 and Zn
b ≥st Zn

1,2. Once again, for each y ≥ 0,
we consider the evolution the process {Xn

b (t) : t ≥ y}. First, we initialize
with Xn

b (y) = Xn(y), n ≥ 1. We now act as if every newly available server
at time t ≥ y takes his next customer from queue 1, even if Qn

1,b(t) ≤ 0.
(Once again, we allow the queues to become negative, although in this case,
Qn

2,b(t) ≥ 0 for all t and n.) Then, for any fixed y ≥ 0 and t ≥ y, Xn
b can be

represented via

Qn
1,b(t) = Qn

1,b(y) + Na
1 (λn

1 t)−N s
1,1(µ1,1m

n
1 t)−N s

1,2

(
µ1,2

∫ t

0
Zn

b (s)
)

−Nu
1

(
θ1

∫ t

0
(Qn

1,b(s) ∨ 0) ds

)
,

Qn
2,b = Qn

2,b(y) + Na
2 (λn

2 t)−Nu
2

(
θ2

∫ t

0
Qn

2,b(s) ds

)
,

Zn
b (t) = Zn

b (y) + N s
2,2

(
µ2,2

∫ t

0
(mn

2 − Zn
b (s)) ds

)
,

(7.5)

Observe that Zn
b is nondecreasing, and will eventually reach mn

2 . Thus, the
downwards drift of Qn

1,b might eventually become larger than the upwards
drift, which means that Qn

1,b may drift to −∞ (as t → ∞). Again, these
bounds will be used over short intervals over which they will be meaningful.

By a simple application of the continuous mapping theorem we can prove
the next lemma:

Lemma 7.1. For y ≥ 0 consider the processes {Xn
a (t) : t ≥ y} in (7.4)

and {Xn
b (t) : t ≥ y} in (7.5), for which the following holds for all n ≥ 1:

(−Qn
1,a, Q

n
2,a, Z

n
a ) ≤st (−Qn

1 , Qn
2 , Zn

1,2) ≤st (−Qn
1,b, Q

n
2,b, Z

n
b ).

Also assume that X̄n
a (y) ≡ Xn

a (y)/n ⇒ Xa(y) and X̄n
b (y) ⇒ Xb(y) in R as

n → ∞. Then {X̄n
a (t) : t ≥ y} ⇒ {Xa(t) : t ≥ y} and {X̄n

b (t) : t ≥ y} ⇒
{Xb(t) : t ≥ y} in D3 as n → ∞, where Xa and Xb are defined as follows:
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For t ≥ y, Xa(t) ≡ (Q1,a(t), Q2,a(t), Za(t)) satisfies the following integral
equation

Q1,a(t) = Q1,a(y) + λ1t− µ1,1m1t− θ1

∫ t

0
(Q1,a(s) ∨ 0) ds,

Q2,a(t) = Q2,a(y) + λ2t− µ1,2

∫ t

0
Za(s) ds− µ2,2

∫ t

0
(m2 − Za(s)) ds

− θ2

∫ t

0
(Q2,a(s) ∨ 0) ds,

Za(t) = Za(y) + µ2,2m2t− µ2,2

∫ t

0
Za(s) ds,

(7.6)

and Xb(t) ≡ (Q1,b(t), Q2,b(t), Zb(t)) satisfies the integral equation

Q1,b(t) = Q1,b(y) + λ1t− µ1,1m1t− µ1,2

∫ t

0
Zb(s) ds

− θ1

∫ t

0
(Q1,b(s) ∨ 0) ds,

Q2,b(t) = Q2,b(y) + λ2t− θ2

∫ t

0
Q2,b(s) ds,

Zb(t) = Zb(y) + µ2,2m2t− µ2,2

∫ t

0
Zb(s) ds,

(7.7)

Proof. By the continuous mapping theorem, applied to the integral rep-
resentation, Theorem 4.1 in [36], Z̄n

a ≡ Zn
a /n and Z̄n

b ≡ Zn
b /n converge to

the processes Za and Zb with continuous sample paths. We can then apply
Theorem 4.1 in [36] again, to conclude that the fluid-scaled queue lengths,
Q̄n

i,a ≡ Qn
i,a/n and Q̄n

i,b ≡ Qn
i,b/n, i = 1, 2, converge as well. (Note that

h(s) ≡ θ(s∨0) is Lipschitz continuous, as required for the integral represen-
tation to be continuous.)

Note that the condition X̄n
a (y) ⇒ Xa(y) and X̄n

b (y) ⇒ Xb(y) in R as n →
∞ holds for y = 0 with Xa(0) = Xb(0) = x(0), where x(0) is deterministic,
by Assumption 3 and our construction (since we take Xn

a (0) = Xn
b (0) =

Xn(0)). In that case, and whenever Xa(y) and Xb(y) are deterministic, the
limits Xa and Xb are deterministic functions. Indeed, we anticipate that the
limits Xa and Xb will be deterministic, but we use the more general form in
our proof of Lemma 8.11, exploiting convergence along subsequences, where
we do not yet know that the limit is deterministic.

7.3. The Zn
2,1 Process. We now treat Zn

2,1, proving that it is asymptot-
ically globally (for all t ≥ 0) null in distribution. This conclusion for Zn

2,1

holds without any scaling.
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Theorem 7.3. (global one-way sharing) Zn
2,1 ⇒ 0 in D as n →∞.

The proof of Theorem 7.3 relies on three lemmas, which we state now.
The proofs of these lemmas and Theorem 7.3 appear in Appendix B. The
first lemma proves a special case which implies Theorem 7.3. The other two
lemmas prove a local version of the theorem, i.e., that ‖Zn

2,1‖τ ⇒ 0 as n →∞
for some τ > 0. In the proof of Theorem 7.3 we extend the local result to
the full halfline [0,∞).

Our first lemma treats the simplest case.

Lemma 7.2. If z1,2(0) > 0, then, for all T > 0, P (inf0≤t≤T Z̄n
1,2(t) >

0) → 1 as n →∞. As a consequence, Zn
2,1 ⇒ 0 as n →∞.

Given Lemma 7.2, it remains to consider only the case z1,2(0) = 0. Hence,
we assume that z1,2(0) = 0 for the rest of this section. Here is the outline
of the proof: The SSC statement for Zn

2,1 will first be proved locally on an
interval [0, τ ], for some τ > 0. Then, we can use later results, proving that
Z̄n

1,2(t) ⇒ z1,2(t) as n → ∞ on [0, δ] for some δ ≤ τ , to extended the local
SSC statement to a global one. That is, our proof follows three steps: (1)
We first prove that ‖Zn

2,1‖τ ⇒ 0, for some τ > 0. (2) For some δ satisfying
0 < δ ≤ τ , we can use the local result established in the first step, to
prove Theorem 6.1, and deduce that the deterministic fluid limit z1,2(t) of
Z̄n

1,2(t) exists over [0, δ]. (3) Finally, we show that z1,2(t0) > 0 for some t0,
0 < t0 < δ ≤ τ , so that Lemma 7.2 can be applied to extend the local
statement in step (1) to a global one. We emphasize at the outset that the
extension to a global statement is not circular, since the convergence of the
Z̄n

1,2 process over [0, δ] (established in Theorem 6.1) uses only the local SSC
result (since we take δ ≤ τ).

The next two lemmas establish step (1) described above, namely that
Zn

2,1 ⇒ 0 on an interval [0, τ ].

Lemma 7.3. If either (i) κ > 0 or (ii) r1,2 > r2,1 and q1(0) > 0, then
there exists τ , 0 < τ ≤ ∞, such that

lim
n→∞P

(
sup

t∈[0,τ ]
Dn

2,1(t) ≤ 0

)
= 1,

so that ‖Zn
2,1‖τ ⇒ 0 as n →∞.

The proof of Lemma 7.3 relies on a fluid argument. That fluid reasoning
fails when κ = 0 and r2,1 = r1,2 ≡ r or when κ = 0 and q1(0) = 0, since
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then q1(0)− r1,2q2(0) = q1(0)− r2,1q2(0). In these cases we will rely on the
threshold kn

2,1, and construct a finer sample-path stochastic-order bound for
the stochastic system.

When we consider the stochastic sequence {Xn}, we need to have rQn
2 (t)−

Qn
1 (t) > kn

2,1 in order to have sharing, with pool 1 helping class 2. It is thus
clear that we need to consider the stochastic fluctuations of the weighted
queue-length processes Dn

2,1, and show that the probability of the threshold
kn

2,1 being crossed over an initial interval [0, τ ] converges to 0 as n → ∞.
Arguments relying solely on the fluid-scaled processes (which are of order
OP (n)) are too crude, and cannot reveal whether kn

2,1 is exceeded on an
interval, since kn

2,1 is taken to be o(n). We treat that case in the next lemma
by appealing to the extreme-value result established in Theorem 7.2.

Remark 7.1. Recall that the two initial thresholds kn
1,2 and kn

2,1 are
designed to prevent sharing when the two classes are not overloaded, and
are thus chosen to satisfy kn

i,j/
√

n → ∞ as n → ∞. Once sharing starts,
with pool 2 helping queue 1, kn

1,2 may be dropped (unless shifted-FQR is
employed, in which case kn

1,2 = κn = O(n)), but kn
2,1 is kept, in order to

prevent sharing in the other direction. In the proof of the next lemma,
Lemma 7.4, we will see that when sharing is taking place, it is enough to
have kn

2,1/ log n →∞ as n →∞. This suggests that, once sharing starts, we
can replace the original threshold kn

2,1, with a new and smaller threshold,
which satisfies kn

2,1/ log n →∞ as n →∞.

In the next lemma we treat the cases not treated in Lemma 7.3. In addition
to z1,2(0) = 0, we assume that κ = 0 and that q1(0) − r2,1q2(0) = 0. This
latter assumption implies that either q1(0) = 0 (so that q2(0) = 0 as well),
or, if q1(0) > 0, then necessarily r1,2 = r2,1.

Lemma 7.4. Assume that κ = 0 and that kn
2,1/ log n → ∞ as n → ∞.

Also assume that q1(0) − r2,1q2(0) = 0 (where r2,1 is a rational number).
Then there exists τ , 0 < τ ≤ ∞, such that

lim
n→∞P

(
sup

t∈[0,τ ]
Dn

2,1(t) < kn
2,1

)
= 1.

Hence, ‖Zn
2,1‖τ ⇒ 0 as n →∞.

Lemmas 7.3 and 7.4 prove that, for some τ > 0, ‖Zn
2,1‖τ ⇒ 0 as n →∞.

We will use this local result in the proof of Theorem 6.1, which shows that,
for some 0 < δ ≤ τ , {X̄n(t) : 0 ≤ t ≤ δ} ⇒ {x(t) : 0 ≤ t ≤ δ}, where
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x is deterministic. In particular, Z̄n
1,2(t) ⇒ z1,2(t) over [0, δ], where z1,2(t)

is deterministic. Recall that Theorem 6.1 relies only on the local version of
Theorem 7.3 established already.

Remark 7.2. The conclusion of Lemma 7.2 reveals a disadvantage of
the one-way sharing rule for very large systems. The lemma concludes that,
for large n, if for some ε > 0 and t0 ≥ 0 Zn

1,2(t0) > εn, then Zn
1,2(t) is very

likely not to reach 0 for a long time, thus preventing sharing in the opposite
direction, even if that would prove beneficial to do so at a later time, e.g.,
because there is a new overload incident in the opposite direction.

In practice, we thus may want to relax the one-way sharing rule. One way
of relaxing the one-way sharing rule is by dropping it entirely, and relying
only on the thresholds kn

1,2 and kn
2,1 to prevent sharing in both directions

simultaneously (at least until the arrival rates change again). Another mod-
ification is to introduce lower thresholds on the service processes, denoted
by sn

i,j , i 6= j, such that pool 2 is allowed to start helping class 1 at time t if
Dn

2,1 > kn
2,1 and Zn

1,2(t) < sn
1,2, and similarly in the other direction.

We do not analyze either of these modified controls in this paper. We
observe that a global result stating that Zn

2,1 ⇒ 0 as n → ∞ will be much
harder to show, because we cannot use the reasoning in Lemma 7.2. Specif-
ically, showing that Zn

1,2 becomes positive in fluid scale and never empties,
does not imply that Zn

2,1 ⇒ 0, since sharing may be allowed at time t even if
Zn

1,2(t) > 0. Nevertheless, Lemmas 7.3 and 7.4 still hold, so that Zn
2,1(t) = 0

for all t ∈ [0, τ) for some τ > 0 and all n large enough. Since the convergence
to the fluid limit in Theorem 6.1 is initially established for an interval [0, δ),
we can decrease δ if necessary, so that δ ≤ τ . Once convergence of the fluid
limit to its stationary point is established (using the results in §7 of [39]),
we have that the fluid cannot leave A, and z2,1 is guaranteed to remain zero
throughout.

7.4. The Idleness Processes. We next address the two idleness processes.
We will use the standard concept of stochastic boundedness, extended to
stochastic processes, which was defined in §2.5.

Theorem 7.4. For j = 1, 2, In
j / log n is SB, which implies that În

j ⇒ 0
as n →∞.

Remark 7.3. The proof Theorem 7.4 uses the result in the previous
subsection, namely that Zn

2,1 ⇒ 0 as n → ∞. Hence, the statement of the
theorem should first be shown to hold on [0, τ ], for τ in Lemmas 7.3 and 7.4.
Once the local result is shown to hold, it is used to prove Theorem 6.1, so
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that the convergence of X̄n to the deterministic fluid limit x is established
over an interval [0, δ], for some 0 < δ ≤ τ . In the proof of Theorem 7.3 this
was shown to imply that Zn

2,1 ⇒ 0 as n →∞ over the entire halfline [0,∞).
We can thus extend the proof of Theorem 7.4 to the entire halfline as well.
For that reason, the statement of the theorem refers to the global result and
its proof also assumes that Zn

2,1 is asymptotically null globally.

8. Proof of the Main Theorem. We now come to the proof of The-
orem 6.1. There are eight subsections here. In §8.1 we establish tightness.
In §8.2 we establish explicit stochastic bounds on all the processes, which
control the total rate of transitions. In §8.3 we identify an interval [0, δ) over
which the frozen difference processes are positive recurrent, asymptotically.
In §8.4 we state a continuity result for QBD’s that we will apply. In §8.5
we establish stochastic-process bounds. In §8.6 we establish bounds for the
integrals over small subintervals. In §8.7 we complete the proof of Theo-
rem 6.1, exploiting the preparation in the previous subsections. The string
of inequalities in (5.37) in Appendix E.5 shows what is needed. Finally, in
§A.2 we prove Theorem 5.5. Most of the proofs for this section appear in
Appendix E.

8.1. Tightness. We start by establishing tightness.

Lemma 8.1. The sequence {(X̄n
6 , Ȳ n

8 ) : n ≥ 1} in (6.2) is C-tight in D14.

For background on tightness, see [8, 36, 48]. We recall a few key facts:
Tightness of a sequence of k-dimensional stochastic processes inDk is equiva-
lent to tightness of all the one-dimensional component stochastic processes in
D. For a sequence of random elements of Dk, C-tightness implies D-tightness
and that the limits of all convergent subsequences must be in Ck; see Theo-
rem 15.5 of the first 1968 edition of [8]. Thus it suffices to verify conditions
(6.3) and (6.4) of Theorem 11.6.3 of [48]. Hence, it suffices to prove SB of
the sequence of stochastic processes evaluated at time 0 and appropriately
control the oscillations, using the modulus of continuity on C. We obtain the
stochastic boundedness at time 0 immediately from Assumption 3 in §3. We
show that we can control the oscillations in our proof of Lemma 8.1. The
resulting tightness implies that the sequence of stochastic processes is SB.
We give an alternative proof of SB in §8.2, which yields explicit bounds on
the limit processes.

Since the sequence {(X̄n
6 , Ȳ n

8 ) : n ≥ 1} in (6.2) is C-tight by Lemma 8.1,
every subsequence has a further subsequence which converges to a contin-
uous limit. We conclude this section by applying the modulus-of-continuity
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inequalities established in the proof of Lemma 8.1 to deduce additional
smoothness properties of the limits of all converging subsequence.

Lemma 8.2. If (X̄6, Ȳ8) is the limit of a subsequence of {(X̄n
6 , Ȳ n

8 ) :
n ≥ 1} in D14, then each component in D, say X̄i, has bounded modulus of
continuity; i.e., for each T > 0, there exists a constant c > 0 such that

(8.1) w(X̄i, ζ, T ) ≤ cζ w.p.1

for all ζ > 0. Hence (X̄6, Ȳ8) is Lipschitz continuous w.p.1.

In closing this subsection, we remark that we cannot employ these bounds
on the modulus of continuity to directly deduce that the limit (X̄6, Ȳ8) is
either differentiable or deterministic. For example, a nonlinear piecewise-
linear function with bounded slope is Lipschitz continuous without being
differentiable, and the random function At, t ≥ 0, where A is a bounded
(non-deterministic) random variable satisfies (8.1) without itself being de-
terministic.

The C-tightness result in Lemma 8.1 implies that every subsequence of the
sequence {(X̄n

6 , Ȳ n
8 ) : n ≥ 1} in (6.1) has a further converging subsequence

in D14, whose limit is in the function space C14. However, by Theorem 7.1,
it suffices to focus on X̄n in D3, where the limits of the subsequences will be
in C3. To establish the convergence of the sequence X̄n, we must show that
every converging subsequence converges to the same (unique) limit. We thus
need to characterize the limit of any converging subsequence, show that it
is deterministic and that it satisfies the ODE (5.13) of Theorem 6.1. The
existence and uniqueness of the solution to the ODE over an interval [0, δ),
for some δ > 0, is stated in Theorem 5.2. This δ can be increased as long as
the solution x to the limiting ODE 5.13 remains in A. In this section we will
characterize an initial interval [0, δ] for which the solution is ensured to be
in A. Since we will be using the results of §7, we can decrease δ if necessary,
so that δ ≤ τ , for τ defined in Lemmas 7.3 and 7.4.

8.2. Explicit Stochastic Bounds. In this section we establish some ex-
plicit stochastic bounds on the sequence {(X̄n

6 , Ȳ n
8 ) : n ≥ 1} in (6.1) and

(6.2). These bounds complement the material in §8.1 and will be used to
control the transition rates of the queue-difference stochastic processes Dn

1,2.
To treat Ȳ n

8 , we use the inequalities

Sn
i,j(t) ≤ N s

i,j

(
µi,jm

n
j t

)
,

Qn
i (t) ≤ Qn

i (0) + An
i (t),

Un
i (t) ≤ Nu

i (θi[Qn
i (0)t + An

i (t)t]) , t ≥ 0.

(8.2)
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We apply the FWLLN for the Poisson process with (8.2) and Assumption
3 to obtain the following lemma.

Lemma 8.3. Ȳ n
8 ≤ Ȳ n

bd, where Ȳ n
bd ⇒ ybd in D8, with

ybd(t) ≡ (λ1t, λ2t, µ1,1m1t, 0, µ1,2m2t, µ2,2m2t,

θ1[q1(0)t + λ1t
2], θ2[q2(0)t + λ2t

2]
)

in R8.
(8.3)

We now turn to X̄n
6 . Since Z̄n

i,j ≤ n−1mn
j → mj as n → ∞, the agent

occupancy processes Z̄n
i,j present no problem. Let Qn

Σ ≡ Qn
1 + Qn

2 be the
stochastic process representing the total number of customers waiting in
queue in our stochastic model indexed by n. It is easy to see that we can
bound Qn

Σ above stochastically by Qn
bd, where Qn

bd is defined to be the number
in system in an M/M/∞model with arrival rate λn ≡ λn

1 +λn
2 and individual

service rate θ ≡ θ1∧θ2 ≡ min {θ1, θ2}. The upper bound is created by simply
removing all the servers in the original model, and only allowing departure
by abandonment.

For the following comparison result we use the same sample-path stochastic-
order construction as in §7.

Lemma 8.4. If Qn
Σ(0) ≤st Qn

bd(0) in R, then Qn
Σ ≤st Qn

bd in D.

It is well known that, if Qn
bd(0) = 0, then Qn

bd(t) has a Poisson distribution
with a finite mean for each t ≥ 0. Moreover, it is easy to establish a FSLLN
and a FWLLN for Qn

bd; we state the FWLLN.

Lemma 8.5. If Q̄n
bd(0) ⇒ qbd(0) in R w.p.1, where qbd(0) is deterministic,

then we have the FWLLN

(8.4) Q̄n
bd ⇒ qbd in D as n →∞,

where qbd evolves deterministically according to the ODE q̇bd(t) = λ−θqbd(t),
starting at qbd(0). Thus

(8.5) qbd(t) ≤ q∗bd ≡ qbd(0) ∨ (λ/θ) for all t ≥ 0.

Proof. Let Na and N s be independent rate-1 Poisson processes. Then,

Qn
bd(t) = Qn

bd(0) + Na(λnt)−N s
(

θ

∫ t

0
Qn

bd(s) ds

)
.

Applying the continuous mapping theorem for the integral representation,
Theorem 4.1 in [36], we have that Q̄n

bd ⇒ qbd in D as n → ∞, where qbd
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satisfies the ODE in the statement of the lemma. The solution to this ODE
is easily seen to be q(t) = λ/θ + (q(0)− λ/θ)e−θt, from which (8.5) follows.

Lemma 8.5 implies that the sequence {Q̄n
bd : n ≥ 1} is C-tight in D when-

ever there is convergence of the initial conditions. Together with Lemma 8.4,
that implies the following result.

Corollary 8.1. The sequence {Q̄n
Σ : n ≥ 1} is SB in D. For each t > 0,

the limit of any converging subsequence of {‖Q̄n
Σ‖t : n ≥ 1}, where n →∞,

is almost surely contained in the bounded interval [0, (q1(0)+q2(0))∨ (λ/θ)].

Proof. We use Assumption 3 to ensure that there is convergence of the ini-
tial conditions: X̄n(0) ⇒ x(0) in R6 as n →∞, where x(0) is deterministic.
We can then let the initial conditions in Lemma 8.5 be qbd(0) ≡ q1(0)+q2(0).
Hence, we get

Q̄n
bd ⇒ qbd in D as n →∞ for qbd(0) ≡ q1(0) + q2(0).

That FWLLN for Q̄n
bd implies that {Q̄n

bd} is SB, which in turn implies that
{Q̄n

Σ} is SB. Moreover, we get the final conclusion of Corollary 8.1.
We now have the following strengthening of the SB conclusion that can

be deduced from Lemma 8.1.

Corollary 8.2. The sequence {(X̄n
6 , Ȳ n

8 ) : n ≥ 1} in (6.1) and (6.2) is
SB in D14. For each t > 0, the limit of any convergent subsequence of the
sequence {‖(X̄n

6 , Ȳ n
8 )‖t : n ≥ 1} is contained in a compact subset of R14.

We also want to control the changes in the queue-length processes over
intervals. For that purpose, let Tn(t) be the total number of transitions of
the process (X̄n

6 , Ȳ n
8 ) in the time interval (0, t].

Lemma 8.6. For 0 ≤ t < t + u with u > 0,
(8.6)

sup
t≤s≤t+u

{|Qn
1 (s)−Qn

1 (t)|+ |Qn
2 (s)−Qn

2 (t)|} ≤ Tn(t+u)−Tn(t) ≤st Tn
b (u),

where {Tn
b (t) : t ≥ 0} is a Poisson process with rate cn , cn/n → c, with

(8.7)

c ≡ λ1+λ2+µ1,1m1+(µ1,2∨µ2,2)m2+(θ1∨θ2)
(

(q1(0) + q2(0)) ∨
(

λ1 + λ2

θ1 ∨ θ2

))
.

As a consequence, n−1Tn
b ⇒ Tb in D as n → ∞, where Tb(t) ≡ ct, t ≥ 0,

for c in (8.7). Thus, for any (t, u, c̃, ε) with 0 ≤ t < t + u, c̃ > c and ε > 0,
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there exists n0 ≡ n0(t, u, c̃, ε) such that

(8.8) P (Tn(t + u)− Tn(t) > c̃nu) ≤ ε for all n ≥ n0.

Proof. Apply Lemma 8.3 to bound the rate of arrivals and service comple-
tions. Apply Corollary 8.2 to bound the total queue content, then multiply
by θ1 ∨ θ2 to bound the rate of abandonments.

8.3. Positive Recurrence of the Frozen Difference Process. We defined
the transition rates of the queue-difference process in (5.1). We assumed
that Xn(t0) = Γn where Γn is some fixed deterministic state where sharing
is taking place, and specified the transition rates at time t0. We now consider
the constant-rate QBD with those transition rates. We also extend the defini-
tion by letting Γn be a random variable, where it is understood that Γn only
determines the constant transition rates, and does not otherwise affect the
future evolution of the stochastic process. Let Dn

f (Γn) ≡ {Dn
f (Γn, t) : t ≥ 0}

denote this process. (Since t0 plays no role in (5.1), we take it to be 0.)
We use the subscript f because we refer to this constant-rate QBD as the
frozen queue-difference process, thinking of the constant transition rates be-
ing achieved because the state has been frozen at the state Γn. (As in §5.1
the now-constant transition rates in (5.2)-(5.5) are asymptotically correct
as n →∞ with extra o(n) terms, which we omit.)

We will frequently apply this constant-rate QBD with Γn being a state of
some process, such as Xn(t). We then write Dn

f (Xn(t)) ≡ {Dn
f (Xn(t), s) :

s ≥ 0}, where it is understood that Dn
f (Xn(t)) d= Dn

f (Γn) under the condi-

tion that Γn d= Xn(t).
It is important that this frozen difference process Dn

f (Γn) can be directly
identified with a version of the FSTP, because both are QBD’s with the
same structure. Indeed, the frozen-difference process can be defined as a
version of the FTSP with special state and basic model parameters λi and
mj , and transformed time. In order to express the relationship, we indicate
the dependence upon the arrival rates and number of servers. In particular,

(8.9) {Dn
f (λn

i ,mn
j , Γn, s) : s ≥ 0} d= {D(λn

i /n, mn
j /n,Γn/n, ns) : s ≥ 0},

with the understanding that the initial differences coincide, i.e.,

(8.10) D(λn
i /n,mn

j /n,Γn/n, 0) ≡ Dn
f (λn

i ,mn
j , Γn, 0) ≡ Qn

1 (0)− r1,2Q
n
2 (0),

where (Qn
1 , Qn

2 ) is part of the state Γn. This can be checked by verifying
that the constant transition rates are indeed identical for the two processes,
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referring to (5.2)-(5.5) and (5.9)-(5.12). Since λn
i /n → λi, i = 1, 2 and

mn
j /n → mj , j = 1, 2, by virtue of the MS-HT scaling in (2.3), we will

have the transition rates of D(λn
i /n,mn

j /n,Γn/n, ·) converge to those of
D(γ) ≡ D(λi,mj , γ, ·) whenever Γn/n → γ. Of course, (8.9) should not be
surprising, because we defined the FTSP in terms of the queue-difference
process by a limit that asymptotically reverses (8.9): The transition rates of
D(γ) were defined to be the limit of the transition rates of Dn(Γn)/n when
Γ/n → γ.

Since the process Dn
f (Xn(t0), t) has the same QBD structure as the FTSP

D, a version of Theorem 5.1 holds, i.e., for a given fixed Xn(t0), the frozen
difference process {Dn

f (Xn(t0), t) : t ≥ 0} is positive recurrent if and only if

(8.11) δn
+(Xn(t0)) < 0 < δn

−(Xn(t0)).

In this subsection we find a ξ > 0, such that the frozen process Dn
f (Xn(t), ·)

is positive recurrent for all t ∈ [0, ξ) with probability converging to 1 as
n →∞. We do not actually use this result in the following, but the result is
interesting and the proof illustrates the technique we will use in a relatively
simple setting.

For ξ > 0 and η > 0, let Bn(ξ, η) be the following subset of the underlying
probability space:

(8.12) Bn(ξ, η) ≡ { sup
t∈[0,ξ]

δn
+(Xn(t)) < −η and inf

t∈[0,δ]
δn
−(Xn(t)) > η}.

On Bn(ξ, η), the process {Dn
f (Xn(t), s) : s ≥ 0} is positive recurrent for all

t ∈ [0, ξ].

Lemma 8.7. There exist ξ > 0 and η > 0 such that P (Bn(ξ, η)) → 1
as n → ∞, where Bn(ξ, η) is the subset in (8.12), on which the process
{Dn

f (Xn(t), s) : s ≥ 0} is positive recurrent for all t ∈ [0, ξ].

8.4. Continuity of the FTSP QBD. In the remaining proof, we will ulti-
mately reduce everything down to the behavior of the FTSP QBD D. First,
we intend to analyze the inhomogeneous queue-difference processes Dn(Γn)
in terms of associated homogeneous (constant-rate) processes Dn

f (Γn) intro-
duced in §8.3, obtained by freezing the transition rates at the transition rates
in the initial state Γn. In (8.9) above, we showed that the frozen-difference
processes can be represented directly in terms of the FTSP, by transform-
ing the model parameters (λi, mj) and the fixed initial state γ and scaling
time. In the following subsections, we will appropriately bound the queue-
difference processes Dn(Γn) above and below by associated frozen-queue
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difference processes, and then transform them into versions of the FTSP D.
For the rest of the proof, we will exploit a continuity property possessed by
this family of QBD processes. We will be applying this to the FTSP D.

To set the stage, we review basic properties of the QBD process. From the
transition rates defined in (5.9)-(5.12), we see that there are only 8 different
transition rates overall. The generator Q in (5.17) is based on the four basic
2m × 2m matrices B, A0, A1, and A2, involving the 8 transition rates. By
Theorem 6.4.1 and Lemma 6.4.3 of [29], when the QBD is positive recurrent,
the FTSP steady-state probability vector has the matrix-geometric form
αn = α0R

n, where αn and α0 are 1 × 2m probability vectors and R is
the 2m × 2m rate matrix, which is the minimal nonnegative solutions to
the quadratic matrix equation A0 + RA1 + R2A2 = 0, and can be found
efficiently by existing algorithms, as in [29]; See [39] for applications in our
settings. If the drift condition (5.21) holds, then the spectral radius of R
is strictly less than 1 and the QBD is positive recurrent (Corollary 6.2.4 of
[29]). As a consequence, we have

∑∞
n=0 Rn = (I − R)−1. Also, by Lemma

6.3.1 of [29], the boundary probability vector α0 is the unique solution to
the system α0(B + RA2) = 0 and α1 = α0(I −R)−11 = 1.

Like any irreducible positive recurrent CTMC, the positive recurrent QBD
is regenerative, with successive visits to any state constituting an embedded
renewal process. As usual for QBD’s (see [29]), we can choose to analyze
the system directly in continuous time or in discrete time by applying uni-
formization, where we generate all potential transitions from a single Poisson
process with a rate exceeding the total transition rate out of any state. In
continuous time we focus on the interval between successive visits to the
regenerative state; in discrete time we focus on the number of Poisson tran-
sitions between successive visits to the regenerative state.

Let τ be the return time and let N be the number of Poisson transitions
(with specified Poisson rate). Because of the QBD structure, the return time
τ has a moment generating function (mgf) φτ (θ) ≡ E[eθτ ], for which there
exists a critical value θ∗ > 0 such that φτ (θ) < ∞ for θ < θ∗ and φτ (θ) = ∞
for θ > θ∗, while the number of transitions, N , has the generating function
(gf) ψN (z) ≡ E[zN ], for which there exists a radius of convergence z∗ with
0 < z∗ < 1 such that ψN (z) < ∞ for z < z∗ and ψN (z) = ∞ for z > z∗.

Moreover, the mgf φτ (θ) and gf ψN (z) can be expressed directly in terms
of the finite QBD defining matrices. It is easier to do so if we choose a regen-
erative state, say s∗, in the boundary region (corresponding to the matrix
B in (5.17)). To illustrate, we discuss the gf. With s∗ in the boundary level,
in addition to the transitions within the boundary level and up to the next
level from the boundary, we only need consider the number of transitions,
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plus starting and ending states, from any level above the boundary down
one level. Because of the QBD structure, these key downward first passage
times are the same for each level above the boundary, and are given by the
probabilities Gi,j [k] and the associated matrix generating function G(z) on
p. 148 of [29]. Given G(z), it is not difficult to write an expression for the
generating function ψNn(z), just as in the familiar BD case; e.g., see §4.3 of
[29].

We will be interested in the cumulative process

(8.13) C(t) ≡
∫ t

0
(f(D(s))− E[f(D(∞))]) ds t ≥ 0,

for the special function f(x) ≡ 1{x≥0}. Cumulative processes associated with
regenerative processes obey CLT’s and FCLT’s, depending upon assump-
tions about the basic cycle random variables τ and

∫ τ
0 f(D(s)) ds, where we

assume for this definition that D(0) = s∗; see §VI.3 of [4] and [15]. From [9],
we have the following CLT with a Berry-Esseen bound on the rate of conver-
gence (stated in continuous time, unlike [9]): For any bounded measurable
function f , there exists t0 such that

(8.14) |E[f(C(t))/
√

t]− E[f(N(0, σ2))]| ≤ K√
t

for all t > t0,

where

(8.15) σ2 ≡ E

[(∫ τ

0
f(D(s))− E[f(D(∞))] ds

)2
]

,

again assuming for this definition that D(0) = s∗. The constant K depends
on the function f and the third absolute moments of the basic cycle variables
defined above, plus the first moments of the corresponding cycle variables
in the initial cycle if the process does not start in the chosen regenerative
state.

There is significant simplification in our case, because the function f in
(8.14) is an indicator function. Hence, we have the simple domination:

(8.16)
∫ τ

0
|f(D(s)| ds =

∫ τ

0
f(D(s)) ds ≤ τ w.p.1

As a consequence, boundedness of absolute moments of both cycle variables
reduces to the moments of the return times themselves, which are controlled
by the mgf.

We will exploit the following continuity result for QBD’s.
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Lemma 8.8. (continuity of QBD’s) Consider a sequence of irreducible,
positive recurrent QBD’s having the structure of the fundamental QBD in
§5.5, with generator matrices {Qn : n ≥ 1} of the form (5.17). If Qn → Q as
n →∞, where the positive-recurrence drift condition (5.21) holds for Q, then
there exists n0 such that the positive-recurrence drift condition (5.21) holds
for Qn for n ≥ n0. For n ≥ n0, the quantities (R,α0, α, φτ , θ

∗, ψN , z∗, σ2,K)
indexed by n are well defined for Qn, where σ2 and K are given in (8.14) and
(8.15), and converge as n → ∞ to the corresponding quantities associated
with the QBD with generator matrix Q.

Proof. First, continuity of R, α0 and α follows from the stronger differentia-
bility in an open neighborhood of any γ ∈ A, which was shown to hold in the
proof of Theorem 5.1 in [39], building on Theorem 2.3 in [20]. The continuity
of σ2 follows from the explicit representation in (8.15) above (which corre-
sponds to the solution of Poisson’s equation). We use the QBD structure
to show that the basic cycle variables τ and

∫ τ
0 f(D(s)) ds are continuous

function of Q, in the sense of convergence in distributions (or convergence of
mgf’s and gf’s) and then for convergence of all desired moments, exploiting
(8.16) and the mgf of τ to get the required uniform integrability. Finally,
we get the continuity of K from [9] and the continuity of the third absolute
moments of the basic cycle variables, again exploiting the uniform integra-
bility. We will have convergence of the characteristic functions used in [9].
However, we do not get an explicit expression for the constants K.

We use the continuity of the steady-state distribution α in (5.33) in §E.5.
In addition, we use the following corollary to Lemma 8.8 in (5.32) in §E.5.

Corollary 8.3. If (λ̄n
i , m̄n

j , γ̄n) → (λi,mj , γ) as n →∞ for our FTSP
QBD’s, where (5.21) holds for (λi,mj , γ), then for all ε > 0 there exist t0
and n0 such that

P

(
|1
t

∫ t

0
1{D(λn

i ,mn
j ,γn,s)>0} ds− P (D(λi,mj , γ,∞) > 0)| > ε

)
< ε

for all t ≥ t0 and n ≥ n0.

Proof. First apply Lemma 8.8 for the steady-state probability vector α, to
find n0 such that |P (D(λn

i , mn
j , γn,∞) > 0)|−P (D(λi,mj , γ,∞) > 0)| < ε/2

for all n ≥ n0. By the triangle inequality, henceforth it suffices to work
with P (D(λn

i ,mn
j , γn,∞) > 0) in place of P (D(λi,mj , γ,∞) > 0) in the

statement to be proved. By (8.14), for any M , there exists t0 such that for
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all t ≥ t0,

P

(
|1
t

∫ t

0
1{D(λn

i ,mn
j ,γn,s)>0} ds− P (D(λn

i ,mn
j , γn,∞) > 0)| > M√

t

)

< P (|N(0, σ2(λn
i , mn

j , γn))| > M) +
K(λn

i ,mn
j , γn)√

t
.

(8.17)

Next, choose M so that P (|N(0, σ2(λi,mj , γ))| > M) < ε/2. Then, invok-
ing Lemma 8.8, increase n0 and t0 if necessary so that |σ2(λn

i ,mn
j , γn)) −

σ2(λi,mj , γ))| and |K(λn
i ,mn

j , γn) − K(λi,mj , γ)| are sufficiently small so
that the right side of (8.17) is less than ε/2 for all n ≥ n0 and t ≥ t0. If
necessary, increase t0 and n0 so that M/

√
t0 < ε/2. With those choices, the

objective is achieved.

8.5. Process Bounds. Our next step is to find a ξ > 0 for which we
can uniformly bound the frozen difference processes {Dn

f (Xn(t), ·)} and the
queue-difference processes {Dn

1,2(t)} for all t ∈ [0, ξ], with two QBD’s - one
from above and the other from below. We thus translate the uniformity
of the bounds on the drifts, established in Lemma 8.7, to a uniformity of
bounds on the family of process {Dn

f (Xn(t), ·)} for t ∈ [0, ξ]. Having two
bounding QBD’s will eventually allow us to use a sandwiching argument.
Now, instead of sample path stochastic order, we use rate order, denoted by
X1 ≤r X2, by which we mean that, from every integer state and for every
possible state that can be reached from that state in a single transition,
both (i) the transition rates up in CTMC X1 are less than or equal to the
corresponding transition rates up in CTMC X2, and (ii) the transition rates
down in CTMC X1 are greater than or equal to the corresponding transition
rates down in CTMC X2.

Lemma 8.9. For any ε > 0, there exist states xm, xM ∈ A and random
vectors Xn

m, Xn
M with ‖xm − x(0)‖ < ε, ‖xM − x(0)‖ < ε, n−1Xn

m ⇒ xm

and n−1Xn
M ⇒ xM as n → ∞. Moreover, there exist ξ > 0, η > 0 and a

sequence of sets {Bn(ξ, η) : n ≥ 1} in the underlying probability space with
P (Bn(ξ, η)) → 1 as n → ∞, such that, for 0 ≤ t ≤ ξ, the frozen-difference
processes associated with Xn

m and Xn
M , defined as in (8.9), provide lower

and upper bounds in rate order, i.e.,

Dn
f (Xn

m, ·) ≤r Dn
f (Xn(t), ·) ≤r Dn

f (Xn
M , ·),

Dn
f (Xn

m, ·) ≤r Dn
1,2(t) ≤r Dn

f (Xn
M , ·),(8.18)

where the bounding processes Dn
f (Xn

M , ·) and Dn
f (Xn

m, ·), and thus also the
interior processes Dn

f (Xn(t), ·), satisfy (8.12) on Bn(ξ, η), n ≥ 1, and are
thus positive recurrent.
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When r1,2 = 1, rate order directly implies the stronger sample path
stochastic order, but not more generally, because the upper (lower) pro-
cess can jump down below (up above) the lower (upper) process when the
lower process is at state 0 or below, while the upper process is just above
state 0. Nevertheless, we can obtain the following stochastic order bound,
involving a finite gap. However, there is no gap when r1,2 = 1 because then
j = k = 1.

Corollary 8.4. Let ζ ≡ (j ∨ k) − 1. Under the conditions of Lemma
8.9, there exist ξ > 0 and η > 0, random vectors Xn

M and Xn
m, and a

sequence of sets {Bn(ξ, η) : n ≥ 1} in the underlying probability space with
P (Bn(ξ, η)) → 1 as n →∞, such that, whenever

Dn
f (Xn

m, 0)− ζ ≤st Dn
f (Xn(0), 0) ≤st Dn

f (Xn
M , 0) + ζ,

Dn
f (Xn

m, 0)− ζ ≤st Dn
1,2(0) ≤st Dn

f (Xn
M , 0) + ζ,(8.19)

in R,

Dn
f (Xn

m, ·)− ζ ≤st Dn
f (Xn(t), ·) ≤st Dn

f (Xn
M , ·) + ζ,

Dn
f (Xn

m, t)− ζ ≤st Dn
1,2(t) ≤st Dn

f (Xn
M , t) + ζ,(8.20)

in D([0, ξ])), where the bounding processes Dn
f (Xn

M , ·) and Dn
f (Xn

m, ·), and
thus also Dn

f (Xn(t), ·), satisfy (8.12) on Bn(ξ, η), n ≥ 1, and are thus posi-
tive recurrent.

Proof. We can do the standard sample path construction: Provided that
the processes are on the same side of state 0 in the CTMC representation,
we can make all the processes jump up by the same amount whenever the
lower one jumps up, and make all the processes jump down by the same
amount whenever the upper one jumps down. However, there is a difficulty
when the processes are near the state 0 in the CTMC representation (which
involves the matrix B for the QBD). When the upper process is above 0
and the lower process is at or below 0, the lower process can jump over the
upper process by at most (j ∨k)− 1, and the upper process can jump below
the lower process by this same amount. But the total discrepancy cannot
exceed (j ∨ k)− 1, because of the rate order. Whenever the desired order is
switched, e.g., whenever the processes are ordered Dn

f (Xn
M , t) ≤ Dn

f (Xn
m, t),

no further discrepancies can be introduced.
As an immediate corollary to Corollary 8.4, we can deduce stochastic

boundedness (SB) as n →∞. The following corollary implies Theorem 5.4.
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Corollary 8.5. For n ≥ 1, let Sn be the set of all processes {Dn
1,2(t) :

0 ≤ t ≤ ξ} and {Dn
f (Xn(t), s) : 0 ≤ s ≤ ξ} for 0 ≤ t ≤ ξ with ξ from

Corollary 8.4. (The sets Sn form an uncountably infinite subset of the space
D([0, ξ]).) Suppose that condition (8.19) is satisfied. Then the sequence {Sn :
n ≥ 1} is SB. Consequently, the sequence of processes {{Dn

1,2(t) : 0 ≤ t ≤
ξ} : n ≥ 1} is SB in D([0, ξ]), so that the sequence {Dn

1,2(t) : n ≥ 1} is SB
in R for each t with 0 ≤ t ≤ ξ.

Proof. By letting n → ∞ in Corollary 8.5, we are able to exploit the
stochastic order bound in (8.20), where the bounds are positive recurrent,
satisfying (8.12).

We will later show that the conclusions of Corollary 8.5 hold when ξ is
replaced by δ, where [0, δ) is the interval over which there exists a unique
solution to the ODE in A. Together with Theorem 5.3, Corollary 8.5 proves
that the sequence of processes {{Dn

1,2(t) : 0 ≤ t ≤ ξ} : n ≥ 1} is SB but not
tight in D([0, ξ]); the oscillations are too rapid.

8.6. Special Construction to Bound the Integrals. The comparisons in
Lemma 8.9 and Corollary 8.4 are important, but they are not directly ade-
quate for our purpose. The sample-path stochastic order bound works fine
for the special case of r1,2 = 1, but not more generally, because of the gap
ζ. However, we now show that an actual gap will only be present rarely, if
we choose the interval length ξ small enough and n big enough. We use the
construction in the previous section, exploiting the fact that we have rate
order, where the bounding rates can be made arbitrarily close to each other
by choosing the interval length ξ suitably small.

However, we must specify the initial conditions for all the difference pro-
cesses under consideration. Consistent with Assumption 3, we assume that

(8.21) Dn
1,2(0) = Dn

f (Xn
m, 0) = Dn

f (Xn
M , 0) = Dn

f (Xn(t), 0)

for all t, 0 ≤ t ≤ ξ, and Dn
1,2(0) ⇒ L as n →∞, where L is a proper random

variable.

Lemma 8.10. Assume that condition (8.21) holds. For any ε > 0, there
exist states xm, xM ∈ A and random vectors Xn

m, Xn
M with ‖xm−x(0)‖ < ε,

‖xM −x(0)‖ < ε, n−1Xn
m ⇒ xm and n−1Xn

M ⇒ xM as n →∞. In addition,
there exist ξ > 0 and η > 0, frozen-difference QBD processes {Dn

f (Xn
M , s) :

s ≥ 0} and {Dn
f (Xn

m, s) : s ≥ 0}, associated with the random vectors Xn
m

and Xn
M above, defined as in (8.9), and a sequence of sets {Bn(ξ, η) : n ≥ 1}

in the underlying probability space with P (Bn(ξ, η)) → 1 as n → ∞, such



AN AVERAGING PRINCIPLE 51

that, on the set Bn(ξ, η),

δn
+(Xn

m) < −η and δn
−(Xn

m) > η,

δn
+(Xn

M ) < −η and δn
−(Xn

M ) > η(8.22)

(so that the bounding processes Dn
f (Xn

m, ·) and Dn
f (Xn

M , ·), and thus also
Dn

f (Xn(t), ·), are positive recurrent) and, for 0 ≤ t ≤ ξ, (also on Bn(ξ, η))

1
ξ

∫ ξ

0
1{Dn

f
(Xn

m,s)>0} ds− ε ≤ 1
ξ

∫ ξ

0
1{Dn

f
(Xn(t),s)>0} ds

≤ 1
ξ

∫ ξ

0
1{Dn

f
(Xn

M ,s)>0} ds + ε

1
ξ

∫ ξ

0
1{Dn

f
(Xn

m,s)>0} ds− ε ≤ 1
ξ

∫ ξ

0
1{Dn

1,2(s)>0} ds

≤ 1
ξ

∫ ξ

0
1{Dn

f
(Xn

M ,s)>0} ds + ε.

(8.23)

8.7. Proof of Theorem 6.1. By the tightness established in Lemma 8.1,
we know that every subsequence of {X̄n : n ∈ N} has a further subsequence
converging weakly in D3. We will be considering a converging subsequence
with limit X̄, but without changing the indexing notation. (We understand
that n runs through a subsequence.) It suffices to show that the limit X̄ is
deterministic and satisfies the ODE in (5.13) or, equivalently, the integral
representation in (5.14).

By Theorems 4.1 and 4.2, which draws on §7, it suffices to focus on the
integral representation for X̄n in (4.8). Many of the terms converge directly
to their counterparts in (5.14) because of the assumed MS-HT scaling in
§2.3 and the convergence X̄n ⇒ X̄ through the subsequence obtained from
the tightness. Indeed, the only exceptions are the integral terms involving
the indicator functions. However, these integral terms are easily seen to be
tight as well, as a conseuence of the tightness of the sequences {Z̄n

i,j : n ≥ 1}
established in §8.1. Hence, we can consider a subsequence of our original
converging subsequence in which all these integral terms converge to proper
limits as well. Hence we have the integral representation in (4.8) converge



52 O. PERRY AND W. WHITT

to the system

Z̄1,2(t) = z1,2(0) + µ2,2Īz,1(t)− µ1,2Īz,2(t)
Q̄1(t) = q1(0) + λ̄1t− m̄1t− µ1,2Īq,1,1(t)

− µ2,2Īq,1,2(t)− θ1

∫ t

0
Q̄1(s) ds,

Q̄2(t) = q2(0) + λ̄2t− µ2,2Īq,2,1(t)

− µ1,2Īq,2,2(t)− θ2

∫ t

0
Q̄2(s)) ds.

(8.24)

We have exploited the assumed convergence of the initial conditions in As-
sumption 3 to replace X̄(0) by x(0) in (8.24). In more detail, for one integral
term we have

{{
∫ t

0
1{Dn

1,2(s)>0}Z̄n
1,2(s) ds : t ≥ 0} : n ≥ 1} ⇒ {Īq,1,2(t) : t ≥ 0} in D

through the final converging subsequence.
At this point, it suffices to identify the limit of each integral term with

the corresponding term in the integral representation in (5.14). That will
uniquely characterize the limit over an initial interval [0, δ) because, by The-
orem 5.2, there exists a unique solution to the ODE over an initial interval
[0, δ). Since each of these integrals can be treated in essentially the same
way, we henceforth focus only on the term Īq,1,2(t). Thus, it suffices to show
that

Īq,1,2(t) =
∫ t

0
π1,2(X̄(s))Z̄1,2(s)) ds

for each t. (It suffices to look at only any one t.) From a differential perspec-
tive, it suffices to show that

Īq,1,2(t + ξ)− Īq,1,2(t) = π1,2(X̄(t))Z̄1,2(t)ξ + o(ξ) as ξ → 0.

We achieve that goal by applying Lemma 8.11 below.
Recall that [0, δ) is the interval where the ODE has a unique solution. It is

initially reduced to satisfy the requirements of §7, but then can be increased
once a smaller interval has been treated. However, here we reduce δ again
if necessary, so that δ < ξ for ξ in Lemmas 8.7, 8.9 and 8.10. After Lemma
8.11 and Theorem 6.1 have been proved for this reduced δ, δ can be further
increased to the point where the existence of a unique solution to the ODE
has been determined. Below we will be introducing a new ξ less than this
new δ.
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Lemma 8.11. (convergence of the integral terms) For any ε > 0 and
t with 0 ≤ t < δ, with δ specified above, there exists ξ ≡ ξ(ε, δ, t) with
0 < ξ < δ − t and n0 such that

(8.25) P

(
|1
ξ

∫ t+ξ

t
1{Dn

1,2(s)>0}Z̄n
1,2(s) ds− π1,2(X̄(t))Z̄1,2(t)| > ε

)
< ε

for all n ≥ n0.

9. WLLN for the Stationary Distributions. Under the shifted FQR-
T control, the six-dimensional stochastic process Xn ≡ (Qn

i , Zn
i,j ; i, j = 1, 2)

is a an irreducible CTMC for each n. Equivalently, the associated fluid-scaled
processes X̄n ≡ n−1Xn is an irreducible CTMC, with the states replaced by
vectors of integers divided by n. Hence X̄n has a unique steady-state (lim-
iting and stationary) distribution X̄n(∞) for each n. We now prove that
X̄n(∞) ⇒ x∗, where x∗ is the unique stationary point in S, characterized in
Theorem 6 and its two corollaries in [39].

Theorem 9.1. (WLLN for the stationary distributions) As n → ∞,
X̄n(∞) ⇒ x∗, where x∗ is the unique fluid stationary point given in Corol-
lary 2 of [39].

We apply two lemmas, which we establish in §??. Let X̄n∗
6 be the station-

ary version of X̄n
6 created by initializing with the stationary distribution

X̄n(∞) for each n.

Lemma 9.1. The sequence of stationary versions {X̄n∗
6 : n ≥ 1} is C-

tight in D6.

We now consider the limit of a convergent subsequence of {X̄n∗
6 : n ≥ 1};

let one such limit be denoted by X∗ ≡ (Q∗
i , Z

∗
i,j ; i, j = 1, 2). In general, at

this stage of the reasoning, we do not know that X∗ is deterministic. We
first show that P (X∗(0) ∈ S) = 1.

Lemma 9.2. As n →∞, P (X̄n(t) ∈ S for all t) → 1, so that P (X∗(0) ∈
S) = 1 for each t ≥ 0.

Proof of Theorem 9.1. We apply Lemma 9.1 to obtain a convergent sub-
sequence; let its limit be X∗ ≡ (Q∗

i , Z
∗
i,j ; i, j = 1, 2). We apply Lemma 9.2

to conclude that P (X∗ ∈ S) = 1. For each sample point of X∗(0), we apply
Theorem 6.1 to conclude that X∗ ≡ (Q∗

1, Q
∗
2, Z

∗
1,2) must evolve as a three-

dimensional ODE, except the initial values (Q∗
1(0), Q∗

2(0), Z∗1,2(0)) in R3,
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which may in general be random. Since the converging stochastic processes
X̄n in D are stationary stochastic processes, so is the limiting stochastic
process X∗. Hence, each initial value (Q∗

1(0), Q∗
2(0), Z∗1,2(0)) corresponding

to one sample point in the underlying probability space must be a stationary
point of the fluid model. However, by Theorem 6 of [39] and its corollaries,
there is a unique stationary point for the fluid model (ODE), depending on
the model parameters. Hence, we must have P (X∗ = x∗) = 1. Since this
argument applies to each convergent subsequence, the limit of each conver-
gent subsequence must be x∗. Hence, the full sequence must converge to x∗,
which completes the proof.
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APPENDIX

There are six appendices here, providing important supporting material.
The material is presented in the order of the associated material in the
main paper. Appendix A contains the proofs of Theorems 5.3 and 5.5 in §5.
Appendix B contains the proofs for theorems and lemmas establishing SSC
for the service processes in §7. Appendices C and D contain supplementary
material for §7. In particular, Appendix C displays the bounding QBD used
in the proof of Lemma 7.4, while Appendix D provides more on the idleness
processes, going beyond Theorem 7.4 in §7.

Appendix E contains the proofs for the theorems and lemmas completing
the proof of Theorem 6.1 in §8. Appendix E has four subsections, corre-
sponding to the subsections of §8 where the results are located. Appendix
?? contains the proofs for the two lemmas used in proving the WLLN for
the stationary distributions.

APPENDIX A: REMAINING PROOFS IN SECTION 5

In this section we provide the two remaining proof in §5: We prove The-
orems 5.3 and 5.5.

A.1. Proof of Theorem 5.3. We first establish the claimed conver-
gence of processes in (5.23). For any γ ∈ A, the limiting FTSP {D(γ, s) :
s ≥ 0} is a CTMC with bounded constant transition rates, as specified in
§5.2. (In this section we view the FTSP as a CTMC rather than as a QBD
process.) Hence, the FTSP can make only finitely many transitions in any
bounded interval. Moreover, there are only four possible transitions from any
state, and there are only two possible forms for these transitions, depending
upon whether D(γ, s) > 0 or D(γ, s) ≤ 0. Thus, the FTSP is a well-defined
random element of D. In this framework of integer-valued processes, conver-
gence inD is equivalent to convergence of the finite-dimensional distributions
(fidi’s).

The converging processes {Dn
e (Γn, s) : s ≥ 0} defined in (5.7) are more

complicated, having time-dependent transition rates, but they have essen-
tially the same structure. For each n and s, these processes also have only
four possible transitions from any state, and there are only two possible
forms for these transitions, depending upon whether Dn

e (Γn, s) > 0 or
Dn

e (Γn, s) ≤ 0. By assumption, the initial conditions converge. Since Γn/n →
γ as n → ∞, and because of the special time scaling in (5.7), we have uni-
form convergence of the time-varying transition rates of Dn

e (Γn, s) > 0 to
the constant transition rates of the FTSP over the interval [0, t]. Hence, we
have convergence of the fidi’s, and thus convergence in D.
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We now elaborate on the way this last step can be formalized. That can be
done cleanly using a uniformization framework, as in Theorem 3.1 of [32], in
which all transitions of {Dn

e (Γn, s) : s ≥ 0} are generated from a single Pois-
son process with constant rate. However, there is a complication, because
in general the transition rates are not unbounded above. One approach to
this problem is to use adaptive uniformization as in [34] and references cited
therein. However, by Corollary 8.1, the scaled total queue content n−1Qn

Σ

is stochastically bounded above by a process n−1Qn
bd, which converges in

law to the deterministic finite bound qbd(t) ≤ q∗bd given in (8.5). Hence,
Dn

e (Γn, ·) is asymptotically equivalent to a process with uniformly bounded
transition rates. (For a direct stochastic bound on the number of transitions
over a subinterval, see Lemma 8.6.) Hence, without loss of generality, we
work with the asymptotically equivalent processes that do have uniformly
bounded transition rates. However, we do not introduce new notation; in-
stead we simply act as if n−1Qn

Σ is bounded above and the transition rates
of {Dn

e (Γn, s) : s ≥ 0} are bounded above. Hence, we just apply standard
uniformization.

Given the Poisson process with a fixed rate, which exceeds the transition
rate out of any state, all potential transitions are the transition epochs of
the Poisson process. The actual transitions at the transition epochs of the
Poisson process occur according to a discrete-time Markov chain (DTMC).
However, in our nonstationary context, the DTMC is nonstationary as well.
In particular, as in [32], we can express the time-dependent transition func-
tion as

P
(n)
i,j (t) ≡ P (Dn

e (Γn, t) = j|Dn
e (Γn, 0) = i)

=
∞∑

k=0

e−ηt(ηt)k

k!

∫
· · ·

∫

0≤s1<s2<···<sk≤t
(

k∏

l=1

P (n)
η (sl))i,j

k!
tk

ds1 · · · dsk,(1.1)

where η is an upper bound on the total transition rate out of each state for
all n ≥ 1, and P

(n)
η (s) ≡ I + Q(n)(s)/η is the discrete-time markov chain

transition matrix at time s, based on the infinitesimal generator matrix
Q(n)(s) at time s.

Thus, for any given time interval [0, t] and ε > 0, we can find an in-
teger ν such that the total number of transitions of all of the processes
{Dn

e (Γn, s) : s ≥ 0} over [0, t] is at most ν with probability 1− ε. This will
apply to all processes under discussion. Moreover, the occurrence of those
ν transitions is distributed over [0, t] according to ν i.i.d. uniformly random
variables, using the classical property of the Poisson process. We can thus
take the number ν and the locations of the transitions as fixed, independent
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of n. We are then left with the product of ν DTMC transition matrices at
time-varying locations, as shown in (1.1). These transition matrices here are
infinite matrices, but each has at most 5 positive entries in each row. For
any given ν and initial state, we can only reach a finite number of states.
So, at this point, these transition matrices actually are equivalent to finite
matrices. Moreover, these transition matrices converge to the common limit-
ing transition matrix corresponding to the FTSP, uniformly. Hence, we can
uniformly bound the difference between the product of these ν matrices and
the corresponding product for the FTSP, independent of their time-varying
locations. In that way, we can bound the total error by an arbitrarily small
quantity by choosing first ν and then n to be suitably large.

A.2. Proof of Theorem 5.5. By Corollary 8.5, the sequence of ran-
dom variables {Dn

1,2(t) : n ≥ 1} is SB. Since SB is equivalent to tightness in
R, every subsequence has a converging subsequence. We now apply Theorem
6.1 to show that every such converging subsequence must converge to the
random variable D(x(t),∞), which has the steady-state distribution of the
FTSP D determined by the fluid state x(t) at time t. (We do not apply The-
orem 5.5 in the proof of Theorem 6.1.) That implies that the entire sequence
must converge to that same limit and completes the proof.

To characterize the limit of a convergent subsequence, we exploit the con-
tinuity of, first, x(t) and, second, the distribution of D(x(t),∞), exploiting
Lemma 8.8. With these properties, we obtain the following lemma, which
relates the FTSP at finite times to its steady-state distribution. To express
the distance between probability distributions on R, corresponding to con-
vergence in distribution, we use the Lévy metric, defined for any two cdf’s
F1 and F2 by

L(F1, F2) ≡ inf {ε > 0 : F1(x− ε)− ε ≤ F2(x) ≤ F1(x + ε) + ε forallx}.

For random variables X1 and X2, L(X1, X2) denotes the Lévy distance be-
tween their probability distributions.

Lemma A.1. For any t0 with 0 ≤ t0 < δ, where δ is chosen to ensure
that the ODE has a unique solution x with x(t) ∈ A for all t ∈ [0, δ), and
any ε > 0, there exist s0 and ζ > 0 such that t0 + ζ < δ and

(1.2) L(D(x(t0),∞), D(x(t), s)) ≤ ε for all s ≥ s0 and t ∈ (t0 − ζ, t0 + ζ).

Proof. As stated above, Lemma 8.8 establishes continuity in x(t) of the
distributions of the steady-state variables D(x(t),∞) of the FTSP D. Since
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x(t) is continuous in t, we get continuity of the distribution of D(x(t),∞)
in the time argument t. Thus, for any ε > 0 we can find ζ1 > 0, such that

(1.3) L(D(x(t0),∞), D(x(t),∞)) ≤ ε/2 for all t ∈ [t0 − ζ1, t0 + ζ1].

Lemma 8.8 also establishes continuity for the distribution of the return time
to a fixed regeneration state, which was argued to have a finite mgf in §8.4.
Let τ(t) denote the return time to the regeneration state s∗ of the process
D(x(t), ·). Now, the existence of a finite mgf of the return time τ(t) to a
“small set” (for background and definition see, e.g., [33], [27]) is equivalent
to exponential ergodicity of the Markov process; See Theorem 2.5 in [27].
Moreover, in a countable state space, every set is small, and in particular
our chosen regeneration state s∗. Hence, τ(t) is the return time to the small
set {s∗} having a finite mgf, which implies that D(x(t), ·) is exponentially
ergodic:

L(D(x(t), s), D(x(t),∞)) ≤ β(t)e−ρ(t)s

or some β(t), ρ(t) > 0.
However, for our purposes, we need to show that the bounds on the con-

vergence rates β(t) and ρ(t) are themselves bounded uniformly in t in the
neighborhood of t0. Specifically, we need to find β0 < ∞ and ρ0 > 0, such
that, for some ζ2 and for all t ∈ [t0 − ζ2, t0 + ζ2] ⊂ [0, δ)

(1.4) L(D(x(t), s), D(x(t),∞)) ≤ β0e
−ρ0s

in R. We prove that result in Lemma A.2 below. Then by 1.4, we can take
s0 large enough, such that

L(D(x(t),∞), D(x(t), s)) ≤ ε/2

for all s ≥ s0 and for all t ∈ [t0−ζ2, t0+ζ2]. This, together with (1.3) implies
the claim of the lemma for ζ ≡ ζ1 ∧ ζ2.

Next, by Theorem 6.1, X̄n ⇒ x in D([0, δ)) as n → ∞, where x is a
deterministic continuous function with x(t) ∈ A for all t ∈ [0, δ). Then we
can apply Theorem 5.3, just proved above, to obtain

(1.5) Dn
1,2(t + s0/n) = Dn

e (Xn(t), s0) ⇒ D(x(t), s0) as n →∞.

From the proof of Theorem 5.3 we can conclude the convergence is uniform
for t in a neighborhood of t0. Hence we can apply Lemma A.1 to conclude
that there exists n0 such that

(1.6) L(D(x(t0),∞), Dn
1,2(t + s0/n)) ≤ 2ε for all t ∈ (t0 − ζ, t0 + ζ),
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provided that n ≥ n0. Hence, the limit of the convergent subsequence of
{Dn

1,2(t0)} must be D(x(t0),∞), as claimed.
To finish the proof, we now show that (1.4) indeed holds for the family of

processes {D(x(t), ·) : t ∈ [t0 − ζ2, t0 + ζ2]}, for some ζ2 > 0.

Lemma A.2. (uniform bounds on convergence rate to stationarity) Fix
t0 ∈ (0, δ), for δ in Theorem 6.1. Then there exist ζ2 > 0 and constants
β0 < ∞ and ρ0 > 0, such that (1.4) holds for all t ∈ [t0− ζ2, t0 + ζ2] ⊂ (0, δ).
If t0 = 0, then the statement is true on an interval [0, ζ2].

Proof. As before, we let τ(t) denote the return time of the process D(x(t), ·)
to the regeneration state s∗, which, for concreteness, we take to be state 0,
i.e., s∗ = 0. As explained in the proof of Lemma A.1, the return time of τ(t)
has a finite mgf for all t ∈ [0, δ), which imply that each QBD D(x(t), ·) is
exponentially ergodic, t ∈ [0, δ).

Consider the infinitesimal generator matrix Q(t) of the process D(x(t), ·).
In a countable state space, every compact set is “small” (for background and
definition see, e.g., [33] and [27]). In particular, {0} is a small set. Moreover,
by Theorem 2.5 in [27], the existence of a finite mgf for the hitting time
of the small set {0} is equivalent to the exponential drift condition on the
generator, Condition (V4) in [27]:

(1.7) Q(t)V ≤ −ctV + dt1{0},

where ct and dt are strictly positive constants, and V : Z → [1,∞] is a
Lyapunov function.

Consider the time t0 ∈ (0, δ). Then (1.7) holds at t0 with constants ct0 and
dt0 . Since ct0 > 0 we can decrease it such that (1.7) holds with strict inequal-
ity and the new ct0 is still strictly positive. We increase dt0 appropriately,
such that

∑
j q0,j(t)V (j) < −ct0V (0) + dt01{0}. The continuity of Q(t) on

(0, δ) as a function of t (Lemma 8.8) implies that there exist ζ2 > 0 and two
positive constants c0 and d0, such that 1.7 holds for all t ∈ [t0 − ζ2, t0 + ζ2]
with the same constants c0 and d0. However, this is still not sufficient to
conclude that the bounds in (1.4) are the same for all t ∈ [t0 − ζ2, t0 + ζ2];
see Theorem 1.1 in [7] (for discrete-time Markov chains).

Let P t
i,j(s) denote the transition probabilities of the CTMC {D(x(t), s) :

s ≥ 0}. (Here, the subscript t denotes the fixed time t we are considering
and s is the fast time scale i.e., the time argument of the QBD: P t

i,j(s) ≡
P (D(x(t), s) = j | D(x(t), 0) = i).) For the CTMC, we can establish uniform
bounds on the convergence rates to stationarity by showing that {0} is a
(u, α) − small set as in pg. 3 of [42]. That is, for some α > 0 and a time
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u > 0, and for a probability measure ϕ on the state space Z, the small set
{0} satisfies the following “minorization condition”:

(1.8) P t
0,j(u) ≥ αϕ(j), j ∈ Z.

In particular, we need to show that (1.8) holds for all t ∈ [t0 − ζ2, t0 + ζ2]
with the same α (but ϕ is allowed to change with t). This step, together
with the uniform bounds c0 and d0 in (1.7) established above, will be shown
to be sufficient to conclude the proof.

Hence, it is left to show that (1.8) holds for all t ∈ [t0 − ζ2, t0 + ζ2] with
the same α > 0. This step is easy because {0} is a singleton in a countable
state space. Specifically, for each t we consider, we can fix any u > 0 and
define ϕ(j) ≡ P t

0,j(u). With this definition of ϕ we can take any α ≤ 1 in
(1.8). As in the discrete-time case in [7] (the strong aperiodicity condition
(A3) in [7] is irrelevant in continuous time), the bounds on the convergence
rates in (1.4) depend explicitly on α in the minorization condition (1.8), the
bounds in the drift condition (1.7) and the Lyapunov function V in (1.7).
This can be justified by uniformization, but can also be justified directly for
continuous-time processes, for example, from the expressions in Theorem 3
and Corollary 4 in [42].

The uniform bounds on the rate of convergence to steady state established
above by applying [42] are directly expressed in the total-variation metric.
If the total variation metric can be made arbitrarily small, then so can the
Levy metric. Hence we have completed the proof.

Remark A.1. A minor variant of Lemma 8.11 (proved in the same way)
establishes the weaker limit for local averages:

(1.9) lim
ξ↓0

lim
n→∞

1
ξ

∫ t+ξ

t
1{Dn

1,2(s)≤k}ds → P (D(x(t),∞) ≤ k) for all k,

but (1.9) and tightness alone are evidently insufficient to establish Theorem
5.5.

APPENDIX B: REMAINING PROOFS IN SECTION 7

Proof of Theorem 7.2. Our proof is based on regenerative structure. The
intervals between successive visits to the state (0, j) constitute an embedded
renewal process for the QBD. Since the QBD is positive recurrent, these
cycles have finite mean. Given the regenerative structure, our proof is based
on the observation that, if the process L were continuous real-valued with
an exponential tail, instead of integer valued with a geometric tail, then we
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could establish the conventional convergence in law of ‖L‖t − c log t to the
Gumbel distribution, which implies our conclusion. Hence, we bound the
process L above w.p.1 by another process Lb that is continuous real-valued
with an exponential tail and which inherits the regenerative structure of L.

We first construct the bounding process Lb and then afterwards explain
the rest of the reasoning. To start, choose a phase determining a specific
regenerative structure for the level process L. let Si be the epoch cycle i
ends, i ≥ −1, with S−1 ≡ 0, and let L(n) be the set of states in level n.
For each cycle i, we generate an independent exponential random variable
Xi and take the maximum between L(t) and Xi for all Si−1 ≤ t < Si

such that L(t) /∈ L(0); i.e., letting {Xi : i ≥ 0} be an i.i.d. sequence of
exponential random variables independent of L and letting C(t) be the cycle
in progress at time t, Lb(t) ≡ L(t) ∨ XC(t)1{L(t)/∈L(0)}. Clearly, Lb inherits
the regenerative structure of L and satisfies L ≤ Lb almost surely. Moreover,
by the assumed independence, for each x > 0 and t ≥ 0,

P (Lb(t) > x) = P (L(t) > x) + P (X > x)− P (L(t) > x)P (X > x),

where X is an exponential random variable distributed as Xi that is inde-
pendent of L(t). We now consider the stationary version of L, which makes
Lb stationary as well. We let the desired constant c be the mean of the
exponential random variables Xi. If we make c sufficiently large, then we
clearly have P (Lb(t) > x) ∼ e−x/c as x → ∞, because the first and third
terms become asymptotically negligible as x → ∞. (We choose c to make
L(t) asymptotically negligible compared to X.)

It now remains to establish the conventional extreme-value limit for the
bounding process Lb. For that, we exploit the exponential tail of the sta-
tionary distribution, just established, and regenerative structure. There are
two approaches to extreme-value limits for regenerative processes, which
are intimately related, as shown by Rootzén [43]. One is based on stationary
processes, while the other is based on the cycle maxima, i.e., the maxi-
mum values achieved in successive regenerative cycles. First, if we consider
the stationary version, then we can apply classical extreme-value limits for
stationary processes as in [30]. The regenerative structure implies that the
mixing condition in [30] is satisfied; see Section 4 of [43].

However, the classical theory in [30] and the analysis in [43] applies to
sequences of random variables as opposed to continuous-time processes. In
general, the established results for stationary sequences in [30] do not extend
to stationary continuous-time processes. That is demonstrated by extreme-
value limits for positive recurrent diffusion processes in [10, 12]. Proposition
3.1, Corollary 3.2 and Theorem 3.7 of [10] show that, in general, the extreme-
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value limit is not determined by the stationary distribution of the process.
However, continuous time presents no difficulty in our setting, because the

QBD is constant between successive transitions, and the transitions occur in
an asymptotically regular way. It suffices to look at the embedded discrete-
time process at transition epochs. That is a standard discrete-time Markov
chain associated with the continuous-time Markov chain represented as a
QBD. Let N(t) denote the number of transitions over the interval [0, t].
Then Lb(t) = Ld(N(t)), where Ld(n) is the embedded discrete-time process
associated with Lb. Since N(t)/t → c′ > 0 w.p.1 as t →∞ for some constant
c′ > 0, the results directly established for the discrete-time process Dd are
inherited with minor modification by Lb. Indeed, the maximum over random
indices already arises when relating extremes for regenerative sequences to
extremes of i.i.d. sequences; see p. 372 and Theorem 3.1 of [43]. In fact,
there is a substantial literature on extremes with a random index, e.g., see
Proposition 4.20 and (4.53) of [41] and also [44]. Hence, for the QBD we can
initially work in discrete time, to be consistent with [30, 43]. After doing so,
we obtain extreme-value limits in both discrete and continuous time, which
are essentially equivalent.

So far, we have established an extreme-value limit for the stationary ver-
sion of Lb, but our process Lb is actually not a stationary process. So it is
natural to apply the second approach based on cycle maxima, which is given
in [43, 3] and Section VI.4 of [4]. We would get the same extreme-value limit
for the given version of Lb as the stationary version if the cycle maximum has
an exponential tail. Moreover, this reasoning would apply directly to con-
tinuous time as well as discrete time. However, Rootzén [43] has connected
the two approaches (see p. 380 of [43]), showing that all the versions of the
regenerative process have the same extreme-value limit. Hence, the given
version of the process Lb has the same extreme-value limit as the stationary
version, already discussed. Moreover, as a consequence, the cycle maximum
has an exponential tail if and only if the stationary distribution has an expo-
nential tail. Hence, we do not need to consider the cycle maximum directly.

Remark B.1. (an alternative proof) An alternative proof of Theorem
7.2 would be based on a direct demonstration that the cycle maximum
of L has a geometric tail. That alternative reasoning has the advantage
that it applies directly in continuous time; see [3] and Section VI.4 of [4].
However, we are unaware of such a result in the literature. Evidently, it
can be derived from the known behavior of the first passage times between
levels. By Theorem 8.2.2 of [29], the probability of moving from level 0 to
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level k +1 before returning to level 0 is asymptotically geometric as k →∞.
However, the return to level 0 may not be in the same phase as the initial
phase. Hence, we must consider the random evolution within level 0 until
we either hit the initial phase or leave level 0, and then the random number
of those returns until we do return to level 0 in the same phase as the initial
phase. Evidently that will not alter the geometric tail, but that remains to
be shown.

In fact, if we show that the cycle maximum has a geometric tail, then we
need not construct the bounding process Lb. Instead, we can directly apply
the extreme-value theorem for regenerative processes with geometric tail,
Theorem 6 in [2] or Problem 4.2 on p. 185 of [4], from which our conclusion
would follow. In particular, it is well known that the maximum queue length
over a busy cycle in an M/M/1 is asymptotically geometric. We can thus
use Theorem 6, and, more directly, the example on p. 112 in [2], for the
extreme-value bound for the M/M/1 queue-length process, which we apply
in the proof of Theorem 7.4.

Proof of Lemma 7.2. By Assumption 3, the condition z1,2(0) > 0 implies
that P (Zn

1,2(0) > 0) → 1 as n → ∞. Clearly, for every n ≥ 1, Zn
1,2 is

stochastically bounded from below, in sample-path stochastic order, by a
process Zn

b which has Zn
b (0) = Zn

1,2(0), has only departures and no new
arrivals, i.e., Zn

1,2 ≥st Zn
b for all n ≥ 1 and t ≥ 0, where

Zn
b (t) = Zn

b (0)−N s
1,2

(
µ1,2

∫ t

0
Zn

b (s) ds

)
,

with N s
1,2 being a rate-1 Poisson process.

Given the FSLLN for the Poisson process N s
1,2, by applying the continuous

mapping theorem, we have Zn
b /n ⇒ zb in D, as n →∞, where

zb(t) = zb(0)− µ1,2

∫ t

0
zb(s) ds, t ≥ 0.

It follows that zb(t) ≥ zb(0)e−µ1,2t, so that zb(t) > 0 for all t ≥ 0. Thus
P (inf0≤s≤t Zn

b (s) > 0) → 1 as n → ∞. The stochastic order bound implies
that the same is true for Zn

1,2, which proves the first claim of the lemma.
The second claim that Zn

2,1 ⇒ 0 as n → ∞ follows from the first together
with the one-way sharing rule.

Proof of Lemma 7.3. When either of the conditions (i) or (ii) holds, d2,1(0) <
0, where d2,1(t) ≡ r2,1q2(t) − q1(t), t ≥ 0. Under condition (i), by Assump-
tion 3, −d2,1(0) ≥ d1,2(0) ≡ q1(0) − r1,2q2(0) = κ. If κ = 0 and Condition
(ii) holds, then d2,1(0) < r1,2q2(0)− q1(0) = κ = 0.
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We will construct a sample-path stochastic-order bound from above for
Dn

2,1, and show that this bounding process is asymptotically strictly nega-
tive on an interval [0, τ ], for some τ > 0. To stochastically bound Dn

2,1, we
consider a sequence of systems {Xn

b : n ≥ 1} in (7.5) initialized at time 0
with Xn

b (0) ≡ Xn(0), n ≥ 1. Thus, Qn
i,b(0) = Qn

i (0), and both service pools
start full with only their own customers. (Recall that we are considering the
case Zn

1,2(0) = 0 for all n large enough.)
Let Dn

b ≡ r2,1Q
n
2,b − Qn

1,b be the weighted difference process in Xn
b . By

construction, Qn
1,b ≤st Qn

1 and Qn
2,b ≥st Qn

2 , so that Dn
b ≥st Dn

2,1. Now,
as was shown in §7.2, X̄n

b ⇒ xb as n → ∞, for xb in (7.7). Hence, D̄n
b ≡

Dn
b /n ⇒ db ≡ r2,1q2,b − q1,b as n →∞, with db(0) < 0.
The limit process q1,b(t) may eventually become negative as t increases,

at which point it becomes meaningless as a stochastic-order bound for q1.
However, the continuity of q1,b, together with the initial condition, q1,b(0) >
0, implies that we can find a time τ1 > 0, such that q1,b(t) > 0 for all
t ∈ [0, τ1]. Similarly, the continuity of db implies that there exists τb > 0,
where τb ≡ inf{t ≥ 0 : db(t) = 0}. Then, for τn

b ≡ inf{t ≥ 0 : Dn
b (t) ≥ 0},

by applying a version of Theorem 13.6.4 in [48], the continuous mapping
theorem gives τn

b ⇒ τb. Now, for τn ≡ inf{t ≥ 0 : Dn
2,1(t) ≥ 0} we have that

τn ≥st τn
b . Taking τ ≡ τ1 ∧ τb gives the first claim of the statement.

The second claim of the statement follows from the first, together with
the initial condition in Assumption 3, namely, that Zn

2,1(0) = 0 for all n.

Proof of Lemma 7.4. We will prove the lemma by constructing a QBD
process that serves as a stochastic-order bound for the process Dn

2,1 over
some interval [0, τ ]. The claims will then follow from an application of the
extreme-value limit in Theorem 7.2. As a first step, we define the following
processes:

For s ≥ 0, let Xn∗ (s) ≡ (Qn
1,a(s), Q

n
2,a(s), Z

n
b (s)), where Qn

i,a, i = 1, 2, are
defined in (7.4) and Zn

b is defined in (7.5). For a fixed s > 0 and a fixed
Xn∗ (s), define the following processes:

Qn
1,∗(X

n
∗ (s), t) = Qn

1,a(0) + Na
1 (λn

1 t)−N s
1,1(µ1,1m

n
1 t)−N s

1,2 (µ1,2Z
n
b (s)t)

−Nu
1

(
θ1(Qn

1,a(s) ∨ 0)t
)

,

Qn
2,∗(X

n
∗ (s), t) = Qn

2,a(0) + Na
2 (λn

2 t)−N s
2,2(µ2,2(mn

2 − Zn
b (s))t)

−Nu
2

(
θ2(Qn

2,a(s) ∨ 0)t
)

,

where, as before, Na
i , N s

i,j and Nu
i , i, j = 1, 2, are independent rate-1 Poisson

processes. Then the process

Dn
∗ (X

n
∗ (s), t) ≡ r2,1Q

n
2,∗(X

n
∗ (s), t)−(Qn

1,∗(X
n
∗ (s), t)−κn)− inf

0≤u≤t
Dn
∗ (X

n
∗ (s), u)
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conditional on Xn∗ (s), is a continuous-time Markov chain as a function of the
time argument t. (That is because Xn∗ is constructed independently of Dn∗ .)
The key observation here is that the conditional process Dn∗ (given Xn∗ (s)),
can be analyzed as a QBD, just as in §4 of [39]. In particular, if r2,1 = j/k,
where j, k are positive integers with no common divisors, then the process
D̃n∗ ≡ jQn

2,∗−kQn
1,∗ is a CTMC with state space in the nonnegative integers,

and can be represented as a QBD. Moreover, the process D̃n∗ is positive
recurrent if and only if Dn∗ is.

Our next objective is to replace the family of processes {D̃n∗ (Xn∗ (s), t) : t ≥
0} (there is a different process for each Xn∗ (s)) with one positive-recurrent
QBD which will bound Dn

2,1 from above over an entire interval [0, τ ], for
some τ > 0, and then translate the scaling by n in Xn∗ to a scaling by
n of the time argument t. More specifically, we continue the proof in two
steps: in the first step we find a positive recurrent QBD Dn∗ (Xn

m, t), such
that Dn∗ (Xn

m, ·) ≥st Dn∗ (Xn∗ (s), ·) for all s ∈ [0, τ ]. In the second step, the
bounding process Dn∗ (Xn

m, ·) is shown to be equal in distribution to a rate-1
QBD on the interval [0, anτ ], for some {an} such that an/n → 1 as n →
∞. The second step allows us to employ Theorem 7.2 and show that the
probability that the threshold kn

2,1 is crossed over [0, τ ] converges to 0 as
n →∞.

However, before we find a QBD that uniformly bounds all the processes
Dn∗ (Xn∗ (s), ·), for all s ∈ [0, τ ], we need to find all s ≥ 0 for which Dn∗ (Xn∗ (s), ·)
is positive recurrent. That will allow us to characterize τ . As mentioned
above, Dn∗ is positive recurrent if and only if D̃n∗ is positive recurrent. We
thus analyze the family of processes {{D̃n∗ (Xn∗ (s), t) : t ≥ 0} : s ≥ 0}. (For
every fixed s ≥ 0 and Xn∗ (s) we have a whole process D̃n∗ with time argument
t.)

Given Xn∗ (s), the process {D̃n∗ (Xn∗ (s), t) : t ≥ 0} has upward jumps of
size j with rate λ̂j(Xn∗ (s)) ≡ λn

2 , and downward jumps of size j (away
from the boundary) with rate µ̂j(Xn∗ (s)) ≡ µ2,2(mn

2 − Zn
b (s)) + θ2Q

n
2,a(s).

It has upward jumps of size k with rate λ̂k(Xn∗ (s)) ≡ µ1,1m
n
1 + µ1,2Z

n
b (s) +

θ1Q
n
1,a(s), and downwards jumps of size k (away from the boundary) with

rate µ̂k(Xn∗ (s)) ≡ λn
1 . Now, by Theorem 7.2.3 in [29], for a given Xn∗ (s),

D̃n∗ (Xn∗ (s), ·) is positive recurrent if and only if δ̃∗(Xn∗ (s)) < 0, where

δ̃∗(Xn
∗ (s)) ≡ j(λ̂j(Xn

∗ (s))− µ̂j(Xn
∗ (s))) + k(λ̂k(Xn

∗ (s))− µ̂k(Xn
∗ (s))).

Since X̄n∗ ≡ Xn∗ /n ⇒ x∗ ≡ (q1,a, q2,a, zb), for zb in (7.7) and qi,a, i = 1, 2
in (7.6), we can define for every s ≥ 0 the functions λ̂j(x∗(s)), µ̂j(x∗(s)),
λ̂k(x∗(s)) and µ̂k(x∗(s)) to be the limits of λ̂j(Xn∗ (s))/n, µ̂j(Xn∗ (s))/n,
λ̂k(Xn∗ (s))/n and µ̂k(Xn∗ (s))/n, respectively, as n →∞.
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By the linearity of δ̃∗ and the continuity of the addition mapping when the
limits are continuous, e.g. Theorem 12.7.1 in [48], we have that δ̃∗(Xn∗ (s))/n ⇒
δ̃∗(x∗(s)), where

δ̃∗(x∗(s)) ≡ j(λ̂j(x∗(s))− µ̂j(x∗(s))) + k(λ̂k(x∗(s))− µ̂k(x∗(s))).

Note that, by our construction of Xn∗ , x(0) = x∗(0) (that is because Xn
a (0) =

Xn
b (0) = Xn(0) for all n ≥ 1). It is easy to see that, if r2,1 = r1,2 (recall also

that z1,2(0) = 0), then δ̃∗(x∗(0)) = −δ−(x(0)) for δ−(x(0)) in (5.20). Since,
by Assumption 3, δ−(x(0)) > 0, it holds that δ̃∗(x∗(0)) < 0.

If r2,1 < r1,2, then necessarily q1(0) = q2(0) = 0 (see the explanation
before the statement of the lemma). In that case we have that δ̃∗(x∗(0)) =
jθ1(λ1 − µ1,1m1) + k(λ2 − µ2,2m2), so that δ̃∗(x∗(0)) < 0 if and only if
θ1(λ1 − µ1,1m1) + r2,1(λ2 − µ2,2m2) < 0. To see that this inequality must
hold, observe that with q1(0) = q2(0) = z1,2(0) = 0, and by Assumption 3,

δ−(x(0)) = θ1(λ1 − µ1,1m1)− r1,2(λ2 − µ2,2m2) > 0,

which implies that λ2 > µ2,2m2, since by Assumption 1, qa
1 ≡ λ1−µ1,1m1 >

0. It follows from the latter inequality and the fact that r2,1 < r1,2, that
δ̃∗(x∗(0)) < 0. To summarize, δ̃∗(x∗(0)) < 0 in both cases considered in the
statement of the lemma.

Since x∗ and δ̃∗(x∗) are continuous functions, we can find τ > 0 such that
sups∈[0,τ ] δ̃∗(x∗(s)) < 0. Hence, there exists η1 > 0 such that

P

(
sup

s∈[0,τ ]
δ̃n
∗ (Xn

∗ (s)) < −η1

)
→ 1 as n →∞.

That is, for some τ > 0 there exists a sequence of sets {Bn : n ∈ N} satisfying
P (Bn) → 1 as n → ∞, such that the process {Dn∗ (Xn∗ (s), t) : t ≥ 0} is
positive recurrent for all s ∈ [0, τ ] and for every sample path of Xn∗ contained
in Bn.

We now construct a single bounding QBD process that bounds D̃n∗ (Xn∗ (s), ·)
for all s ∈ [0, τ ]. For that purpose, let Xn

m ≡ (Qn
1,m, Qn

2,m, Zn
m), where

Qn
1,m ≡ ‖Qn

1,a‖τ , Qn
2,m ≡ inf

0≤t≤τ
Qn

2,a(t) and Zn
m ≡ ‖Zn

b ‖τ .

Applying the continuous mapping theorem for the supremum function, e.g.,
Theorem 12.11.7 in [48], we have that X̄n

m ≡ Xn
m/n ⇒ xm ≡ (q1,m, q2,m, zm),

with q1,m ≡ ‖q1,a‖τ , q2,m ≡ inf0≤t≤τ q2,a(t) and zm ≡ ‖zb‖τ .
Let D∗(t) ≡ r2,1Q2,∗(t)−Q1,∗(t)− inf0≤u≤t D∗(u), where

Q1,∗(t) = q1,a(0) + Na
1 (λ1t)−N s

1,1(µ1,1m1t)−N s
1,2 (µ1,2zmt)−Nu

1 (θ1q1,mt) ,

Q2,∗(t) = q2,a(0) + Na
2 (λ2t)−N s

2,2(µ2,2(m2 − zm)t)−Nu
2 (θ2q2,mt) .
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By our choice of xm, the QBD D∗ is positive recurrent. Observe that for
every sequence of sample paths {Xn

m : n ∈ N}, the scaling in Dn∗ (Xn
m, ·) is

equivalent to scaling time by a factor of order O(n) in D∗. That is, for every
T > 0, and every sample path of Xn

m contained in the sets Bn defined above
{Dn∗ (Xn

m, t) : 0 ≤ t ≤ T} d= {D∗(ant) : 0 ≤ t ≤ T}, with an/n → 1 as
n →∞.

Let M∗(t) ≡ sups∈[0,t] D∗(s) denote the running maximum of the positive
recurrent QBD D∗. It follows from Theorem 7.2 that there exists c > 0 such
that

lim
n→∞P (‖Dn

2,1‖τ/ log n > c) ≤ lim
n→∞P (‖M∗‖anτ/ log n > c) = 0.

The claim of the lemma then follows from the assumption that kn
2,1/ log n →

∞ as n →∞.

Proof of Theorem 7.3. By Lemma 7.2, we only need to consider the case
z1,2(0) = 0. By Lemmas 7.3 and 7.4, there exists τ > 0 such that

lim
n→∞P

(
‖Dn

2,1‖τ < kn
2,1

)
= 1.

Hence, the claim of the theorem will follow from Lemma 7.2 and Theorem
6.1 if we show that for some t0 satisfying 0 < t0 ≤ δ ≤ τ it holds that
z1,2(t0) > 0, where z1,2 is the (deterministic) fluid limit of Z̄n

1,2 as n → ∞
(shown to exist in the proof of Theorem 6.1 on [0, δ]). We will actually show
a somewhat stronger result, namely, that for any 0 < ε ≤ δ there exists
t0 < ε such that z1,2(t0) > 0. We prove that by assuming the contradictory
statement: for some 0 < ε ≤ δ and for all t ∈ [0, ε], z1,2(t) = 0.

Since, by our contradictory assumption, z1,2(t) = 0 over [0, ε], we have
that Zn

1,2 = oP (n). Recall also that Zn
2,1 = oP (1) over [0, ε] (since ε ≤ τ , and

τ is chosen according to Lemmas 7.3 and 7.4). Define the processes

(2.1) Ln
1 ≡ Qn

1 + Zn
1,1 + Zn

1,2 −mn
1 and Ln

2 ≡ Qn
2 + Zn

2,1 + Zn
2,2 −mn

2 ,

representing the excess number in system for each class. Note that (Ln
i )+ =

Qn
i , i = 1, 2. Then,

Ln
i (t) = Ln

i (0) + Na
i (λn

i t)−N s
i,i

(
µi,i

∫ t

0
(Ln

i (s) ∧ 0) ds

)

−Nu
i

(
θi

∫ t

0
(Ln

i (s) ∨ 0) ds

)
+ oP (n), i = 1, 2

(2.2)

for 0 ≤ t ≤ δ as n → ∞, where Na
i , N s

i,i and Nu
i are independent rate-1

Poisson processes. The oP (n) terms are replacing the (random-time changed)
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Poisson processes related to Zn
1,2 and Zn

2,1, which can be disregarded when
we consider the fluid limits of (2.2).

Letting L̄n
i ≡ Ln

i /n, i = 1, 2, and applying the continuous mapping theo-
rem for the integral representation function in (2.2), Theorem 4.1 in [36], (see
also Theorem 7.1 and its proof in [36]), we have that (L̄n

1 , L̄n
2 ) ⇒ (L̄1, L̄2) as

n →∞, where, for i = 1, 2,

L̄i(t) = L̄i(0) + (λi − µi,imi)t−
∫ t

0
[µi,i(L̄i(s) ∧ 0) + θi(L̃i(s) ∨ 0)] ds,

so that

L̄′i(t) ≡
d

dt
L̄i(t) = (λi − µi,imi)− µi,i(L̄i(t) ∧ 0)− θi(L̃i(t) ∨ 0).

(We denote the fluid limit of L̄n
i by L̄i, i = 1, 2, instead of our usual lower-

case letters notation in order to avoid confusion.)
It is easy to see that qi = (L̄i(t))+, i = 1, 2, where qi is the fluid limit of

Q̄n
i . Now, by Assumption 3, both pools are full at time 0, so that Li(0) ≥ 0.

Moreover, for i = 1, 2, L̄e
i ≡ (λi − µi,i)/θi is an equilibrium point of the

ODE L̄′i, in the sense that, if L̄i(t0) = L̄e
i , then L̄i(t) = L̄e

i for all t ≥ t0.
(That is, L̄e

i is a fixed point of the solution to the ODE.) It also follows from
the derivative of L̄i that L̄i is strictly increasing if L̄i(0) < L̄e

i , and strictly
decreasing if L̄i(0) > L̄e

i , i = 1, 2.
Recall that ρ1 > 1, so that λ1 − µ1,1m1 > 0. Together with the initial

condition, L1(0) ≥ 0, we see that, in that case, L̄1(t) ≥ 0 for all t ≥ 0. First
assume that ρ2 ≥ 1 . Then, by similar arguments, L̄2(t) ≥ 0 for all t ≥ 0. In
that case, we can replace L̄i with qi, i = 1, 2, and write

q1(t) = q1(0)− (λ1 − µ1,1m1)t− θ1

∫ t

0
q1(s) ds,

q2(t) = q2(0)− (λ2 − µ2,2m2)t− θ2

∫ t

0
q2(s) ds, t ∈ [0, ε],

so that, for t ∈ [0, ε],

d1,2(t) = qa
1 + (q1(0)− qa

1)e−θ1t − r
(
qa
2 + (q2(0)− qa

2)e−θ2t
)

= (qa
1 − rqa

2) + (q1(0)− qa
1)e−θ1t − r(q2(0)− qa

2)e−θ2t.
(2.3)

and d1,2(0) = κ.
It is easy to see that

d′1,2(t) ≡
d

dt
d1,2(t) = −θ1(q1(0)− qa

1)e−θ1t + rθ2(q2(0)− qa
2)e−θ2t.
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Hence, d′1,2(0) = λ1 − µ1,1m1 − θ1q1(0) − r(λ2 − µ2,2) + rθ2q2(0). If follows
from (5.20) and the assumption z1,2(0) = 0, that d′1,2(0) = δ−(x(0)). By
Assumption 3, x(0) ∈ A, so that d′1,2(0) > 0, and d1,2 is strictly increasing
at 0. Now, since d1,2(0) = κ, we can find t1 ∈ (0, ε], such that d1,2(t) > κ for
all 0 < t < t1. This implies that P (inf0<t≤t1 Dn

1,2(t) > 0) → 1 as n →∞.
It follows from the representation of Zn

1,2 in (4.3) that for any t ∈ [0, t1],

(2.4) Z̄n
1,2(t) =

N s
2,2 (µ2,2m

n
2 t)

n
+ oP (1).

The oP (1) term follows from our assumption that Z̄n
1,2(t) ⇒ 0 as n → ∞.

However, by the FSLLN for Poisson processes, the fluid limit z1,2 of Z̄n

in 2.4 satisfies z1,2(t) = µ2,2m2t > 0 for every 0 < t ≤ t1. We thus get a
contradiction to our assumption that z(t) = 0 for all t ∈ [0, ε].

For the case ρ2 < 1 the argument above still goes through, but we need
to distinguish between two cases: L̄2 = 0 and L̄2 > 0. In both cases L̄2

is strictly decreasing. In the first case, this implies that L̄2 is negative for
every t > 0. It follows immediately that q1(t) − rq2(t) > κ for every t > 0.
If L̄2(0) > 0, then necessarily L̄1(0) > 0, and we can replace L̄i with qi,
i = 1, 2, on an initial interval (before L̄2 becomes negative). We then use
the arguments used in the case ρ2 ≥ 1 above.

Proof of Theorem 7.4. We will start working with the processes Ln
1 and Ln

2

defined in (2.1) (but recall that, by Theorem 7.3 Zn
2,1 ⇒ 0, and in particular

Ẑn
2,1 ⇒ 0). For each n ≥ 1, we will bound the two-dimensional process

(Ln
1 , Ln

2 ) below in sample-path stochastic order by another two-dimensional
process (Ln

1,b, L
n
2,b).

We construct the lower-bound process (Ln
1,b, L

n
2,b) by increasing the depar-

ture rates in both processes Ln
1 and Ln

2 , making it so that each goes down
at least as fast, regardless of the state of the other. First, we place reflecting
upper barriers on the two queues. This is tantamount to making the death
rate infinite in these states and all higher states. We place the reflecting
upper barrier on Ln

1 at κn, where κn ≥ 0; we place the reflecting upper
barrier on Ln

2 at 0. With the upper barrier at κn, the departure rate of Ln
1 is

bounded above by µ1,1m
n
1 + θ1κ

n +µ1,2Z
n
1,2(t), based on assuming that pool

1 is fully busy serving class 1 (since µ2,1Z
n
2,1(t) = op(1) we ignore it), that

Ln
1 is at its upper barrier, and that Zn

1,2(t) agents from pool 2 are currently
busy serving class 1 in the original system. Second, with the upper barrier
at 0, the departure rate of Ln

2 is bounded above by µ2,2m
n
2 − µ1,2Z

n
1,2(t),

based on assuming that pool 2 is fully busy with Zn
1,2(t) agents from pool 2

currently busy serving class 1, and that Ln
2 is at its upper barrier 0. Thus,

we give Ln
1,b and Ln

2,b these bounding rates at all times.
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Of course, as constructed, the evolution of (Ln
1,b, L

n
2,b) depends on the

process Zn
1,2 associated with the original system, which poses a problem for

further analysis. However, we can avoid this difficulty by looking at a special
linear combination of the processes. Specifically, let

(2.5) Un ≡ µ2,2(Ln
1 − κn) + µ1,2L

n
2 and Un

b ≡ µ2,2(Ln
1,b − κn) + µ1,2L

n
2,b.

By the established sample-path stochastic order (Ln
1 , Ln

2 ) ≥st (Ln
1,b, L

n
2,b) and

the monotonicity of the linear map in (2.5), we get the associated sample-
path stochastic order Un ≥st Un

b . Moreover, the stochastic process Un
b is

independent of the process Zn
1,2, because of the particular linear combination

we have chosen for the one-dimensional processes Un and Un
b in (2.5). We

have chosen that linear combination so that the number of pool-2 agents
working on class 1 does not matter.

Now observe that the lower-bound stochastic process Un
b is a BD process

on the set of all integers in (−∞, 0]. The BD process will have both constant
birth rate λn

b = µ2,2λ
n
1 + µ1,2λ

n
2 and by the definitions above, the stochastic

process Un
b has death rate

µn
b ≡ µ2,2(µ1,1m

n
1 + θ1κ

n + µ1,2Z
n
1,2(t))

+µ1,2(µ2,2m
n
2 − µ2,2Z

n
1,2(t)))

= µ2,2(µ1,1m
n
1 + θ1κ

n) + µ1,2µ2,2m
n
2 .(2.6)

As a consequence, for each n ≥ 1, the drift in Un
b is

δn
b ≡ λn

b − µn
b = µ2,2(λn

1 −mn
1µ1,1 − θ1κ

n)
+µ1,2(λn

2 −mn
2µ2,2).(2.7)

Hence, after scaling, we get δn
b /n → δ, where

(2.8) δb ≡ µ2,2(λ1 −m1µ1,1 − θ1κ) + µ1,2(λ2 −m2µ2,2) > 0,

with the inequality following from Assumption 1.
Now we observe that−Un

b is equivalent to the number in system in a stable
M/M/1 queueing model with traffic intensity ρn∗ → ρ∗ < 1. Let Q∗ be the
number-in-system process in an M/M/1 system having arrival rate equal
to λ∗ ≡ µ2,2(m1µ1,1 + θ1κ) + µ1,2m2µ2,2, service rate µ∗ ≡ µ2,2λ1 + µ1,2λ2

and traffic intensity ρ∗ ≡ λ∗/µ∗ < 1. Observe that the scaling in Un
b is

tantamount to accelerating time by a factor of order O(n) in Q∗. That is,
{−Un

b (t) : t ≥ 0} can be represented as {Q∗(cnt) : t ≥ 0}, where cn/n → 1
as n →∞.
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Let M∗(t) ≡ ‖Q∗‖t. We can now apply the extreme-value result in Theo-
rem 7.2 for the M/M/1 queue above (since an M/M/1 is trivially a QBD)
to conclude that M∗(t) = OP (log(t)). This implies that Un

b / log(n) is SB.
From the way that the reflecting upper barriers were constructed, we know

at the outset that Ln
1,b(t) ≤ κn and Ln

2,b(t) ≤ 0. Hence, we must have both
(κn−Ln

1,b)
+ and (−Ln

2,b)
+ nonnegative. Combining this observation with the

result that (Un
b )/ log n is SB, we deduce first that both (κn − Ln

1,b)
+/ log n

and (−Ln
2,b)

+/ log n are SB, so that both In
1 / log n and In

2 / log n are SB as
well.

APPENDIX C: THE BOUNDING QBD IN LEMMA 7.4

In this section we add some more supporting detail to §7. In particular,
we now describe how to present the process D̃n∗ ≡ jQn∗ −kQn∗ in the proof of
Lemma 7.4 as a QBD for each n. To that end, let m ≡ j ∨ k. We divide the
state space N ≡ {0, 1, 2, . . . } into level of size m: Denoting level i by L(i),
we have

L(0) = (0, 1, . . . ,m− 1)
L(1) = (m,m + 1, . . . , 2m− 1) etc.

The states in L(0) are called the boundary states. Then the generator matrix
Q(n) of the process D̃n∗ has the QBD form

Q(n) ≡




B(n) A
(n)
0 0 0 . . .

A
(n)
2 A

(n)
1 A

(n)
0 0 . . .

0 A
(n)
2 A

(n)
1 A

(n)
0 . . .

0 0 A
(n)
2 A

(n)
1 . . .

...
...

...
...




.

(All matrices are functions of Xn∗ . However, to simplify notation, we drop
the argument Xn∗ , and similarly in the example below.)

For example, if j = 2 and k = 3, then

B(n) =



−σn 0 λ̂n

2

µ̂n
Σ −σn 0

µ̂n
Σ 0 −σn


 , A

(n)
0 =




λ̂n
3 0 0

λ̂n
2 λ̂n

3 0
0 λ̂n

2 λ̂n
3


 ,

A
(n)
1 =



−σn 0 λ̂n

2

0 −σn 0
µ̂n

2 0 −σn


 , A

(n)
2 =




µ̂n
3 µ̂n

2 0
0 µ̂n

3 µ̂n
2

0 0 µ̂n
2


 ,
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where µ̂n
Σ ≡ µ̂n

3 + µ̂n
2 and σn ≡ µ̂n

Σ + λ̂n
2 + λ̂n

3 .
Let A(n) ≡ A

(n)
0 +A

(n)
1 +A

(n)
2 . Then A(n) is an irreducible CTMC infinites-

imal generator matrix. It is easy to see that its unique stationary probability
vector, ν(n), is the uniform probability vector, attaching probability 1/m to
each of the m states. Then by Theorem 7.2.3 in [29], the QBD is positive
recurrent if and only if

νA
(n)
0 1 < νA

(n)
2 1,

where 1 is the vector of all 1’s. This translates to the stability condition
given in the proof of Lemma 7.4.

APPENDIX D: MORE ON THE IDLENESS PROCESSES

In this section we present additional results about the idleness processes,
going beyond Theorem 7.4. We treat pools 1 and 2 in the following subsec-
tions.

D.1. The Idleness Process in Pool 1. We now show how to analyze
the idleness in pool 1 without paying attention to what happens in pool 2.
This provides a more elementary derivation of the results for In

1 in Theorem
7.4.

We start by showing that Qn
1 is never “too much” below κn if κn is

large enough, where “large enough” in our setting is κn/ log(n) → ∞ as
n → ∞. Since the thresholds in FQR-T are of order greater than O(

√
n),

this includes the case in which the thresholds are kept throughout (i.e.,
they are not dropped once they are crossed, so that κn = kn

1,2), and the
case in which κn is the centering constant used in shifted FQR-T, where
κn/n → κ > 0.

For t ∈ R+, let btc be the integer part of t, i.e., the largest integer smaller
than t. Let

(4.1) ρ∗ ≡ µ1,1m1 + θ1κ

λ1
< 1,

where the inequality follows from Assumption 1.
We define the difference-process

(4.2) En
1 ≡ κn −Qn

1 .

We will focus on the positive part: (En
1 )+(t) ≡ max {En

1 (t), 0}.

Lemma D.1. If κn/ log(n) →∞ as n →∞, then (En
1 )+/ log(n) is SB.
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Proof. To prove the statement, we will use a stochastic bound argument
for Qn

1 . Specifically, we will bound Qn
1 from below in sample-path stochastic

order by the queue-length process of an M/M/mn
1/κn + M system having

a finite buffer of size κn, arrival rate λn
1 , service rate µ1,1 and abandonment

rate θ1. This stochastic-order lower bound for Qn
1 allows us to consider the

service process in pool 1 alone, ignoring pool 2. The idea is that Qn
1 is the

smallest possible (stochastically), when there are always available servers
in pool 2 to ensure that queue 1 never goes above κn. In that case, Qn

1 is
equivalent to the queue-length process in the M/M/mn

1/κn + M model.
In the bounding system, every arriving customer who finds κn customers

waiting in queue is blocked and lost. Let Qn
b and Zn

b (the subscript b is
for blocking) denote the number of customers in queue and the number of
customers in service, respectively, in the M/M/mn

1/κn + M system. Let Q̄n
b

and Z̄n
b denote the associated sequence of fluid-scaled processes. Also let the

initial condition be Qn
b (0) = min{κn, Qn

1 (0)} and Zn
b (0) = Zn

1,2(0) for all n.
From the definition of Qn

b (0) and Assumption 3, we see that Qn
b (0) = κn for

all n. Hence, Q̄n
b (0) → κ and Z̄n

b (0) → zb(0) = z1,2(0) as n →∞.
We can bound the process Qn

1 from below by Qn
b in the sense of sample-

path stochastic order; i.e., for each n, it is possible to construct stochastic
processes Q̃n

b and Q̃n
1 on a common probability space, with Q̃n

b having the
same distribution as Qn

b , Q̃n
1 having the same distribution as Qn

1 , and ev-
ery sample path of Q̃n

b lies below the corresponding sample path of Q̃n
1 .

The stochastic bound is constructed directly by generating the same arrival
processes to both systems. We let departures from service coincide in both
systems whenever Zn

b = Zn
1,1. Similarly, we let abandonments from Qn

1 co-
incide with abandonments from Qn

b whenever both queues are equal. The
argument follows the reasonings in Theorems 6 and 9 in [45].

As explained above, Qn
b (0) = κn for all n. Consider the (nonnegative)

difference process En
b ≡ κn−Qn

b . Similar to our construction of the bounding
process above, we can bound En

b from above, in sample-path stochastic
order, by an M/M/1 system having arrival rate µ1,1m

n
1 + θ1κ

n and service
rate λn

1 , i.e., denoting sample-path stochastic order by ≤st, for each n and
for all t ≥ 0, we have
(4.3)

En
b (t) ≤st Qn

∗ (t) = Na
∗

(
(µ1,1m

n
1 + θ1κ

n)t
)
−N s

∗

(
λn

∫ t

0
1{Qn∗ (s)>0} ds

)
,

where Na∗ and N s∗ are two independent rate-1 Poisson processes, and Qn∗
is the number-in-system process in the nth M/M/1 system (customers in
queue and in service).

Let Q∗ be the number-in-system process in an M/M/1 system having
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arrival rate equal to µ1,1m1 + θ1κ and service rate λ1, so that ρ∗ in (4.1) is
the traffic intensity to Q∗, and ρ∗ < 1. Observe that the effect of increasing
the size of the M/M/mn

1/κn + M system and its arrival rate (by increasing
mn

1 , κn and λn
1 ) is tantamount to accelerating time by a factor of order

O(n) in Q∗. That is, {En
b (t) : t ≥ 0} is stochastically bounded from above

(in sample-path stochastic order) by {Q∗(cnt) : t ≥ 0}, where cn/n → 1 as
n → ∞, for every t ≥ 0. We can now apply extreme-value theory for the
M/M/1 queue. In particular, if we let M∗(t) ≡ max{Q∗(s) : 0 ≤ s < t}, then
‖En

b ‖t is bounded from above, in the sample-path stochastic-order sense, by
the process M∗(cnt).

Since the queue length is discrete, with a geometric stationary distribu-
tion, a standard extreme-value limit does not exist. Nevertheless, we can
bound the lim sup above; in particular, it follows from Theorem 6 in [2]
and the example following it, (see also Problem 4.2 pg. 185 of [4]), that, for
c = [(µ1,1m1 − θ1κ)(1− ρ∗)]−1 > 0,

lim
x→∞ lim sup

t→∞
P (M∗(t)− a log(t) + b(t) > x)

= 1− lim
x→∞ lim inf

t→∞ P (M∗(t)− a log(t) + b(t) ≤ x)

≤ 1− lim
x→∞ e−ρx−1

∗ /c = 0,

where

a ≡ 1
− log(ρ∗)

, b(t) ≡ log(t)− logbtc − log(1− ρ∗)
− log(ρ∗)

and b(t) → − log(1− ρ∗)/ log(ρ∗) as t →∞. The last inequality is the result
in [2].

Hence, M∗(t) = OP (log(t)). Since ‖En
b ‖T is stochastically smaller than

M∗(cnT ), where cn/n → 1, we have that ‖En
b ‖T / log(n) is stochastically

bounded for all T > 0. The desired result then follows from the fact that
(En

1 )+ is itself stochastically smaller than En
b .

From the fact that (En
1 )+, is at most of order OP (log(n)) when κn/ log(n) →

∞, we deduce that, asymptotically, there are always customers waiting in
the class-1 queue. The following corollary is immediate:

Corollary D.1. Under the conditions of Lemma D.1, for any T > 0,

lim
n→∞P

(
inf

0≤t≤T
Qn

1 (t) > 0
)

= 1, so that lim
n→∞P

(
sup

0≤t≤T
In
1 (t) > 0

)
= 0.
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We now treat the case in which κn/ log(n) → c, where c < ∞, which is
the only other case with κ ≥ 0 by virtue of 2. Since the order of size of
the thresholds in FQR-T is greater than O(

√
n), we are mainly concerned

with the case in which the thresholds are dropped once they are crossed,
and FQR is employed. That is, the main case is κn = 0 for all n.

Proposition D.1. If κn/ log(n) → c, where 0 ≤ c < ∞, then In
1 / log(n)

is SB.

Proof. The proof is similar to the proof of Lemma D.1. If we prove the
result for any bounded sequence, then the result will follow trivially for any
unbounded sequence. We thus assume that 0 ≤ κn ≤ M < ∞. We use the
same sample-path stochastic-order M/M/1-bound Qn∗ in (4.3) to bound In

1 ,
only now we replace κn with M in the representation (4.3). Since M becomes
negligible relative to the scaling by n as n increases, the traffic intensity for
the process Q∗, defined in the proof of Lemma D.1, is ρ∗ = µ1,1m1/λ1, so
that ρ∗ < 1 by Assumption 1. Hence, the bound M∗ in the proof of Lemma
D.1, applies to In

1 .
We can combine Corollary D.1 and Proposition D.1. To that end, we

define the process

(4.4) Ln
1 ≡ Qn

1 + Zn
1,1 −mn

1 .

Observe that (Ln
1 )+ ≡ Qn

1 and (Ln
1 )− ≡ In

1 , so that In
1 ≤ (κn−Ln

1 )+ w.p. 1.

Corollary D.2. The sequence (κn−Ln
1 )+/ log(n) is SB. Hence, In

1 / log(n)
is SB.

D.2. The Idleness Process in Pool 2. We now turn to the pool-2
idleness process. We establish a stronger property away from the time origin.

Proposition D.2. For all ε and T satisfying 0 < ε < T < ∞,

P ( sup
ε≤t≤T

In
2 (t) > 0) → 0 as n →∞.

Proof. Much of the argument here repeats the proof of Theorem 7.4. For
the first statement, we will create a stochastic lower bound and show that
it satisfies the statement. We will exploit a linear combination of processes
associated with the two queues. For that purpose, we define the process

(4.5) Ln
2 ≡ Qn

2 + Zn
1,2 + Zn

2,2 −mn
2 ,
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representing the excess number in system for class 2. Then let Un be the
linear combination of the processes Ln

i , i = 1, 2, defined in (4.4) and (4.5):

(4.6) Un ≡ µ2,2(Ln
1 − κn) + µ1,2L

n
2 .

As we will explain below, this provides a one-dimensional view that can be
regarded as independent of the customer assignments for pool 2.

Because of our FQR (or shifted FQR) routing rule, Ln
1 (t) > κn implies

that Ln
2 (t) ≥ 0. If Un(t) > 0, then necessarily we must have either Ln

1 (t) > κn

or Ln
2 (t) > 0, and so either Qn

1 (t) > κn or Qn
2 (t) > 0. If either of those events

holds, then necessarily we must have In
2 (t) = 0. Hence, we will show that

P (Bn) → 1 as n →∞, where Bn ≡ {supε≤t≤T Un(t) > 0}.
Just as in the proof of Lemma D.1, we will bound the process Un in

(4.6) below in sample-path stochastic order by another process, Un
b , a one-

dimensional birth-and-death (BD) process. As a first step, we give Un
b the

same Poisson arrival processes as the original system has. Thus, Un
b has

constant birth rate λn
b ≡ µ2,2λ

n
1 + µ1,2λ

n
2 .

We next bound the pair of processes (Ln
1 , Ln

2 ) below in sample-path stochas-
tic order by another two-dimensional process (Ln

1,b, L
n
2,b). We construct the

lower-bound process(Ln
1,b, L

n
2,b) by increasing the departure rates in both

processes Ln
1 and Ln

2 , making it so that each goes down at least as fast,
regardless of the state of the other. First, we place reflecting upper barriers
on the two queues. This is tantamount to making the death rate infinite in
these states and all higher states. We place the reflecting upper barrier on
Ln

1 at κn + ε1n; we place the reflecting upper barrier on Ln
2 at ε1n. With

the upper barrier at ε1n, the departure rate of Ln
1 is bounded above by

µ1,1m
n
1 + θ1κ

n + θ1ε1n + µ1,2Z
n
1,2(t), based on assuming that pool 1 is fully

busy serving class 1, that Ln
1 is at its upper barrier, and that Zn

1,2(t) agents
from pool 2 are currently busy serving class 1 in the original system. Second,
with the upper barrier at ε1n, the departure rate of Ln

2 is bounded above
by µ2,2m

n
2 + θ2ε1n−µ1,2Z

n
1,2(t), based on assuming that pool 2 is fully busy

with Zn
1,2(t) agents from pool 2 currently busy serving class 1, and that Ln

2

is at its upper barrier ε1n. Thus, we give Ln
1,b and Ln

2,b these bounding rates
at all times

Of course, as constructed, the evolution of (Ln
1,b, L

n
2,b) depends on the

process Zn
1,2 associated with the original system. However, we can avoid this

difficulty by looking at the special linear combination in (2.5); i.e., we define
the associated process

(4.7) Un
b ≡ µ2,2(Ln

1,b − κn) + µ1,2L
n
2,b.

By the sample-path stochastic order (Ln
1 , Ln

2 ) ≥st (Ln
1,b, L

n
2,b), we get the

associated sample-path stochastic order Un ≥st Un
b . Moreover, the stochastic
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process Un
b is independent of the process Zn

1,2, because of the particular linear
combination we have chosen for the one-dimensional processes Un and Un

b in
(2.5) and (4.7). We have chosen that linear combination so that the number
of pool-2 agents working on class 1 does not matter.

Now observe that the lower-bound stochastic process Un
b is a BD process

on the set of all integers in (−∞, (µ2,2 +µ1,2)ε1n]. The BD process will have
both constant birth rate λn

b defined above and constant death rate µn
b . The

important point is that we will choose ε1 so small that the constant drift
δn ≡ λn

b − µn
b is strictly positive for all suitably large n. To achieve the

positive drift below, we will rely heavily on the overload assumption, 1.
By the definitions above, the stochastic process Un

b has death rate

µn
b ≡ µ2,2(µ1,1m

n
1 + θ1κ

n + θ1ε1n + µ1,2Z
n
1,2(t))

+µ1,2(µ2,2m
n
2 + θ2ε1n− µ2,2Z

n
1,2(t)))

= µ2,2(µ1,1m
n
1 + θ1κ

n) + µ1,2µ2,2m
n
2 + (µ2,2θ1 + µ1,2θ2)ε1n.(4.8)

As a consequence, for each n ≥ 1, the drift in Un
b is

δn
b ≡ λn

b − µn
b = µ2,2(λn

1 −mn
1µ1,1 − θ1κ

n)
+µ1,2(λn

2 −mn
2µ2,2) + (µ2,2θ1 + µ1,2θ2)ε1n.(4.9)

Hence, after scaling, we get δn
b /n → δ, where

(4.10) δb ≡ µ2,2(λ1−m1µ1,1−θ1κ)+µ1,2(λ2−m2µ2,2)+(µ2,2θ1 +µ1,2θ2)ε1.

By Assumption 1, we see that we would have δb > 0 if ε1 = 0. However,
because of the strict inequality in Assumption 1, we can always choose ε1
sufficiently small, so that δb > 0, and we do that.

Now we can establish a FWLLN for Un
b . Such a FWLLN is elementary

since the BD process has constant birth and death rates with positive drift.
After exploiting the fact that we start at Ln

1 (0) = κn and Ln
2 (0) = 0, so that

Un
b (0) = Un(0) = 0, we see that

(4.11) Ūn
b ⇒ ub in D as n →∞,

where

(4.12) Ūn
b (t) ≡ Un

b (t)/n and ub(t) ≡ δbt ∧ ε1 for t ≥ 0,

with ub(0) = 0.
As a consequence, we deduce that, for any ε and T with 0 < ε < T < ∞,

(4.13) P ( inf
ε≤t≤T

Un(t) > 0) → 1 as n →∞.
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Next, we recall that on the subset in the underlying probability space for
which infε≤t≤T Un(t) > 0, we must have, for each t, that either Qn

1 (t) > κn or
Qn

2 (t) > 0. However, either one of these inequalities implies that In
2 (t) = 0.

Thus the idleness must be 0 throughout the interval [ε, T ]. Hence we have
established the proposition.

APPENDIX E: REMAINING PROOFS IN SECTION 8

E.1. Remaining Proofs in §8.1.

Proof of Lemma 8.1. For background on tightness, see [8, 36, 48]. We re-
call a few key facts: Tightness of a sequence of k-dimensional stochastic
processes in Dk is equivalent to tightness of all the one-dimensional compo-
nent stochastic processes in D. For a sequence of random elements of Dk,
C-tightness implies D-tightness and that the limits of all convergent sub-
sequences must be in Ck; see Theorem 15.5 of the first 1968 edition of [8].
Thus it suffices to verify conditions (6.3) and (6.4) of Theorem 11.6.3 of [48].
Hence, it suffices to prove SB of the sequence of stochastic processes evalu-
ated at time 0 and appropriately control the oscillations, using the modulus
of continuity on C. We obtain the stochastic boundedness at time 0 immedi-
ately from Assumption 3 in §3. We show that we can control the oscillations
below. The resulting tightness implies that the sequence of stochastic pro-
cesses is SB. We give an alternative proof of SB in §8.2, which yields explicit
bounds on the limit processes.

We now show how to control the oscillations. For that purpose, let w(x, ζ, T )
is the modulus of continuity of the function x ∈ D, i.e.,

w(x, ζ, T ) ≡ sup {|x(t2)− x(t1)| : 0 ≤ t1 ≤ t2 ≤ T, |t2 − t1| ≤ ζ}.

Using the representations (4.2)-(4.5), for t2 > t1 ≥ 0 we have

∣∣Q̄n
1 (t2)− Q̄n

1 (t1)
∣∣ ≤ An

1 (t2)−An
1 (t1)

n
+

∫ t2
t1

1{Dn(s)>0} dSn(s)
n

+

∫ t2
t1

1{Dn(s)≤0} dSn
1,1

n
+

Un
1 (t2)− Un

1 (t1)
n

,

Hence, for any ζ > 0 and T > 0,

w(Qn
1/n, ζ, T ) ≤ w(An

1/n, ζ, T ) + w(Sn/n, ζ, T ) + w(Sn
1,1/n, ζ, T )

+w(Un
1 /n, ζ, T ).(5.1)

Then observe that we can bound the oscillations of the service processes Sn
i,j

by the oscillations in the scaled Poisson process N s
i,j(n·). In particular, by
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(4.2),

(5.2) w(Sn
i,j/n, ζ, T ) ≤ w(N s

i,j(nµi,jmj ·)/n, ζ, T ) ≤ w(N s
i,j(n·)/n, cζ, T )

for some constant c > 0. Next for the abandonment process Un
i , we use the

elementary bounds

Qn
i (t) ≤ Qn

i (0) + An
i (t),

|Un
i (t2)− Un

i (t1)| = |Ni(θi

∫ t2

t1
Qn

i (s) ds|
≤ |Ni(nθ(Q̄n

i (0) + Ān
i (T )(t2 − t1))|.(5.3)

Let qbd ≡ 2(qi(0) + T ), where Q̄n
i (0) ⇒ qi(0) by Assumption 3, and let Bn

be the following subset of the underlying probability space:

Bn ≡ {Q̄n
i (0) + Ān

i (T ) ≤ qbd}.

Then P (Bn) → 1 as n →∞ and, on the set Bn, we have

(5.4) w(Un
i /n, ζ, T ) ≤ w(Nu

i (nqbd·)/n, ζ, T ) ≤ w(Nu
i (n·)/n, cζ, T )

for some constant c > 0.
Thus, there exists a constant c > 0 such that, for any η > 0, there exists

n0 and ζ > 0 such that, for all n ≥ n0, P (Bn) > 1− η/2 and on Bn

w(Qn
i /n, ζ, T ) ≤ w(Na

i (n·)/n, cζ, T ) + 2
2∑

i=1

2∑

j=1

w(N s
i,j(n·)/n, cζ, T )

+w(Nu
i (n·)/n, cζ, T ).(5.5)

However, by the FWLLN for the Poisson processes, we know that we can
control all these moduli of continuity on the right. Thus we deduce that, for
every ε > 0 and η > 0, there exists ζ > 0 and n0 such that

P (w(Qn
i /n, ζ, T ) ≥ ε) ≤ η for all n ≥ n0.

Hence, we have shown that the sequence {Q̄n
i } is tight.

We now turn to the sequence {Z̄n
1,2}. Let An

1,2(t) denote the total number
of class-1 arrivals up to time t, who will eventually be served by type-2
servers in system n. Let Ān

1,2 ≡ An
1,2/n and S̄n

1,2(t) ≡ Sn
1,2(t)/n, for Sn

1,2(t) in
(4.2). Since

Zn
1,2(t) = Zn

1,2(0) + An
1,2(t)− Sn

1,2(t),
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we have

|Z̄n
1,2(t2)− Z̄n

1,2(t1)| ≤ Ān
1,2(t2)− Ān

1,2(t1) + S̄n
1,2(t2)− S̄n

1,2(t1).

However, for An
1 in (4.2),

An
1,2(t2)−An

1,2(t1) ≤ An
1 (t2)−An

1 (t1).

Since Ān
1 ⇒ λ1e in D, the sequence {Ān

1} is tight. Together with (5.2), that
implies that the sequence {Z̄n

1,2} is tight as well. Finally, we observe that the
tightness of {Ȳ n

8 } follows from (5.2), (5.4) and the convergence of Ān
i .

Proof of Lemma 8.2. Apply the bounds on the modulus of continuity in-
volving Poisson processes in the proof of Lemma 8.1 above. For a Poisson
process N , let N̂n ≡ √

n(N̄n − e), where N̄n(t) ≡ N(nt)/n, t ≥ 0. By the
triangle inequality, for each n, ζ, and T ,

w(N̄n, ζ, T ) ≤ w(N̂n, ζ, T )√
n

+ w(e, ζ, T ) ⇒ ζ as n →∞.

Since, w(x, ζ, T ) is a continuous function of x for each fixed ζ and T , we can
apply this bound with the inequalities in the proof of Lemma 8.1 to deduce
(8.1).

E.2. Remaining Proof in §8.3.

Proof of Lemma 8.7. Consider the drift rates of the QBD-version of Dn
f

in (5.6), and observe that, by the linearity of the drift expressions and As-
sumption 3, δn

+(Xn(0))/n ⇒ δ+(x(0)) and δn−(Xn(0))/n ⇒ δ−(x(0)) for δ+

and δ− in (5.20). Also by Assumption 3, x(0) ∈ A so that (5.21) holds. This
implies that there exists η > 0 such that

lim
n→∞P (δn

+(Xn(0)) < −η and δn
−(Xn(0)) > η) = 1,

i.e., (8.11) holds at t = 0 with probability converging to 1 as n →∞.
To prove the lemma, we bound the drifts in (5.6). We do that by bounding

the change in the components of Xn(t) in a short interval after time 0. To
do that, we use the stochastic-order bounds in (7.4)-(7.5). Recall the rather
special ordering obtained there:

(5.6) (−Qn
1,a, Q

n
2,a, Z

n
a ) ≤st (−Qn

1 , Qn
2 , Zn

1,2) ≤st (−Qn
1,b, Q

n
2,b, Z

n
b ).

In particular, we will find two processes Xn
+ and Xn− in D, such that

δn
+(Xn(t)) ≤st δn

+(Xn
+(t)), δn

−(Xn(t)) ≥st δn
−(Xn

−(t))(5.7)



AN AVERAGING PRINCIPLE 81

and, for some δ > 0 and η > 0,

(5.8) lim
n→∞P

(
sup

t∈[0,ξ]
δn
+(Xn

+(t)) < −η and inf
t∈[0,ξ]

δn
−(Xn

−(0)) > η

)
= 1.

To construct the processes Xn
+ and Xn− with these properties, we use the

bounding processes Xn
a and Xn

b in (7.4) and (7.5) (appearing again in (5.6).
Specifically, we let

(5.9) Xn
+ ≡ (Qn

1,a, Q
n
2,b, Z

n
+) and Xn

− ≡ (Qn
1,b, Q

n
2,a, Z

n
−),

respectively, where Zn
+ = Zn

b if µ2,2 ≥ µ1,2, and Zn
+ = Zn

a otherwise. Zn− =
Zn

a if µ2,2 ≥ µ1,2, and Zn− = Zn
b otherwise. As a consequence, for each t ≥ 0,

the drifts satisfy

δn
+(Xn

+(t)) ≡ j[λn
1 − µ1,1m

n
1 − (µ1,2 − µ2,2)Zn

+(t)− µ2,2m
n
2 − θ1Q

n
1,b(t)]

− k[λn
2 − θ2Q

n
2,a(t)],

δn
−(Xn

−(t)) ≡ j[λn
1 − µ1,1m

n
1 − θ1Q

n
1,a(t)]

− k[λn
2 − (µ1,2 − µ2,2)Zn

−(t)− µ2,2m
n
2 − θ2Q

n
2,b(t)].

(5.10)

We have directly defined the processes in (5.9) to ensure that the inequalities
in (5.7) are satisfied.

Assume that Xn
+(0) = Xn−(0) = Xn(0). By Assumption 3, X̄n(0) ⇒ x(0)

as n → ∞, so that the condition in Lemma 7.1 holds at t = 0. Hence,
by Lemma 7.1, X̄n

+ ⇒ x+ ≡ (q1,b, q2,a, z+), where z+ = za if µ2,2 ≥ µ1,2

and z+ = zb otherwise. Also, X̄n− ⇒ x− ≡ (q1,a, q2,b, z−), where z− = zb if
µ2,2 ≥ µ1,2 and z− = za otherwise. Hence, by the linearity of the functions
δn
+ and δn−,

(5.11)
δn
+(Xn

+)/n ⇒ δ+(x+) and δn
−(Xn

−)/n ⇒ δ−(x−) in D as n →∞.

Since x+(0) = x−(0) = x(0) ∈ A, and by the continuity of δ+(·) and δ−(·),
we can find ξ > 0 and η > 0, such that δ+(x+(t)) < −η and δ−(x−(t)) > η.
for all t ∈ [0, ξ]. That implies that we have (5.8). Together with (5.7), that
concludes the proof.

E.3. Remaining Proof in §8.5.
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Proof of Lemma 8.9. We can apply essentially the same reasoning as in
the proof of Lemma 8.7. We only need to change the order. Now we aim to
achieve:

δn
+(Xn

m(t)) ≤ δn
+(Xn(t)) ≤ δn

+(Xn
M (t)), and

δn
−(Xn

m(t)) ≤ δn
−(Xn(t)) ≤ δn

−(Xn
M (t))

(5.12)

instead of (5.7). Moreover, we will do so such that the two bounding QBD’s
are positive recurrent over some interval [0, ξ] on the sets Bn where P (Bn) →
1 as n →∞. In other words, we will use random vectors Xn

M and Xn
m instead

of full processes.
We again use the stochastic-order bounds in (7.4)-(7.5), with the ordering

in (5.6). To construct Xn
M , let

(5.13) Xn
M+ ≡ (Qn

1,M , Qn
2,M , Zn

M+) and Xn
M− ≡ (Qn

1,M , Qn
2,M , Zn

M−),

where

(5.14)
Qn

1,M ≡ inf0≤t≤ξ Qn
1,b(t) ∨ 0, Qn

2,M ≡ ‖Qn
2,b‖ξ,

Zn
M+ ≡ inf0≤t≤ξ Zn

+(t), Zn
M− ≡ ‖Zn−‖ξ,

with Zn
+(t) ≡ Zn

b and Zn−(t) ≡ Zn
a if µ2,2 ≥ µ1,2, and Zn

+(t) ≡ Zn
a and

Zn−(t) ≡ Zn
b otherwise. Note that we can regard {Xn

M+(ξ) : ξ ≥ 0} as
a stochastic process as a function of ξ, but we work with the final value
Xn

M+ ≡ Xn
M+(ξ), and similarly for Xn

M− . Let {Dn
f (Xn

M , s) : s ≥ 0} have the
rates determined by Xn

M− when Dn
f (Xn

M , s) ≤ 0, and the rates determined
by Xn

M+ when Dn
f (Xn

M , s) > 0.
We do a similar construction for Xn

m. Let

(5.15) Xn
m+ ≡ (Qn

1,m, Qn
2,m, Zn

m+) and Xn
m− ≡ (Qn

1,m, Qn
2,m, Zn

m−),

where

(5.16)
Qn

1,m ≡ ‖Qn
1,a‖ξ, Qn

2,m ≡ inf0≤t≤ξ Qn
2,b(t) ∨ 0,

Zn
m+ ≡ ‖Zn

+‖ξ, Zn
m− ≡ inf0≤t≤ξ Zn−(t).

with Zn
+(t) ≡ Zn

a and Zn−(t) ≡ Zn
b if µ2,2 ≥ µ1,2, and Zn

+(t) ≡ Zn
b and

Zn−(t) ≡ Zn
a otherwise (the reverse of what is done in (5.14)). Let {Dn

f (Xn
m, s) :

s ≥ 0} have the rates from Xn
m− when Dn

f (Xn
m, s) ≤ 0, and the rates from

Xn
m+ when Dn

f (Xn
m, s) > 0. By this construction, we achieve the ordering in

(8.18). We cover the rates of Dn
1,2(t) too because we can make the identifica-

tion: the rates of Dn
1,2(t) given Xn(t) coincide with the rates of Dn

f (Xn(t), ·).
It remains to find a ξ such that both the processes {Dn

f (Xn
m, s) : s ≥ 0}

and {Dn
f (Xn

M , s) : s ≥ 0} are positive recurrent. To do so, we will use a
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minor modification of the reasoning in the final step of the proof of Lemma
8.7. We use Lemma 7.1, which concludes that the bounding processes as
functions of ξ have fluid limits. By Lemma 7.1, we can conclude that X̄n

m+ ≡
n−1Xn

m+ ⇒ x+
m, X̄n

m− ≡ n−1Xn
m− ⇒ x−m, X̄n

M+ ≡ n−1Xn
M+ ⇒ x+

M and
X̄n

M− ≡ n−1Xn
M− ⇒ x−M in D, where xm+ , x−m, x+

M and x−M are all continuous
with x+

m(0) = xm−(0) = x+
M (0) = x−M = x(0) ∈ A. Hence, we can find ξ′

such that xm(ξ) ∈ A and xM (ξ) ∈ A for all ξ ∈ [0, ξ′]. Hence, we can
choose ξ such that the constant vectors xm ≡ xm(ξ) and xM ≡ xM (ξ) both
arbitrarily close to x(0).

Finally, we use the linearity of the drift function to deduce the positive
recurrence of the processes depending upon n. As in (5.11), we have

δn
−(Xn

m−)/n ⇒ δ−(x−m), δn
+(Xn

m+)/n ⇒ δ+(x+
m),

δn
−(Xn

M−)/n ⇒ δ−(x−M ), and δn
+(Xn

M+)/n ⇒ δ+(x+
M ).(5.17)

As a consequence, we can deduce the conclusion of the lemma.

E.4. Remaining Proof in §8.6.

Proof of Lemma 8.10. We start with the processes Dn
f (Xn

m, ·) and Dn
f (Xn

M , ·)
already constructed in §§8.5 and E.3, with the understanding that the inter-
val length ξ will in general need to be redefined, now depending on ε. Since
the initial state has been frozen in Dn

f (Xn
m, ·), Dn

f (Xn
M , ·) and Dn

f (Xn(t), ·),
these three processes are stationary CTMC’s (have stationary transition
rates), but Dn

1,2(t) is not. In the following we construct modified versions of
these processes, but so as not to alter their individual distributions. For the
following, we regard all the QBD processes as CTMC’s and use the natural
order on the integer state space (instead of the special order in the QBD
structure).

As in the proof of Theorem 5.3, we can apply uniformization. As explained
there, without loss of generality, we can regard the transition rates in Dn

1,2

as being uniformly bounded. Thus, for for all n suitably large, and for each
process under consideration, we can generate all potential transitions from
constant-rate Poisson processes. Because of the scaling by O(n) in (2.3),
the Poisson processes for model n can be given rate αn, n ≥ 1, for some
positive constant α. The constant α is chosen so that the rate αn exceeds
the maximum total transition rate out of any state for any of the processes
for each n ≥ 1. Then the actual transitions of the process are governed by
a DTMC. The Poisson process generates potential transitions. When there
is not a real transition, that is captured in the DTMC by a transition from
that state back to itself. By choosing the Poisson transition rate sufficiently
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large, for every state in the state space, there is positive probability of a one-
step transition immediately back to that same state. Hence, the DTMC is
aperiodic as well as ireducible and positive recurrent. Note that the Poisson
process captures the scaling by n.

For the new construction, we use a regenerative approach, using the regen-
erative structure discussed in §8.4. Provided that the QBD’s Dn

f (Xn
M , ·) and

Dn
f (Xn

m, ·) are positive recurrent, which will hold on Bn(ξ, η). By virtue of
the construction in §8.5, successive visits to any fixed state constitute regen-
erative cycles for these stationary CTMC’s with constant transition rates.
It is convenient to let the regenerative state, denoted by s∗, be contained in
the boundary of the QBD.

We use the common initial state, say s∗. For simplicity, we initially assume
that

(5.18) Dn
f (Xn

m, 0) = Dn
f (Xn

M , 0) = Dn
f (Xn(t), 0) = Dn

1,2(0) = s∗,

but we will later show that this initial condition is not needed; e.g., it can
be replaced by the convergence condition imposed in Assumption 3.

For the new construction, we couple all four processes; i.e., we start by
constructing all the processes together, starting in their common initial state,
based on the rate order established in (8.18). That means that we use a
single Poisson process with rate αn to generate potential transitions for
all the processes under consideration. We match the actual transitions as
much as possible in order to keep the processes evolving together as much
as possible. We will choose ξ to ensure that the transition probabilities differ
by only a negligible amount, so the processes will only rarely have different
transitions during a single regenerative cycle. Even though we cannot achieve
full sample path stochastic order for the stochastic processes over the full
time interval, we can keep all the processes together over each regenerative
cycle, with high probability. (Recall that the number of transitions in each
regenerative cycle is of order O(1), but the transitions are occurring at rate
O(n), so we are not succeeding in keeping the process paths identical over
positive time intervals, but that is not needed. Because we are concerned
with the integrals in (8.23), it suffices to have the proportion of time that
the paths are identical be large. Also recall that the inequalities in (8.23)
need not hold w.p.1; we are only claiming that the probability that they
hold should converge to 1 as n →∞.)

Our general idea is to construct an alternating renewal process for each n,
which involves a sequence {(Un

1,k, U
n
2,k) : k ≥ 1} of i.i.d pairs of nonnegative

random variables, Un
1,k and Un

2,k. These variables measure times in the full
process and so will be O(1/n). The first random variable Un

1,k is the geomet-
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ric random sum of the cycle lengths of all the regenerative cycles where the
processes all coincide, while the second interval Un

2,k is a subsequent interval
on which the processes do not necessarily coincide. The second interval ends
when all processes are in the regenerative state together. We then repeat the
construction. We will make the first interval Un

1,k much longer than the sec-
ond interval Un

2,k, ensuring that the proportion of time that the processes all
agree is arbitrarily close to 1 (falling within the ε gaps in (8.23)). The cycles
will have O(1) transitions, but since the transitions occur according to the
Poisson process at rate αn, the cycle lengths are asymptotically negligible,
making the limiting proportions all that matters.

With the general strategy laid out, it now remains to show that we can
make the first intervals Un

1,k suitably long and make the second intervals
Un

2,k relatively short. The construction is more complicated for the second
interval Un

2,k. The second interval is made up of two parts. The first part
of Un

2,k is the exceptional cycle on which the processes first disagree. The
second part of Un

2,k starts at the end of that exceptional cycle, where the
upper process is in the regenerative state, but in general the other processes
are not. At that point, we change the construction. We use independent
Poisson processes, all with rate αn, to generate the transitions in the four
processes. This second part ends when all the processes are simultaneously
together in the regenerative state. We start over after the second interval
ends, i.e., afterwards we again use a single Poisson process to generate the
transitions of all processes, starting when they are all together in the regen-
erative state, and so forth. In this way we produce the alternating renewal
process structure.

We do a careful analysis to ensure that the second random variable Un
2,k

is appropriately controlled, independent of ξ, and then we choose ξ suit-
ably small to make the first interval relatively long, so that the long-run
proportion of time that the process is in the second interval, which is

(5.19)
E[Un

2,k]
E[Un

1,k] + E[Un
2,k]

,

is as small as desired. In fact, our construction will make E[Un
1,k] ↑ ∞ as

ξ ↑ ∞, while E[Un
2,k] ↓ 0 as ξ ↑ ∞. Since the Poisson rate αn produces a time

scaling of order O(n), the cycles are occurring more rapidly as n → ∞. In
that way we can achieve the inequalities in (8.23) with probabiity converging
to 1 as n → ∞. Since we are working with indicator functions in (8.23),
in computing the bound we allow the worst case, in which the indicator
functions differ by 1 throughout the second interval.

We now present the details. Let the random number of transitions in a
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regenerative cycle for the upper bound process Dn
f (Xn

M , ·) be Nn. Since the
events are occurring at rate of order O(n), we can use a version of the time-
expanded queue-difference process for Dn

f (Xn
M , ·), as in (5.7). By Theorem

5.3, we have Nn ⇒ N as n → ∞, where N is the corresponding random
number of transitions during a regenerative cycle for the FTSP D(xM , ·),
using the same designated regenerative state, where X̄n

M ⇒ xM as n →∞,
as in §8.5. Moreover, because of the special QBD structure we also have
additional regularity properties.

Let pn be the probability mass function of Nn, i.e., pn(k) ≡ P (Nn = k).
As in §8.4, From the convergence Nn ⇒ N and the QBD structure of all
processes, we know that pn has a proper generating function (gf) ψNn(z) ≡
E

[
zNn

]
. Combining the QBD and gf structure, we can conclude that there

is an integer k0 such that we can bound the probabilities pn(k) above and
below by

(5.20) CLq̃k ≤ pn(k) ≤ CUqk for all k ≥ k0,

for positive constants CL, CU , q̃ and q with 0 < q̃ < q < 1, independent of
n for n suitably large. That implies associated uniform integrability, from
which we obtain associated convergence of means: E[Nn] → E[N ] as n →∞,
and higher moments as well if desired.

We now focus on the event, say An, that any of the processes ever differ
from the upper bound process over a regenerative cycle of the nth upper
bound process. In addition to the upper bound process, it suffices to con-
sider only the lower bound process, because the rate order implies that we
can construct the processes so that the lower bound process will differ from
the upper bound process at some transition whenever any of the other inter-
mediate processes do, i.e., whenever the other processes do; i.e., whenever
Dn

f (Xn(t), ·) or Dn
1,2(·) do.

Both the upper and lower bound processes are constant rate CTMC’s,
with common rates in the two regions (−∞, 0] and (0,∞). Thus there are
only two different cases to consider: the two processes are either both in
the upper region or both in the lower region. To simplify the analysis, it is
convenient to modify the construction of the two processes Dn

f (Xn
m, ·) and

Dn
f (Xn

M , ·) in order to make the probability that the two processes differ at
any transition be the same in both regions for all ξ and n, and thus the same
for all transitions for all ξ and n. That can be done by adjusting the bounds,
while still keeping the rate order and the asymptotic properties as ξ ↓ 0. (For
each n, we can make the difference in the total transition rate in each region
the maximum of what it was originally in each of the two regions. Clearly,
the maximum difference also converges to 0 as ξ ↓ 0.) That allows us to
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totally decouple the probability of a different transition at each transition
epoch from the evolution of the processes, and thus simplifies calculations
of bounds.

With that modified construction in place, let Wn
i = 1 if the lower bound

process Dn
f (Xn

m, ·) makes a different transition from the upper bound process
Dn

f (Xn
M , ·) at the ith transition of the Poisson process, given that has not

happened so far. Given our revised construction above, we can assume that
the sequence {Wn

i : i ≥ 1} is a sequence of i.i.d random variables with
P (Wn

i = 1) = φn, where φn → φ as n →∞ and φ ↓ 0 as ξ ↓ 0. To see why,
recall that, by Lemma 7.1, X̄n

M ⇒ xM and X̄n
m ⇒ xm in D6 as n → ∞,

where xM (0) = xm(0) = (x(0), x(0)). Hence, by taking ξ small enough and
n large enough, we can make X̄n

M and X̄n
m arbitrarily close for all t ∈ [0, ξ].

Consequently, the probability that any of the processes differ at step k ≥ 1
during a regenerative cycle, depends on the number of transitions during a
regenerative cycle being at least k. Hence,

P (An) ≡ P (any processes differ) =
∞∑

k=1

φn(1− φn)k−1
∞∑

j=k

pn(j)

≤
k0∑

k=1

φn(1− φn)k−1 +
∞∑

k=k0+1

φn(1− φn)k−1
∞∑

j=k

CUqj

= φn




k0∑

k=1

(1− φn)k−1 +
CUq

1− q

∞∑

k=k0+1

[(1− φn)q]k−1




≤ C1φ

(5.21)

for a new constant C1, provided that (1 − φ)q < 1 and n is suitably large.
The condition (1−φ)q < 1 holds since q < 1, so that the overall probability
P (An) can be made arbitrarily small, by making φ small enough by choosing
ξ suitably small and n suitably large.

The first interval Un
1,k is the random sum of V n

1,k i.i.d. exponential random
variables, each with mean 1/nα (corresponding to the Poisson process with
rate nα), where V n

1,k is the geometric random sum, with mean 1/P (An), of
the numbers of transitions in the successive cycles, in which no transitions
disagree. We now give an expression for a lower bound for the means:

(5.22) E[V n
1,k] =

E[Nn]
P (An)

≥ C2E[N ]
φ

for all suitably large n,

where C2 < 1/C1 for C1 in (5.21). We obtain the lower bound in (5.22) by
applying the convergence of the means E[Nn] → E[N ] as n →∞, indicated



88 O. PERRY AND W. WHITT

above. Thus,

(5.23) E[Un
1,k] ≥

C2E[N ]
φnα

for all suitably large n,

as well. The main point is that we can make these means in (5.22) and (5.23)
large in the relevant scale by making φ suitably small, which we can achieve
by the proper choice of ξ.

We now want to show that V n
2,k, the number of transitions of the Poisson

process with rate nα in the second interval Un
2,k, can be suitably controlled.

To go with (5.22), it suffices to show that V n
2,k is SB as n →∞. Equivalently,

it suffices to show that nUn
2,k is SB as n →∞. We will consider the two parts

of this second interval in turn.
First consider the exceptional cycle. Let Nn

e be the random number of
transitions in an exceptional regenerative cycle for the upper bound pro-
cess. First, Nn

e is not distributed the same as Nn, because longer cycles are
more likely to become exceptional cycles than shorter ones, because they
generate more opportunities for a difference. Nevertheless, we can bound
E[Nn

e ] above. To do so, we need to bound P (An) below, instead of above
as in (5.21). We can do so by using the lower bound for the probabilities
pn(k) ≡ P (Nn = k) in (5.20).

We can now bound the mean E[Nn
e ] above for all n suitably large. In

particular,

E[Nn
e ] = E[Nn|An] =

E[Nn;An]
P (An)

.(5.24)

We start with the numerator of (5.24):

E[Nn; An] =
∞∑

k=1

k∑

j=1

kP (N = k; processes first differ at transition j)

=
∞∑

k=1

k∑

j=1

kP (Nn = k)φn(1− φn)j−1 =
∞∑

k=1

kpn(k)φn
1− (1− φn)k

φn

= E[Nn]− (1− φn)
∞∑

k=1

kpn(k)(1− φn)k−1 = E[Nn]− zn
d

dz
ψNn(zn),

where zn ≡ (1− φn).
Note that, by Abel’s Lemma (Lemma 5.1 pg. 64 in [24]), ψNn(zn) and,

consequently, d
dzn

ψNn(zn) are continuous from the left at zn = 1. Also,
zn → 1 (from the left) as φn → 0. Hence, the numerator of (5.24) converges
to 0 as φn → 0. We next show that the rate of convergence to 0 is the same
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as that of the denominator of (5.24), so that (5.24) is bounded from above
by a constant. By (5.21) and Fubini’s theorem,

P (An) =
∞∑

k=1

φn(1− φn)k−1
∞∑

j=k

pn(j) =
∞∑

j=1

pn(j)
j∑

k=1

φn(1− φn)k−1

=
∞∑

j=1

pn(j)[1− (1− φn)j ] = 1− ψNn(zn).

Applying L’Hôpital’s rule and Abel’s lemma, we see that the limit of (5.24)
as φn → 0 (by taking n to infinity and then ξ to zero) is bounded from above
by a constant. Specifically,

lim
zn↑1

d
dzn

ψNn(zn) + zn
d2

d2zn
ψNn(zn)

d
dzn

ψNn(zn)
=

E[Nn] + E[(Nn)2]
E[Nn]

≤ C3

for some constant C3. (Recall that E[Nn] → E[N ] and E[(Nn)2] → E[N2]
as n →∞ by (5.20).)

For the next step, we will also want to bound the tail probabilities of
Nn

e . By a minor variation of the argument in (5.24), we can show they are
bounded by a random variable with a geometric tail. If k1 ≥ k0, then

P (Nn
e ≥ k1) =

P (Nn ≥ k1;An]
P (An)

=
∑∞

k=k1

∑k
j=1 φn(1− φn)j−1pn(k)

∑∞
k=1

∑k
j=1 φn(1− φn)j−1pn(k)

≤
∑∞

k=k1
[1− (1− φn)k]CUqk

∑∞
k=k0

[1− (1− φn)k]CLq̃k
≤ C4[(1− φ)q]k1(5.25)

for a new constant C4 (depending upon k0), provided that φ is close enough
to 0, which can be ensured by making ξ small, and that n is suitably large.

We now are ready to treat the second part of the second interval Un
2,k,

focusing on the number of transitions V n
2,k. Our main idea now is to let the

four processes evolve independently with the transitions generated by inde-
pendent Poisson processes. Thus, to be concrete, let V n

2,k refer specifically
to the number of transitions in the Poisson process generating the upper
bound process Dn

f (Xn
M , ·). To understand the essential point, we first con-

sider the relatively simple case in which there are four independent versions
of Dn

f (Xn
M , ·) starting together in the regenerative state. But now we gener-

ate the vector-valued four-tuple of processes together using the superposition
of four independent Poisson processes, which is a Poisson process with rate
4αn. At each transition epoch of this Poisson process, we let the transi-
tion correspond to each of the four individual processes independently with
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probability 1/4. We thus construct the 4 independent versions together. We
can thus focus on the vector-valued discrete-time Markov chain representing
the transitions of all 4 processes, but each of these transitions corresponds
to only one of the four Poisson processes, and the four processes remain
independent. Now let Nn

c be the total number of transitions of this Pois-
son process with rate 4αn before the interval ends with all four processes
together again in the regenerative state s∗.

Now observe that the intervals between successive visits of all four pro-
cesses to this regenerative state constitute a renewal process. In the long
run, each process will be in the regenerative state a proportion πn(s∗) of
the time, for 0 < πn(s∗) < 1; i.e., πn(s∗) is the steady-state probability
of the regenerative state, say s∗, i.e., πn(s∗) = P (Dn

f (Xn
M ,∞) = s∗), with

1/πn(s∗) being the mean interval between successive visits to s∗. Conse-
quently, in the long run, the four copies will all be in the state s∗ together
a proportion πn(s∗)4 of the time. Since successive return times to s∗ form a
renewal process, the mean time between successive returns of all four copies
of the upper bound process Dn

f (Xn
M , ·) to s∗ is 1/πn(s∗)4 for each n.

By (i) the convergence of X̄n
M ⇒ xM , (ii) the convergence of the transition

rates of {Dn
f (Xn

M , s) : s ≥ 0} defined in (5.2)-(5.5) to the transition rates
of the FTSP {D(xM , s) : s ≥ 0} defined in (5.9)-(5.12) as n → ∞, which
is justified by (8.9) and the following discussion, and (iii) Lemma 8.8, we
deduce that πn(s∗) → π(s∗) as n →∞, where π(s∗) is the steady-state prob-
ability of the FTSP, i.e., π(s∗) = P (D(xM ,∞) = s∗). Hence, for this special
initial condition, we have established the bound E[Nn

c ] ≤ C7/π(s∗)4 < ∞
for C7 > 1 for all n suitably large (depending on our choice of C7).

Of course, we do not actually have four copies of the upper bound process
and the four processes we do have are not all starting in the regenerative
state. Hence we have to do more. There is a further complication, because
the process Dn

1,2 is not a constant-rate CTMC. However, we circumvent this
difficulty by treating all the independent processes under consideration as
independent copies of the upper bound process Dn

f (Xn
M , ·), but with different

initial conditions. (This addresses the first difficulty.) In particular, we gen-
erate four independent copies of Dn

f (Xn
M , ·) with the given initial conditions

at the end of the exceptional cycle. And, together with the three processes
that are not actually the upper-bound process, we also generate the other
process using that same Poisson process. Hence three of the four indepen-
dent Poisson processes will be used to generate two processes each. We do
those pairwise constructions as before, aiming to keep the two processes as
close together as possible, for each of the three pairs of processes. We have
already described how to analyze the probability of a difference occurring
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over successive transitions, which can be (and will be) made negligible.
We will succeed in using the four independent copies of Dn

f (Xn
M , ·) con-

structed as above if none of the three independent versions Dn
f (Xn

M , ·) serv-
ing for other processes make a different transition from the original process
over the interval under consideration. Since we will be showing that the to-
tal interval is SB, the probability of a different transition here can be made
arbitrarily small as well. We will thus do the construction until the four
processes meet again in the regenerative state, but in doing so, we also keep
track of whether or not any of the interior processes make any different tran-
sitions. If there were no differences in transitions for the interior processes,
then the cycle has ended when all the processes first reach the regenerative
state at the same transition epoch.

For the moment, assume that no differences occur between the three orig-
inal processes and the version of Dn

f (Xn
M , ·). Hence, we now focus on the

different initial conditions actually holding at the end of an exceptional cy-
cle. To facilitate having these four independent copies of Dn

f (Xn
M , ·) with

different initial conditions reach the regenerative together as soon as pos-
sible, we couple each process with the upper-bound process as soon as the
two processes are ever in the same state. From that hitting time forward,
we let both processes be the upper bound process, generated by its Poisson
process. This leaves the distribution of the individual processes unchanged.
We now proceed until all three independent copies of Dn

f (Xn
M , ·) have cou-

pled with the upper-bound process Dn
f (Xn

M , ·) and the upper-bound process
(and thus all four) processes have reached the regenerative state.

We can bound this expected number of transitions until the four processes
reach the regeneration state together if we can bound the first hitting time
of s∗. That is so, because we can bound the expected number of transitions
for all four independent processes to reach the regeneration state together,
if at transition k all four processes have visited state s∗ at least once in
the last k transitions. That makes the other three discrete-time processes
distributed as index shifted versions of the upper-bound DTMC.

e now want to bound the first passage time to s∗ for each of the processes
not starting in s∗. he first passage time can be controlled provided the initial
condition can be controlled. e thus control the separation between the pro-
cesses that can occur during the rest of the exceptional cycle, after the first
non-identical transition. After the first non-identical transition, we focus on
the upper bound process. We say that the exceptional cycle ends when the
upper bound process next hits the regenerative state. However, because of
the non-identical transitions, the other processes typically will not hit the
regenerative state at that same transition epoch. It is evident that, as long
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as the processes stay together on the same side of 0, the probability of a
second different transition during the cycle will be negligible. However, we
lose control when the processes are on different sides of state 0. Fortunately,
it suffices to use a crude bound on the maximum possible separation of the
processes during the exceptional cycle. We can suppose that the maximum
possible separation is achieved at each transition over the entire cycle. The
worst case would have the separation increase by K ≡ 2(j ∨ k) at every
transition. (The two processes would have a transition at the same time go-
ing the maximum possible distance away from each other.) Hence, since the
total number of transitions of the upper bound process in the exceptional
cycle after the initial non-identical transition is Nn

e , then the other processes
are in a state within KNn

e states of the regenerative state, where the up-
per bound process Dn

f (Xn
M , ·) will be at the end of the exceptional cycle. In

(5.25) we have shown that this random bound on the initial difference has
a geometric tail, so that the probability of large differences are controlled.
Since the first passage time (number of transitions) from any fixed state to
s∗ has a generating function, the number of transitions until all the processes
have hit s∗ is SB. Consequently, Nn

c is SB.
We now specify what we do if there are differences within the period con-

sidered above. If there were any differences (an event of small probability),
then we repeat the construction for the second part of the second inter-
val using four independent versions of Dn

f (Xn
M , ·) until the four processes

are again together in the regenerative state. This second try will produce
a number of transitions Nn

c,2 different from Nn
c,1 ≡ Nn

c in the first try, but
actually somewhat more favorable (tending to be smaller) because the ini-
tial conditions are more favorable, with three of the four processes likely
to be starting in the regenerative state and the interior process differing at
most by the gap ζ, by virtue of Corollary 8.4. (By the independence of the
pairs, two or more differences will be asymptotically negligible compared to
a single difference.) So, if the second try is needed, we will be able to control
Nn

c,2 just as we can control Nn
c,1.

However, even the second try may be unsuccessful, because again we may
find that one or more of the three processes makes a transition different
from its representation by Dn

f (Xn
M , ·). Thus we may possibly need to repeat

the second-try construction an indefinite number of times until we get all
four processes together in the regenerative state. However, these successive
repetitions will be independent copies of the second try, each with the same
initial conditions, yielding numbers of transitions again distributed as Nn

c,2.
Thus we can represent V n

2,k as the sum of Nn
c and an independent geometric

random sum of i.i.d. random variables distributed as Nn
c , where the geomet-
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ric probability can be made very small by choosing ξ small enough. Thus we
can control all of V n

2,k if we can control Nn
c , assuming that all four processes

are four independent copies of the upper-bound process Dn
f (Xn

M , ·), but with
different initial conditions.

The final task is to show that the special initial conditions imposed in
(5.18) are actually not needed. Instead, we have the assumed condition
(8.21) with Dn

1,2(0) ⇒ L, where L is a proper random variable. We now
replace this assumed convergence in distribution by convergence w.p.1 by
applying the Skorohod representation theorem. We thus write Dn

1,2(0) → L,
without using special notation to denote these alternative versions having
the same probability law as the orginal versions. However, since these ran-
dom variables are integer valued, we have for each underlying sample point
ω that Dn

1,2(0) ≡ Dn
1,2(0, ω) = L(ω) ≡ L for all sufficiently large n. Thus,

we can condition on ω and thus the value of L and regard that state as the
initial state s∗ in (5.18) (for all sufficiently large n). Since Xn

6 is a CTMC
the evolution after the initial state, given that initial state is independent of
the inital state. Hence this construction is justified.

E.5. Remaining Proof in §8.7.

Proof of Lemma 8.11. First, let δ > 0, ε > 0 and t with 0 < t < δ be given,
where the δ is chosen so that δ < ξ for ξ in Lemmas 8.7, 8.9 and 8.10. Below
we will be introducing a new ξ less than this δ.

We start by observing that versions of Lemmas 8.9 and 8.10 hold on an
interval [t, t + ξ], where ξ ≡ ξ(t) satisfies 0 < ξ < δ − t. Before, we started
with the convergence X̄n(0) ⇒ x(0) in R3 at time 0 based on Assumption
3. Now, instead, we base the convergence X̄n(t) ⇒ X̄(t) at time t on the
convergence we have along the converging subsequence. Since the processes
are Markov processes, we can construct the processes after time t, given
only the value of Xn(t), independently of what happens on [0, t]. We apply
Lemma 8.7 to deduce that P (X̄(t) ∈ A) = 1 (which is justified by our choice
of δ).

We now indicate how the proofs of Lemmas 8.9 and 8.10 need to be
modified, proceeding forward after time t. Let Xn,ξ

M ≡ (Xn,ξ
M+ , Xn,ξ

M−) be de-
fined similar to Xn

M in (5.13) and Xn,ξ
m ≡ (Xn,ξ

m+ , Xn,ξ
m−) be defined similar to

and Xn
m in (5.15), but with supremum and infimum taken over the interval

[t, t + ξ] (instead of over the interval [0, ξ] as before (where the constants ξ
need not be the same for each t; i.e., ξ ≡ ξ(t)). Recall that the associated
bounding quantities are constructed from separate processes related to Xn

only through their distributions. These too do not depend on the evolution
of Xn after time t.
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Reasoning as before, by virtue of Lemma 7.1, the limits xξ
M ≡ (xξ

M+ , xξ
M−)

and xξ
m ≡ (xξ

m+ , xξ
m−) of X̄n,ξ

M and X̄n,ξ
m exist. (Since X̄(t) so far is a random

variable, so are xξ
M and xξ

m. However, we can regard X̄(t) as a constant by
conditioning upon it, without affecting the evolution after time t, because
of the Markov property.) In particular, Applying the continuous mapping
theorem for the supremum, Theorem 12.11.7 in [48], we have that Xn,ξ

M+/n ⇒
xξ

M+ ≡ (qξ
1,M , qξ

2,M , zξ
M+) and Xn,ξ

M−/n ⇒ xξ
M− ≡ (qξ

1,M , qξ
2,M , zξ

M−) as n →
∞, where

(5.26)

qξ
1,M ≡ inft≤s≤t+ξ qξ

1(s) ∨ 0,

qξ
2,M ≡ supt≤s≤t+ξ q2(s),

zM+ ≡
{

inft≤s≤t+ξ z1,2(s) µ1,2 ≤ µ2,2,
supt≤s≤t+ξ z1,2(s) µ1,2 ≥ µ2,2,

zM− ≡
{

inft≤s≤t+ξ z1,2(s) µ1,2 ≥ µ2,2,
supt≤s≤t+ξ z1,2(s) µ1,2 ≤ µ2,2,

Similarly, Xn,ξ
m+/n ⇒ xξ

m+ ≡ (qξ
1,m, qξ

2,m, zξ
m+) and Xn,ξ

m−/n ⇒ xξ
m− ≡ (qξ

1,m, qξ
2,m, zξ

m−)
as n →∞, with

(5.27)

qξ
1,m ≡ supt≤s≤t+ξ q1(s),

qξ
2,m ≡ inft≤s≤t+ξ q2(s) ∨ 0,

zm+ ≡
{

inft≤s≤t+ξ z1,2(s) µ1,2 ≥ µ2,2,
supt≤s≤t+ξ z1,2(s) µ1,2 ≤ µ2,2,

zm− ≡
{

inft≤s≤t+ξ z1,2(s) µ1,2 ≤ µ2,2,
supt≤s≤t+ξ z1,2(s) µ1,2 ≥ µ2,2,

The two bounding frozen difference processes are {Dn
f (Xn,ξ

M , s) : s ≥ t}
and {Dn

f (Xn,ξ
m , s) : s ≥ t}. As a consequence of this construction, we can

conclude that there exists ξ > 0 and an integer n1 such that the drift rates of
these bounding processes satisfy both the inequalities in (8.12) in order for
them to be positive recurrent and the rate order in (8.18) with probability
at least 1− ε/6 for all n ≥ n1.

We next apply Lemma 8.10 to conclude that there exists a new ξ, taken
no bigger than the one created so far, such that the following variants of the
integral inequalities in (8.23) hold with probability at least 1− ε/6 as well:

1
ξ

∫ t+ξ

t
1{Dn

f
(Xn,ξ

m ,s)} ds− ε

6m2
≤ 1

ξ

∫ t+ξ

t
1{Dn

1,2(s)>0} ds

≤ 1
ξ

∫ t+ξ

t
1{Dn

f
(Xn,ξ

M ,s)>0} ds +
ε

6m2
.

(5.28)
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(We divide by m2 because we will be multiplying by z1,2(t).)
We now represent the bounding frozen queue-difference processes directly

in terms of the FTSP, using the relation (8.9):

{Dn
f (λn

i ,mn
j , Xn,ξ

m , t + s) : s ≥ 0} d= {D(λn
i /n,mn

j /n, Xn,ξ
m /n, t + sn) : s ≥ 0}

{Dn
f (λn

i ,mn
j , Xn,ξ

M , t + s) : s ≥ 0} d= {D(λn
i /n,mn

j /n, Xn,ξ
M /n, t + sn) : s ≥ 0}.

(5.29)

Upon making a change of variables, the bounding integrals in (5.28) become

1
ξ

∫ t+ξ

t
1{Dn

f
(λn

i ,mn
j ,Xn,ξ

m ,s)>0} ds
d=

1
nξ

∫ t+nξ

t
1{D(λn

i /n,mn
j /n,Xn,ξ

m /n,s>0} ds

1
ξ

∫ t+ξ

t
1{Dn

f
(λn

i ,mn
j ,Xn,ξ

M ,s)>0} ds
d=

1
nξ

∫ t+nξ

t
1{D(λn

i /n,mn
j /n,Xn,ξ

m /n,s)>0} ds.

(5.30)

For each integer k, we have the iterated limits

lim
n→∞ lim

s→∞P (D(λn
i /n,mn

j /n,Xn,ξ
m /n, s) = k)

= lim
s→∞ lim

n→∞P (D(λn
i /n,mn

j /n,Xn,ξ
m /n, s) = k),

lim
n→∞ lim

s→∞P (D(λn
i /n,mn

j /n,Xn,ξ
M /n, s) = k)

= lim
s→∞ lim

n→∞P (D(λn
i /n,mn

j /n,Xn,ξ
M /n, s) = k),

(5.31)

where the first limit is P (D(xξ
m,∞) = k) ≡ P (D(λi,mj , x

ξ
m,∞) = k), while

the second is P (D(xξ
M ,∞) = k) ≡ P (D(λi,mj , x

ξ
M ,∞) = k).

By Corollary 8.3, we also have the associated double limit for the averages
over intervals of length O(n) as n →∞

1
nξ

∫ t+nξ

t
1{D(λn

i /n,mn
j /n,Xn,ξ

m /n,s)>0} ds ⇒ P (D(λi,mj , x
ξ
m,∞) > 0) ≡ π1,2(xξ

m),

1
nξ

∫ t+nξ

t
1{D(λn

i /n,mn
j /n,Xn,ξ

M /n,s)>0} ds ⇒ P (D(λi,mj , x
ξ
M ,∞) > 0) ≡ π1,2(x

ξ
M ).

(5.32)

(It is significant that for each t we have different xξ
m and xξ

M . Recall that
we are now considering a fixed t.)

Invoking Lemma 8.8, choose ξ less than or equal to the previous value of
ξ such that

(5.33) |π1,2(xξ
m)− π1,2(X̄(t))| ≤ ε

6m2
.
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For that ξ, applying (5.32), choose n2 ≥ n1 such that

P

(
| 1
nξ

∫ t+nξ

t
1{D(λn

i /n,mn
j /n,Xn,ξ

m /n,s)>0} ds− π1,2(xm)| > ε

6m2

)
<

ε

6

and P

(
| 1
nξ

∫ t+nξ

t
1{D(λn

i /n,mn
j /n,Xn,ξ

M /n,s)>0} ds− π1,2(xM )| > ε

6m2

)
<

ε

6

(5.34)

for all n ≥ n2.
We now use the convergence along the subsequence over [0, t] together

with the tightness of the sequence of processes {X̄n : n ≥ 1} to control Z̄n
1,2

in an interval after time t. In particular, there exists ξ less than or equal to
the previous value and n3 ≥ n2 such that

(5.35) P ( sup
u:t≤u≤t+ξ

{|X̄n(u)− X̄(t)|} > ε/6) < ε/6 for all n ≥ n3.

For the current proof, we will use the consequence

(5.36) P ( sup
u:t≤u≤t+ξ

{|Z̄n
1,2(u)− Z̄1,2(t)|} > ε/6) < ε/6 for all n ≥ n3.

We now show the consequences of the selections above. We will directly
consider only the upper bound; the reasoning for the lower bound is essen-
tially the same. Without loss of generality, we take ε ≤ 1∧m2. From above,
we have the following relations (explained afterwards) holding with proba-
bility at least 1− ε (counting ε/6 once each for (5.26), (5.27), (5.28), (5.36)
and twice for (5.34)):



AN AVERAGING PRINCIPLE 97

(a)
∫ t+ξ

t
1{Dn

1,2(s)>0}Z̄n
1,2(s) ds ≤

(
Z̄1,2(t) +

ε

6

) ∫ t+ξ

t
1{Dn

1,2(s)>0} ds

(b) ≤
(

Z̄1,2(t) +
ε

6

) (∫ t+ξ

t
1{Dn

f
(λn

i ,mn
j ,Xn

M ,s)>0} ds +
εξ

6m2

)

(c) d=
(

Z̄1,2(t) +
ε

6

) (∫ ξ

0
1{D(λn

i /n,mn
j /n,Xn,ξ

M /n,t+sn)>0} ds +
εξ

6m2

)

(d) d=
(

Z̄1,2(t) +
ε

6

)
ξ

(
1
nξ

∫ nξ

0
1{D(λn

i /n,mn
j /n,Xn,ξ

M /n,t+s)>0} ds +
ε

6m2

)

(e) ≤
(

Z̄1,2(t) +
ε

6

)
ξ

(
π1,2(x

ξ
M ) +

2ε

6m2

)

(f) ≤
(

Z̄1,2(t) +
ε

6

)
ξ

(
π1,2(X̄(t)) +

3ε

6m2

)

(g) ≤ Z̄1,2(t)π1,2(X̄(t))ξ +
π1,2(X̄(t))

6
εξ +

1
2
εξ +

ξε2

12m2

(h) ≤ Z̄1,2(t)π1,2(X̄(t))ξ +
3
4
εξ

≤ (Z̄1,2(t)π1,2(X̄(t)) + ε)ξ for all n ≥ n0 ≡ n3.

(5.37)

We now explain the steps in (5.37): First, for (a) we replace Z̄n
1,2(s) by

Z̄1,2(t) for t ≤ s ≤ t + ξ by applying (5.36). For (b), we apply Lemma
8.10. For (c), we use the alternative representation in terms of the FTSP
in (5.29). For (d), we use the change of variables in (5.30). For (e), we use
(5.34), exploiting the convergence in (5.32). For (f), we use (5.33). Step (g) is
simple algebra, exploiting Z̄1,2(t) ≤ m2. Step (h) is more algebra, exploiting
π1,2(X̄(t)) ≤ 1, and ε ≤ 1 ∧m2. That completes the proof of the lemma.

APPENDIX F: PROOFS FOR SECTION 9

Proof of Lemma 9.1. First, we apply the stochastic bounds in §8.2 to show
that the the sequence of steady-state random vectors {X̄n(∞) : n ≥ 1} is
tight in R6. For each i, these bounds bound Q̄n

i above by stochastic processes
that converge to proper steady-state distributions as t → ∞ and converge
to fluid limits as n → ∞. Hence, the family of random variables {Q̄n

i (t) :
t ≥ 0, n ≥ 0} is SB in R for i = 1, 2. As a consequence, the associated
sequences of steady-state distributions {Q̄n

i (∞) : n ≥ 1} are tight in R. Since
Z̄n

i,j ≤ mn
j /n → mj , the families of random variables {Z̄n

i,j(t) : t ≥ 0, n ≥ 0}
is SB in R as well. Since tightness of the marginals implies tightness of
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vectors, the sequence of steady-state random vectors {X̄n(∞) : n ≥ 1} is
tight in R6. Finally, to treat the rest of the processes in D6, we can use the
same proof as for Lemma 8.1.

Proof of Lemma 9.1. Apply Theorem 6.1, using special initial conditions,
so that X̄n(0) ⇒ x∗ ∈ S as n → ∞. Apply Section 7 to deduce global
SSC, which implies that P (X̄n(t) ∈ S for all t) → 1 as n → ∞. As
a consequence, P (X̄n(∞) ∈ S for all t) → 1 as n → ∞, where here we
regard X̄n(∞) as a random variable with the limiting distribution as t →∞.
However, X̄n(∞) d= X̄n∗(0) for each n.
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