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Effective numerical and simulation algorithms are developed to compute the tight upper bound of the mean

steady-state waiting time in the GI/GI/1 queue given the first two moments of the interarrival-time and

service-time distributions. The upper bound is attained asymptotically by two-point distributions as the

upper mass point of the service-time distribution increases and the probability decreases, while one mass of

the interarrival-time distribution is fixed at 0. The algorithms are aided by reductions of these special queues

to D/GI/1 and GI/D/1 models. One numerical algorithm exploits a negative binomial recursive formula,

while another exploits a discrete-time Markov chain recursion. For simulations, in order to address the rare

event associated with the large service time, a key step is to exploit the representation of the mean waiting

time in terms of the idle-time distribution, which is insensitive to the rare event of the large service time.

The computational efficiency of different methods is compared.
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1. Introduction

In this paper we study numerical and simulation algorithms for calculating the tight upper

bound for the mean steady-state waiting time in the GI/GI/1 queue with unlimited

waiting room and the first-come first-served service discipline, where the interarrival-time

and service-time distributions are partially characterized by their first two moments. This

bound can be used as a conservative (worst case) approximation or, combined with the

known lower bound, to determine the range of possible values, which is useful in evaluating

the quality of approximations.
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This paper is a sequel to Chen and Whitt (2018), which presented theoretical and

numerical evidence implying that the upper bound is attained asymptotically by two-point

interarrival-time and service-time distributions as the upper mass point of the service-time

distribution increases and the probability decreases (with the other mass approaching the

mean), while one mass of the interarrival-time distribution is fixed at 0. There is a long-

standing interest in these upper bounds, starting in Kingman (1962) and continuing in

Daley (1977), Daley et al. (1992), Wolff and Wang (2003) and the references there.

These refinements are important, because the tight bound differs significantly from the

well-known Kingman (1962) bound, as we show here in §2. The algorithms here are also

of interest because they are based on three different convenient alternative representations

for the mean waiting time E[W ] in the F0/Gu∗/1 extremal model. Our approach to bounds

here and in Chen and Whitt (2018) is also interesting and important because it has great

promise for applying to many other stochastic models, e.g., queues with multiple servers

or alternative service disciplines.

We were originally interested in these bounds because they help evaluate the quality

of parametric-decomposition approximations for non-Markovian open networks of single-

server queues, as in Whitt (1983b), where each queue is approximated by a GI/GI/1 queue

partially characterized by the first two moments of the interarrival-time and service-time

distributions. For those queueing network models, these two moments are specified directly

for each service-time distribution, while the exact arrival rate at each queue is obtained by

solving the same traffic rate equations used in Markovian models, but the arrival variability

parameters at each queue are only approximations, obtained after solving associated traffic

variability equations. Because the internal arrival processes are usually not renewal and

the interarrival distribution is not known, there is no concrete GI/GI/1 model to analyze

more carefully. To gain some insight into these approximations (not yet addressing the

dependence among interarrival times), It is natural to regard such approximations for the

GI/GI/1 model as set-valued functions, applying to all models with the same first two

moments for the two model distributions.

1.1. The GI/GI/1 Model

For the GI/GI/1 model, there is a sequence of independent and identically distributed

(i.i.d.) interarrival times {Un : n≥ 1} each distributed as U with cumulative distribution

function (cdf) F , which is independent of a sequence of i.i.d. service times {Vn : n≥ 1},
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each distributed as V with cdf G. Let an interarrival time U have mean E[U ]≡ λ−1 and

squared coefficient of variation (scv, variance divided by the square of the mean) c2a; let a

service time V have mean E[V ]≡ τ and scv c2s. Assume that the second moments exist, so

that the scv’s c2a and c2s and the means are finite as well. Assume that ρ≡ λτ < 1, so that

the model is stable. By choosing measuring units, we let λ= 1, so that τ = ρ.

Let Wn be the waiting time of customer n, i.e., the time from arrival until starting

service, assuming that the system starts empty with W0 ≡ 0, where ≡ denotes equality by

definition. The sequence {Wn : n≥ 0} satisfies the Lindley recursion

Wn+1 = [Wn+Vn−Un]
+, n≥ 0, (1)

where x+ ≡ max{x,0}, Vn is the service time of customer n, Un is the interarrival time

between customers n and n+ 1, and a 0th customer arrives at time 0 to find an empty

system.

The waiting time of customer n, starting with an empty system, has mean

E[Wn] =
n

∑

k=1

E[S+
k ]

k
<∞, (2)

where Sk ≡ X1 + · · ·+Xk and Xk ≡ Vk − Uk, k ≥ 1, while the steady-state waiting time

W has mean equal to the associated infinite sum, which converges under the finite second

moment assumption; e.g., see §§X.1-X.2 of Asmussen (2003) or (13) in §8.5 of Chung

(2001).

For numerical computation of E[W ], formula (2) is unattractive, because it indicates that

we need to calculate an infinite sum of terms, each of which involves a k-fold convolution

integral. Effective algorithms avoid that computational approach. One way to proceed is

to apply numerical transform inversion with the Pollaczek contour integral representation,

as in (5) of Abate et al. (1993), i.e.,

E[W ] =
1

2πi

∫

C

log {1−φ(z)}dz
z
, (3)

where i≡
√
−1, z is a complex variable,

φ(z)≡E[ez(V −U)] (4)

and C is a contour in the complex plane to the left of, and parallel to, the imaginary axis,

and to the right of any singularities of log{1−φ(z)} in the left half plane. As a regularity
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condition, we assume that the transform φ in (4) is analytic in the complex plane for z is

the strip |z|< δ for some δ > 0. As in many probability applications, convolution is avoided

by considering the transform in (4).

Unfortunately, our model with two-point distributions does not satisfy the regularity

condition; e.g., see §14 of Abate and Whitt (1992). As shown in Abate et al. (1993), that

difficulty can be avoided by asymptotic arguments. That was illustrated by calculating

the cumulants and distribution of W in the Ek/Ek/1 for a wide range of k, even up to

k = 104. In this paper, we will derive model reductions that will also enable us to avoid

direct convolution in other ways.

1.2. Bounds and Extremal GI/GI/1 Queues

The classical upper bound (UB) for the steady-state mean is the Kingman (1962) bound,

E[W ]≤ ρ2([c2a/ρ
2] + c2s)

2(1− ρ) . (5)

An improvement is provided by the Daley (1977) UB, which replaces the term c2a/ρ
2 by

(2− ρ)c2a/ρ, i.e.,
E[W ]≤ ρ2([(2− ρ)c2a/ρ] + c2s)

2(1− ρ) . (6)

Both of these bounds are asymptotically correct in heavy traffic, i.e.,

lim
ρ→1

(1− ρ)E[W ](ρ)] = (c2a + c2s)/2. (7)

In fact, the heavy-traffic limit does much more, showing that the scaled waiting-time

distribution is asymptotically exponential and thus is asymptotically fully characterized

by its mean.

Theorem 4 of Chen and Whitt (2018) shows, for distributions with bounded support,

that the UB is attained at interarrival-time and service-time distributions each with sup-

port on at most three points. Afterwards, Chen and Whitt (2018) conducts numerical

optimization and simulations within that special class of distributions to show that the UB

is attained by E[W (F0,Gu∗)], where F0 is the two-point distribution with one mass on 0,

while Gu∗ is shorthand for the limit of E[W (F0,Gu)] asMs→∞, where Gu is the two-point

distribution with one mass at the upper boundary Ms. The purpose of this paper is to

present algorithms to efficiently calculate or estimate E[W (F0,Gu∗)].
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To elaborate, the UB interarrival-time cdf with mean m1 and second moment m2 =

m2
1(c

2
a+1), referred to here as F0, is attained at the two-point interarrival-time distribution

with probability mass c2a/(1 + c2a) at 0 and probability mass 1/(c2a + 1) at (m2/m1) =

m1(c
2
a+1). The LB interarrival-time cdf, referred to here as Fu is attained at the two-point

interarrival-time distribution with probability mass c2a/(c
2
a + (r − 1)2) at Ma, the upper

bound of the support, and mass (r− 1)2/(c2a + (r− 1)2) on 1− c2a/(r− 1) for r ≡Ma/m1.

(For these, we scale so that m1 = 1. We use the notation G0 and Gu for the corresponding

service-time cdf’s G with support [0,Ms], where scale so that m1 = ρ.)

Under the assumption that E[W (F0,Gu∗)] is indeed the tight UB, Theorem 1 of

Chen and Whitt (2018) provides a new UB, which is an improvement to the UB formulas

in (5) and (6), namely,

E[W (F0,Gu∗)]≤ 2(1− ρ)ρ/(1− δ)c2a+ ρ2c2s
2(1− ρ) , (8)

where δ ∈ (0,1) and δ = exp(−(1− δ))/ρ)). Tables 1 and 2 of Chen and Whitt (2018) show

that the new bound (8) is very accurate, but it is not tight.

The lower bound (LB), which has long been known, see Stoyan and Stoyan (1974), §5.4
of Stoyan (1983), §V of Whitt (1984), Theorem 3.1 of Daley et al. (1992) and references

there, has explicit formula

E[W (LB)] =
ρ2((1+ c2s)ρ− 1)+

2(1− ρ) , (9)

The LB is not attained at a two-point distribution. The LB is attained asymptotically

by D/A3/1 distribution as Ma→∞, where A3 denotes any three-point service-time dis-

tribution that concentrates all mass on nonnegative-integer multiples of the deterministic

interarrival time. Of course, the deterministic distribution does not have the given scv

c2a (unless c2a = 0); the LB arises as the limit of two-point interarrival-time distributions

with one mass approaching the mean from below, while the other mass point grows (and

associated probability decreases).

1.3. Efficient Algorithms

Our purpose in this paper is to develop and evaluate algorithms to compute E[W ] in the

extremal F0/Gu∗/1 queue. That involves computing the limit of E[W ] in the F0/Gu/1

model with finite support as Ms→∞. This is challenging because the large service time
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is a rare event. For example, simulating the Lindley recursion via inverse method is not so

effective to estimate E[W ] accurately.

In §2 we first show that the tight UB E[W (F0,Gu∗)] provides a significant improvement

over previous bounds by comparing the estimates of the tight UB associated with c2a =

c2s = 4.0 and c2a = c2s = 0.5, as estimated by the Minh and Sorli (1983) simulation algorithm.

Then we show that effective algorithms can be developed if we transform the problem. In

§3 we introduce our first model reduction. Drawing on Halfin (1983) or Whitt (1983a), we

show that the mean waiting time in any F0/G/1 model can be expressed in terms of the

mean waiting time in an associated D/G/1 model with a new service-time distribution.

Then, drawing on Daley et al. (1992), in §4 we introduce a second model reduction. We

show that the mean waiting time in any F/Gu∗/1 model can be expressed in terms of the

mean waiting time in an associated F/D/1 model. In §5 we use the first representation to

produce the first effective numerical algorithm involving the negative binomial distribution.

For further progress, following Marshall (1968), Minh and Sorli (1983) and

Wolff and Wang (2003), in §6 we review the representation of the mean waiting time E[W ]

in terms of the parameter vector (1, c2a, ρ, c
2
s) and the idle-time distribution. When combined

with the idle-time representation, this yields other convenient ways calculate or estimate

E[W ] via numerical algorithms and simulations. In §7 we develop an algorithm for com-

puting the first two moments of the idle-time distribution based on the first passage time

in a finite-state discrete-time Markov chain. We then study three simulation algorithms in

§8 and draw conclusions in §9.

2. A Comparison of Different Bounds and Approximations

To show that the new UB E[W (F0,Gu∗)] provides a significant improvement, we compare

the estimates of the tight UB for in the GI/GI/1 model with given first two moments

associated with c2a = c2s = 4.0 and c2a = c2s = 0.5, as estimated by the Minh and Sorli (1983)

simulation algorithm, to other bounds and approximations in Tables 1 and 2. Comparisons

for the associated mixed cases c2a = 4.0, c2s = 0.5 and c2a = 0.5, c2s = 4.0 appear in Tables EC.1

and EC.2.

The estimated UB is the “Tight UB” in these tables, while the LB is (9), the new UB

is (8), the Daley (1977) bound is (6) and the Kingman (1962) bound is (5). The common

heavy-traffic (HT) approximation is

E[W ]≈ ρ2(c2a+ c2s)

2(1− ρ) . (10)
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The MRE is the maximum relative error between the new bound in (8) and the estimated

tight UB. Example 1 in §2 of Chen and Whitt (2018) shows that this new UB is not tight

for GI/M/1, using exact calculations as in Whitt (1984).

Table 1 A comparison of the bounds and approximations for the steady-state mean E[W ] as a function of ρ for

the case c2
a
= c2

s
= 4.0 and c2

s
= 4.0.

ρ Tight LB HTA Tight UB UB Approx δ MRE Daley Kingman
(9) (10) (8) (6) (5)

0.10 0.00 0.044 0.422 0.422 0.000 0.003% 0.44 2.24
0.20 0.00 0.200 0.904 0.906 0.007 0.19% 1.00 2.60
0.30 0.00 0.514 1.499 1.51 0.041 0.60% 1.71 3.11
0.40 0.00 1.07 2.304 2.33 0.107 0.94% 2.67 3.87
0.50 0.25 2.00 3.470 3.51 0.203 1.15% 4.00 5.00
0.60 1.00 3.60 5.295 5.35 0.324 1.07% 6.00 6.80
0.70 2.42 6.53 8.441 8.52 0.467 0.93% 9.33 9.93
0.80 5.50 12.80 14.92 15.02 0.629 0.67% 16.00 16.40
0.90 15.25 32.40 34.72 34.84 0.807 0.35% 36.00 36.20
0.95 35.13 72.20 74.62 74.76 0.902 0.18% 76.00 76.10
0.98 95.05 192.1 194.6 194.7 0.960 0.07% 196.0 196.0
0.99 195.0 392.0 394.5 394.7 0.980 0.04% 396.0 396.0

Table 2 A comparison of the bounds and approximations for the steady-state mean E[W ] as a function of ρ for

the case c2
a
= c2

s
= 0.5.

ρ Tight LB HTA Tight UB UB Approx δ MRE Daley Kingman
(9) (10) (8) (6) (5)

0.10 0.00 0.006 0.053 0.053 0.000 0.04% 0.056 0.281
0.20 0.00 0.025 0.113 0.113 0.007 0.53% 0.125 0.325
0.30 0.00 0.064 0.184 0.189 0.041 2.35% 0.214 0.389
0.40 0.00 0.133 0.280 0.291 0.107 3.82% 0.333 0.483
0.50 0.00 0.250 0.414 0.439 0.203 5.71% 0.500 0.625
0.60 0.00 0.450 0.637 0.669 0.324 4.78% 0.750 0.850
0.70 0.00 0.817 1.017 1.060 0.467 4.53% 1.17 1.24
0.80 0.00 1.600 1.822 1.877 0.629 2.95% 2.00 2.05
0.90 1.08 4.050 4.295 4.355 0.807 1.38% 4.50 4.53
0.95 3.54 9.03 9.284 9.344 0.902 0.65% 9.50 9.51
0.98 11.0 24.0 24.27 24.34 0.960 0.27% 24.5 24.5
0.99 23.5 49.0 49.27 49.34 0.980 0.14% 49.5 49.5

From these tables, we see that the range UB−LB is remarkably wide, which largely can

be explained by the LB, which does not depend on the arrival scv c2a. We also see that the

heavy-traffic approximation and all the UBs tend to agree in HT, but not in light traffic.

Moreoever, we see significant improvement going from the Kingman (1962) bound in (5)
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to the Daley (1977) bound in (6) to the new UB in (8). The MRE in the Daley (1977)

bound for these cases is about 14% at ρ= 0.5.

In closing this section, we emphasize that it remains to prove: (i) that (8) is a legitimate

UB and (ii) that the mean E[W (F0,Gu∗)] estimated for the tight UB here is indeed the

tight UB. Theorem 1 of Chen and Whitt (2018) proves (i) under the assumption that (ii)

is correct. Nevertheless, we have provided strong numerical evidence that the F0/Gu∗/1

model yields the tight UB. If that can be accepted, then formula (8) serves as an excellent

approximation formula.

3. The Reduction of F0/GI/1 to D/GI/1

In this section we show that, for any service-time cdf G, the mean waiting time in the

F0/GI/1 queue can be expressed in terms of the mean waiting time in an associatedD/G/1

queue with a new service-time distribution. The key observation is that the F0/G/1 queue

corresponds to the D/G/1 queue with batch arrivals; then the new service-time cdf is the

sum of the service times in the batch. However, we need to do other adjustments as well.

Let F0 be the two-point upper bound extremal distribution with mean 1 and mass

p≡ 1/(c2a+1) on c2a+1 and mass 1−p on 0. Let RS(V, p) be a random variable distributed

as

RS(V, p)
d
=

N(p)
∑

k=1

Vk, (11)

where N(p) is a geometric random variable on the positive integers, having mean E[N(p)] =

1/p and {Vk : k ≥ 1} is a sequence of i.i.d. random variables distributed as a service time

V . Let D(x) be a deterministic random variable assuming the constant value x. For the

interarrival times, we will consider x= 1/p= (c2a+1).

Theorem 1. For the F0(p)/GI/1 model with service time V having mean ρ and scv c2s,

the mean steady-state waiting time can be expressed as

E[W (F0(p)/GI/1)] = E[W (D(1/p)/RS(V, p)/1)] + (E[N(p)]− 1)E[V ]

= E[W (D(1/p)/RS(V, p)/1)] + ρ(1− p)/p

= E[W (D(1/p)/RS(V, p)/1)] + ρc2a. (12)

where RS(V, p) is the geometric random sum in (11).
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Proof. The F0 interarrival time means that a random number of arrivals, distributed as

N(p), arrive at deterministic intervals with deterministic value 1/p= c2a+1. So the model

has batch arrivals. The result in (12) follows from Halfin (1983) or Theorem 1 of Whitt

(1983a), which states that the delay of an arbitrary customer in the batch is distributed

the same as the delay of the last customer in the batch when the batch-size distribution is

geometric. Because E[W (D(1/p)/RS(V, p)/1)] is the expected delay of the first customer

in a batch, we need to add the second term in (12) to get the delay of the last customer

in the batch; e.g., see §III of Whitt (1983a).

To work with the D(1/p)/RS(V, p)/1 model, we want the mean and variance of the

random sum RS(V, p) in (11).

Lemma 1. (random sum moments) Given that V has mean ρ and scv c2s, the mean and

variance of the random sum RS(V, p) in (11) are

E[RS(V, p)] =E[N(p)]E[V ] =
ρ

p
= ρ(c2a+1) (13)

and

V ar(RS(V, p))= ρ2c2s(c
2
a+1)+ ρ2c2a(1+ c2a). (14)

Hence,

c̄2s ≡
V ar(RS(V, p))

E[RS(V, p)]2
=
ρ2c2s(c

2
a+1)+ ρ2c2a(1+ c2a)

ρ2(1+ c2a)
2

=
c2a+ c2s
1+ c2a

. (15)

Proof. We apply the standard formulas for random sums from p. 113 of Ross (2014). For

the variance,

V ar(RS(V, p)) = V ar(V )E[N ] + (E[V ])2V ar(N) =
ρ2c2s
p

+
ρ2(1− p)

p2

= ρ2c2s(1+ c2a)+ ρ2c2a(1+ c2a), (16)

as claimed.

Theorem 2. For the D(1/p)/RS(V, p)/1 model, the Kingman (1962) upper bound on

the mean steady-state waiting time is

E[W (D(p)/RS(V, p)/1)] ≤ ρE[RS(V, p)]((c̄2a/ρ
2)+ c̄2s)

2(1− ρ)

=
ρ2(1+ c2a)c̄

2
s

2(1− ρ) =
ρ2(c2a+ c2s)

2(1− ρ) . (17)
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Hence, the associated upper bound for the F0(p)/GI/1 model is

E[W (F0/GI/1)] ≤
ρ2(c2a + c2s)

2(1− ρ) + ρc2a =
ρ2(Ac2a+ c2s)

2(1− ρ) , (18)

where

A≡A(ρ, c2a)≡ 1+
2(1− ρ)

ρ
=

2

ρ
− 1, (19)

which makes (18) coincide with the Daley (1977) bound.

Proof We exploit Theorem 1, which provides the representation (12). Then observe, with

the aid of Lemma 1, that the Kingman (1962) bound for

E[W (D(1/p)/RS(V, p)/1)] is given by the first term on the first line of (18).

4. The Reduction of GI/Gu∗/1 to GI/D/1

Daley proposed another decomposition that can be used to avoid the rare event of the

large service time Ms. It allows us to reduce the model F/Gu∗/1 to F/D/1 for arbitrary

F . It is reviewed in (10.2) of Daley et al. (1992) without proof, referring to an unpublished

manuscript. Let Dm denote a deterministic cdf with mass 1 on m.

Theorem 3. (the Daley decomposition in (10.2) of Daley et al. (1992)) Consider the

GI/Gu/1 model with arbitrary interarrival-time cdf F and two-point service-time cdf Gu ≡
Gu(Ms). Then

lim
Ms→∞

E[W (F,Gu)] = E[W (F,Dρ)] + lim
Ms→∞

E[W (D1,Gu)].

= E[W (F,Dρ)] +
ρ2c2s

2(1− ρ) . (20)

Proof. We only give a brief overview. We do a regenerative analysis to compute the mean

waiting time, looking at successive busy cycles starting empty. We exploit the classic result

that the steady-state mean waiting time is the expected sum of the waiting times over one

cycle divided by the expected length of one cycle; e.g., see §3.6 and §3.7 of Ross (1996).

As Ms increases, the two-point cdf Gu ≡Gu(Ms) necessarily places probability of order

O(1/M 2
s ) on Ms and the rest of the mass on a point just less than the mean service time,

ρ. For very large Ms, there will be only rarely, with probability of order O(1/M 2
s ), a large

service time of order O(Ms). In the limit, most customers never encounter this large service

time, so that we get a contribution to the overall mean E[W ] corresponding to E[W (F,Dρ)]

in the first term on the right in (20).
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On the other hand, the total impact of the very large waiting time of orderMs is roughly

the area of the triangle with height O(Ms) and width O(Ms), which itself is O(M 2
s ). When

combined with the O(1/M 2
s ) probability, this produces an additional O(1) impact on the

steady-state mean, which is given by the second term on the right in (20). Moreover,

because we can use a law-of-large-numbers argument to treat this large service time, the

asymptotic impact of that large service time is independent of the interarrival-time cdf

beyond its mean, so we can substitute D1 for the original interarrival-time cdf F with

mean 1 in the second term.

Corollary 1. (decomposition of the upper bound) For the GI/GI/1 model with

extremal interarrival-time cdf F0 and extremal service-time cdf Gu∗ ,

E[W (F0,Gu∗)]≡ lim
Ms→∞

E[W (F0,Gu)] = E[W (F0,Dρ)] +
ρ2c2s

2(1− ρ) .

Corollary 1 implies that calculating the UB of E[W ] is equivalent to calculating F0/D/1,

which has deterministic service time. Clearly, this makes the UB much easier to estimate

by classical simulation methods.

Corollary 2. (tightness of Kingman’s bound) For the GI/GI/1 model with

interarrival-time cdf D and extremal service-time cdf Gu∗,

E[W (F0,Gu∗)]≡ lim
Ms→∞

E[W (D,Gu)] =E[W (D1,Dρ)] +
ρ2c2s

2(1− ρ) =
ρ2c2s

2(1− ρ) ,

so that Kingman’s bound is asymptotically attained by D/Gu(Ms)/1 as Ms→∞.

Finally, we can combine Theorem 1 and Corollary 1 to obtain

Corollary 3. (overall decomposition of the upper bound) For the GI/GI/1 model with

extremal interarrival-time cdf F0 and extremal service-time cdf Gu∗ ,

E[W (F0,Gu∗)] = E[W (D(1/p)/RS(D(ρ), p)/1)] + ρc2a+
ρ2c2s

2(1− ρ) .

5. The Negative Binomial Numerical Algorithm

In this section we apply Corollary 3 to obtain an efficient algorithm for computing

the UB E[W (F0,Gu∗)]. Corollary 3 implies that it suffices to compute E[W ] in the

D(1/p)/RS(D(ρ), p)/1 model. The representation of the service time as a geometric ran-

dom sum allows us to express E[W ] directly in terms of the negative binomial (NB)

distribution, without having to perform any convolutions.
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Let NB(n, p) be a conventional negative binomial random variable with parameter pair

(n, p) for nonnegative integer n and 0<p< 1, which has probability mass function (pmf)

pk(n, p)≡ P (NB(n, p) = k)≡
(

(n+ k− 1)!

k!(n− 1)!

)

(1− p)npk, n≥ 0, (21)

with mean and variance

E[NB(n, p)] =
np

1− p and V ar(NB(n, p))=
np

(1− p)2 . (22)

As often with the NB pmf, because of the factorials, it is convenient to use a recursive

algorithm for computation. In the first version we initialize the recursion at k= 0, letting

P(NB(n,1− p)= 0) = pn. Then, we can apply the recursion

P(NB(n,1− p)= k) = P(NB(n,1− p)= k− 1)(n+ k− 1)/k)(1− p), (23)

where p=1/(1+ c2a).

However, for the parameter p= 1/(c2a+1) already defined by F0, we end up with negative

binomial parameter 1− p. Let ⌊x⌋ be the greatest integer less than or equal to x.

Lemma 2. (NB representation) For the D(1/p)/RS(D(ρ), p)/1 model,

Sn
d
= ρ(NB(n,1− p)+n)− (n/p), (24)

for Sn in (2), so that

E[W ] = ρ

∞
∑

n=1

n−1
E[(NB(n,1− p)+n− (n/pρ))+]

= ρ

∞
∑

n=1

n−1

∞
∑

k=0

P (NB(n,1− p)= k)(cn−n+ k)+

= ρ

∞
∑

n=1

n−1

∞
∑

k=0

P (NB(n,1− p)> ⌊cn⌋−n+ k) (25)

for c≡ 1/pρ > 1, from which E[W (F0/Gu∗/1)] is obtained from Corollary 3.

Proof First, note that our geometric random variable N(p) in (11) takes values in the

positive integers, while NB takes values in the nonnegative integers. Recall that the sum

of n i.i.d. geometric random variables is negative binomial, so that the connection to our

geometric random variable N(p) on the positive integers is N(p)−1
d
=NB(1,1−p). Then,

for i.i.d. variables Nk(p)
d
=N(p),

N1(p)+ · · ·+Nn(p)
d
= n+NB(n,1− p). (26)
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Hence, the partial sums Sn in §1.1 satisfies (24) so that we obtain (25) by (2). For the

second line in (25), we use the representation of the mean in terms of the complementary

cdf, as on p. 46 of Ross (1996).

Appropriately truncated versions of the final double sum in (25) can then readily be

computed. That is illustrated for the middle display in (25) in Algorithm 1 below.

Algorithm 1 Basic Negative Binomial Recursion (k in outer loop)

1: Initially set E[W ]← ρc2a+
ρ2c2

s

2(1−ρ)
and p= (1+ c2a)

−1.

2: for k ∈ [K] do

3: S(k)← 0, nbpdf ← p(1− p)k

4: for n ∈ [n] do
5: S(k)← S(k)+nbpdfmax((n+ k)ρ−n/p,0)/n
6: nbpdf ← nbpdf(n+k

n
)p

7: E[W ]←E[W ] +S(k)

8: Output E[W ]

To explain Algorithm 1, recall that we are applying Corollary 3 to obtain an efficient

algorithm for computing the UB E[W (F0,Gu∗)]. Thus we initialize by the constant term

that depends only on the vector (c2a, ρ, c
2
s). We add that to E[W (D(1/p)/RS(D(ρ), p)/1)],

which is computed by the recursion.

It now remains to consider how to do the truncations. First, consider the truncation of

the sum on k for given n. For given n,

E[NB(n,1− p)] ≡ m(n) =
n(1− p)

p
and

V ar(NB(n,1− p)) ≡ σ2(n) =
n(1− p)
p2

. (27)

For large n, NB(n,1− p) is asymptotically Gaussian by the central limit theorem, so for

very large n, only O(
√
n) values of k need be considered. In particular, is should suffice to

consider m(n)−aσ(n)≤ cn+k≤m(n)+aσ(n) for, e.g., a=8. However, we need to add a

term for small k. For cn+ k≤m(n)− aσ(n), we let P (NB(n,1− p)> ⌊cn⌋+ k) = 1. That

means we add (m(n)− aσ(n))∧ cn∨ 0, where a∧ b≡min{a, b} and a∨ b≡max{a, b}.
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Finally, the relevant values of n depend on the traffic intensity ρ and other model

parameters. For heavy traffic (large ρ), we can use the approximation (10) to estimate the

relevant n. Moreover, given that the heavy-traffic limit of the waiting-time distribution is

exponential, we can see the relevant range of n.

5.1. Performance of the Negative Binomial Algorithm

We set different truncation levels K and N to study the computational accuracy and effort

of the Negative Binomial (NB) algorithm.

In the experiment, set the truncation level N =1E+03 and K from 1E+03 to 8E+03 to

execute Algorithm 1. (It is good to have k in the outer loop because p= 1/(1+ c2a)< 0.5.)

The results are shown in Table 3 for a range of traffic intensities from ρ=0.10 to ρ= 0.99.

Also shown for comparison in the last two columns are the simulation estimates from the

highly accurate Minh and Sorli (1983) simulation method, as given in Table 10.

For ρ≤ 0.90, the recursive algorithm with truncation level N = 1000,K = 3000 performs

well, but for ρ≥ 0.95, the numerical values of E[W ] converge as K increases but are not

not close to the simulation results.

Table 3 Performance of the Basic Negative Binomial Algorithm with Different Truncation Levels

Algorithm Procedure 1 with N = 1000 Minh and Sorli Algorithm

ρ\K 1E+03 2E+03 4E+03 8E+03 T = 1E+07 95%CI
0.1 0.422229 0.422229 0.422229 0.422229 0.422 7.79E-05
0.2 0.903885 0.903885 0.903885 0.903885 0.904 1.30E-04
0.3 1.499234 1.499234 1.499234 1.499234 1.499 1.71E-04
0.4 2.304105 2.304105 2.304105 2.304105 2.304 1.90E-04
0.5 3.470132 3.470132 3.470132 3.470132 3.470 2.25E-04
0.6 5.294825 5.294825 5.294825 5.294825 5.294 2.43E-04
0.7 8.441305 8.441305 8.441305 8.441305 8.442 3.05E-04
0.8 14.916481 14.916937 14.916937 14.916937 14.917 3.22E-04
0.9 34.276662 34.673925 34.718140 34.718140 34.722 5.17E-04
0.95 66.874413 71.232241 73.264743 73.264743 74.621 7.11E-04
0.98 139.659440 152.638886 162.915010 162.915010 194.556 9.29E-04
0.99 245.012809 262.661919 278.499123 278.499123 394.532 1.45E-03

5.2. Refinement to the Negative Binomial Algorithm for Heavy-traffic

The difficulty in heavy traffic occurs because as ρ increases, we need larger values of n.

For extremely large n, as is needed in heavy traffic, pn and (1− p)n are eventually very

small numbers. That causes the probability to become too small to be represented in the

implemented floating point number system. Hence, in heavy traffic the basic recursive

algorithm broke down because the large values of n caused underflow.
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As when computing the steady-state of the birth-and-death processes, e.g. as in §7

of Whitt (2005), for very large n we can uncounter underflow problems if we start the

recursion at 0, but it can be avoided by starting the recursion elsewhere. We avoid the

underflow problem by doing two recursions, one up and the other down, starting from the

mean. From the central limit theorem, we know that the NB distribution is approximately

Gaussian with a mean near its mode. In particular,

NB(n,1− p)≈N (m(n), σ2(n)) as n→∞. (28)

for m(n) and σ2(n) in (27). Hence for large n suffices to consider only a modest range of

k, i.e., of order O(
√
n). As a consequence, for large N , we consider k ≤m(n) + 20

√
N in

the implementation.

Here is how we proceed: For fixed n ≤ N , we start from mean in (23) and let the

P(NB(n,1− p) = n(1− p)/p) = 1 and then do recursive formula (23) up and down sep-

arately. Define mean n(1 − p)/p by m(n). The two-part recursion going up and down

becomes

P(NB(n,1− p)=m(n)+ j)

= P(NB(n,1− p)=m(n)+ j− 1)(n+m(n)+ j− 1)/(m(n)+ j)(1− p),

P(NB(n,1− p)=m(n)− j)

= P(NB(n,1− p)=m(n)− j+1)/(n+m(n)− j)(m(n)− j+1)/(1− p)

for j ≥ 1. Afterwards, we normalize the values that obtained from the above recursion to

get probabilities of P (NB(n,1− p)= k) for any k given n.

As in Algorithm 1, in Algorithm 2 we apply Corollary 3 to obtain an efficient algorithm

for computing the UB E[W (F0,Gu∗)]. Thus we initialize by the constant term that depends

only on the vector (c2a, ρ, c
2
s).
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Algorithm 2 Negative Binomial Recursion (Up and Down from the Mean)

1: Initially set E[W ]← ρc2a+
ρ2c2

s

2(1−ρ)
, p= (1+ c2a)

−1, and m(n) = n(1− p)/p.
2: for n∈ [1,N ] do

3: nbpdf(1,m(n))← 1

4: for k ∈ [m(n)− 20
√
N,m(n)] do

5: nbpdf(1, k− 1)← nbpdf(1, k)/(n+ k− 1)(k)/(1− p)

6: for k ∈ [m(n),m(n)+ 20
√
N − 1] do

7: nbpdf(1, k+1)← nbpdf(1, k)(n+ k)/(k+1)(1− p)

8: Normalize nbpdf to obtain P(NB(n,1− p)= k)

9: S(n)←∑

k P(NB(n,1− p)= k)max((n+ k)ρ−n/p,0)
10: E[W ]←E[W ] +S(n)/n

11: Output E[W ]

We now carefully compare the negative binomial pmf values generated from the basic

recursion (23) used in Algorithm 1 with the values obtained in the new up-down recursion

used in Algorithm 2 in Table 4. We focus on the terms after m(n) and report the values

from the term m(n) to m(n)+ 10.

Table 4 Comparison of the basic and up-down recursions for generating values of the negative binomial pmf in

Algorithms 1 and 2

k n1 = 10 n2 = 10 k n1 =100 n2 = 100 k n1 = 1000 n2 = 1000

40 0.0279638 0.0279638 400 0.0089128 0.0089128 4000 0 0.0028207
41 0.0272818 0.0272818 401 0.0088906 0.0088906 4001 0 0.0028200
42 0.0265023 0.0265023 402 0.0088641 0.0088641 4002 0 0.0028192
43 0.0256394 0.0256394 403 0.0088333 0.0088333 4003 0 0.0028182
44 0.0247071 0.0247071 404 0.0087983 0.0087983 4004 0 0.0028170
45 0.0237188 0.0237188 405 0.0087592 0.0087592 4005 0 0.0028158
46 0.0226875 0.0226875 406 0.0087160 0.0087160 4006 0 0.0028144
47 0.0216256 0.0216256 407 0.0086689 0.0086689 4007 0 0.0028128
48 0.0205443 0.0205443 408 0.0086179 0.0086179 4008 0 0.0028111
49 0.0194542 0.0194542 409 0.0085631 0.0085631 4009 0 0.0028093
50 0.0183647 0.0183647 410 0.0085047 0.0085047 4010 0 0.0028074

For n≤ 100, the results from the two methods agree to all digits shown, but a significant

difference occurs when n = 1000. At n = 1000, underflow occurs in Algorithm 1, which

causes the errors we saw for large ρ in Table 3.
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5.3. Performance Studies for the Refined Negative Binomial Algorithm

First, Algorithm 2 is also very efficient for ρ≤ 0.95. Table 5 shows that the new algorithm

is effective if we increase N from 1,000 to 10,000 as ρ increases.

Table 5 Performance of Algorithm 2 with Different Truncation Levels

Algorithm 2 Minh and Sorli Algorithm

ρ\N 2E+03 4E+03 8E+03 1.6E+04 2E+04 T = 1E+07 95%CI
0.1 0.422229 0.422229 0.422229 0.422229 0.422229 0.422 7.79E-05
0.2 0.903885 0.903885 0.903885 0.903885 0.903885 0.904 1.30E-04
0.3 1.499234 1.499234 1.499234 1.499234 1.499234 1.499 1.71E-04
0.4 2.304105 2.304105 2.304105 2.304105 2.304105 2.304 1.90E-04
0.5 3.470132 3.470132 3.470132 3.470132 3.470132 3.470 2.25E-04
0.6 5.294825 5.294825 5.294825 5.294825 5.294825 5.294 2.43E-04
0.7 8.441305 8.441305 8.441305 8.441305 8.441305 8.442 3.05E-04
0.8 14.916937 14.916937 14.916937 14.916937 14.916937 14.917 3.22E-04
0.9 34.721476 34.721484 34.721484 34.721484 34.721484 34.722 5.17E-04
0.95 74.552341 74.619631 74.620917 74.620937 74.620937 74.621 7.11E-04

The numerical algorithm is more efficient than the simulation. It requires no more than

30 seconds cpu time in the worse case (N = 2E + 04, ρ= 0.95) ro produce more than 10

decimal places accuracy, while the MS simulation algorithm only attain 1E-04 confidence

interval level for 0.5≤ ρ≤ 0.95 while producing 3 decimal places accuracy within around

30 seconds cpu times.

Next, we apply Algorithm 2 for the heavy-traffic cases with ρ= 0.98 and ρ= 0.99. To

do so, we restrict the range of k to k≤m(n)+20
√
N for the purpose of setting smaller N .

Table 6 below shows that the poor performance of the NB algorithm in Table 3 has been

improved dramatically by the alternative algorithm.
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Table 6 Performance of Algorithm 2 in Heavy Traffic

Agorithm 2 for Heavy-Traffic Minh and Sorli Algorithm

ρ\N 1E+04 2E+04 3E+04 4E+04 T = 1E+07

0.98 194.0544167173 194.5385548017 194.5559125683 194.5567071265 194.556 9.29E-04

5E+04 1E+05 2E+05 3E+05

0.98 194.5567179973 194.5567742874 194.5567742874 194.5567742874 194.556 9.29E-04

ρ\N 1E+04 3E+04 5E+04 1E+05 T = 1E+07

0.99 372.0880005430 372.0880005430 391.8858614678 394.5238008176 394.532 1.45E-03

2E+05 3E+05 4E+05 5E+05

0.99 394.5331823499 394.5331886695 394.5331886695 394.5331886695 394.532 1.45E-03

Remark 1. Our experiments suggest that it suffices to set N =Θ(1/(1− ρ)3) to obtain

highly accurate results.

Remark 2. Since the service-time variabiity parameter c2s is not used in 2, Table 5 and

Table 6 can be reused to compute E[W (F0/Gu∗/1)] with any other c2s via Corollary 3.

6. Exploiting the Idle-Time Representation

To develop alternative algorithms, following Marshall (1968), Minh and Sorli (1983) and

Wolff and Wang (2003), we relate the mean waiting time given the first two moments of

the interarrival time and service time to the first two moments of the idle time I. In §6.1
we review the basic relation. in §6.2 we discuss the implications of the relation when we

let Ms→∞. In §6.3 we show the advantage of combining Theorem 4 and Corollary 1.

Later, in §7 we apply the representation to develop a new numerical algorithm based on

computing absorption probabilities in finite-state discrete-time Markov chains (DTMCs).

6.1. The Basic Representation

The key relation is in

Theorem 4. (the idle-time representation, Theorem 1 of Marshall (1968)) In the

GI/GI/1 queue with cdf ’s F and G having parameter 4-tuple (1, c2a, ρ, c
2
s),

E[W ]≡E[W (F,G)] = ψ(1, c2a, ρ, c
2
s)−φ(I), (29)

where

ψ(1, c2a, ρ, c
2
s)≡

E[(U −V )2]

2E[U −V ]
=
ρ2([c2a/ρ

2] + c2s)

2(1− ρ) +
1− ρ
2

(30)
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and

φ(I)≡ φ(F,G) = E[I2]

2E[I]
=E[Ie], (31)

with I being the steady-state idle time and Ie being a random variable with the associated

stationary excess distribution (as in renewal theory).

Notice that E[W ] depends on the model distributions F and G beyond the parameter

vector (1, c2a, ρ, c
2
s) only through φ(I) =E[Ie] in (31). For theM/GI/1 model, I is distributed

as F , φ(I) = 1 and simple algebra yields the exact Pollaczek-Khintchine formula. In general,

the first term on the right in (30) is the Kingman (1962) upper bound. For the Kingman

(1962) bound to be obtained, the second term on the right in (30) would have to be exactly

cancelled by the second term on the right in (29).

6.2. The Limit as M
s
→∞

This section is based on the notion that the upper bound is obtained as the limit of E[W ]

within the F0/Gu/1 model as Ms→∞. Because the mean waiting time is not continuous

as Ms→∞, but the idle-time distribution is, we approach the upper bound via the idle

time.

We can apply Theorem 1 to obtain a limit within the decomposition. For that purpose,

let φ(I;A,B) denote φ(I) for the model with interarrival time A and service time B. We

will consider A=D(1/p) and B =RS(D(ρ), p).

Theorem 5. (limit within the decomposition) For the F0/Gu/1 model with parameter

vector (1, c2a, ρ, c
2
s) and service-distribution support [0,Ms],

lim
Ms→∞

E[W (F0/Gu/1)] = ψ(1, c2a, ρ, c
2
s)−φ(I; 1, c2a, ρ,0). (32)

In other words, the first term in (29) is independent of Ms and thus is unchanged by

the limit on Ms, whereas the second term changes, consistent with the distribution Gu

approaching D(ρ), and having the limiting mean but 0 variance. As a consequence,

lim
Ms→∞

E[W (F0/Gu/1)] = ψ(1, c2a, ρ, c
2
s)+ ρc2a− lim

Ms→∞

φ(I)

= ψ(1, c2a, ρ, c
2
s)+ ρc2a−φ(I;D(1/p),RS(D,p)),

= ψ(1, c2a, ρ, c
2
s)+ ρc2a−φ(I; (1+ c2a),0, ρ(1+ c2a), c̄

2
s) (33)
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where φ(I;D(1/p),RS(D,p)) means (31) for the D(1/p),RS(D,p))/1 model and the

parameter vector for that model is ((1+ c2a),0, ρ(1+ c2a), c̄
2
s) for

c̄2s ≡
c2a

1+ c2a
. (34)

Theorem 5 implies that it only remains to evaluate the idle-time term φ(I) in the last line

of (33) for the D(p)/RS(D,p)/1 model, for which the only randomness is in the random

sum in the service times. The random sum is a geometric random sum of constants in

this case. When we apply the Minh and Sorli (1983) method for simulation, it suffices to

reduce variance by ignoring the large Ms. We treat the service times as D with mean ρ.

But, when we do so, we have to make adjustments in the final formulas as indicated above.

Corollary 4. (one waiting time in terms of the other) For the F0/Gu/1 model with

support bound Ms and parameter vector (1, c2a, ρ, c
2
s),

lim
Ms→∞

E[W (F0/Gu/1)] = E[W (D(1/p)/RS(D(ρ), p)/1)] + ρc2a+
ρ2c2s

2(1− ρ)

= E[W (D(1/p)/RS(D(ρ), p)/1)] +
ρ2(Bc2a+ c2s)

2(1− ρ) (35)

for

B ≡ (2/ρ)− 2. (36)

6.3. Combining Theorem 4 and Corollary 1

Combining Theorem 4 and Corollary 1, we obtain

Corollary 5. (reduction to idle time) For the GI/GI/1 model with extremal

interarrival-time cdf F0 and extremal service-time cdf Gu∗,

E[W (F0,Gu∗)] ≡ lim
Ms→∞

E[W (F0/Gu/1)]

=
c2a+ ρ2c2s
2(1− ρ) +

1− ρ
2
−φ(I; 1, c2a, ρ, c2s), (37)

where I is the idle time in an F0/Gu∗/1 queue or, equivalently, in a F0/D/1 queue for an

appropriate D.

Corollary 5 shows that to determine the UB E[W (F0/Gu∗/1)], it suffices to calculate the

term φ(I; 1, c2a, ρ, c
2
s) in (31) for the F0/D/1 model via effective algorithms. In contrast,

Theorem 5 concludes that it suffices to calculate φ in (31) for the D/RS(D(ρ), p)/1 model,

but we see that these are equivalent, because we can go from one to the other by applying

Theorem 1. Thus we conclude that §3 and §4 are two different ways to reach essentially

the same conclusion.
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7. Computing the Distribution and Moments of the Idle Time

Theorem 5 implies that the steady-state mean waiting time E[W ] in the extremal F0/Gu∗/1

model can be expressed in terms of the first two moments of the steady-state idle time

I in the D(1/p)/RS(D,p)/1 model and the parameter vector (1, c2a, ρ, c
2
s). In this section

we show how to develop algorithms to calculate the distribution and moments of I in the

D(1/p)/RS(D,p)/1 model based on a random walk representation.

7.1. A Random Walk Absorption Representation of the Idle-Time

For the reduced model D(1/p)/RS(D,p)/1, the steady-state idle time can be expressed in

terms of a random walk {Yk : k≥ 0} defined in terms of the recursion,

Yk+1 = Yk + ρNk− (1+ c2a), k≥ 1, Y0 ≡ 0. (38)

The random variables ρNk− (1+c2a) are the steps of the random walk. Each step is the net

input of work from one arrival time to the next. Because Nk take values on the positive

integers, the possible steps are kρ− (1+ c2a) for k≥ 1, so that ρNk− (1+ c2a)≥ ρ− (1+ c2a).

As long as Yk ≥ 0, Yk represents the work in the system at the time of the kth arrival,

starting empty. The number of customers served in that busy cycle, Nc, and the length of

a busy cycle, C, are then

Nc = inf {k≥ 1 : Yk ≤ 0} and C =Nc(1+ c2a). (39)

The associated idle-time random variable is distributed as

I
d
=−YNc

, so that 0≤ I ≤ c2a+1− ρ. (40)

7.2. An Idle-Time Simulation Algorithm

Given N i.i.d. copies of I, each obtained via (38)-(40), we can estimate the cdf FI(x) ≡
P(I ≤ x), x≥ 0, by the empirical cdf

F̄I(x)≡N−1
N
∑

i=1

I(Ii≤ x). (41)

To estimate the pth moment E[Ip], we can compute the sample mean, using

ĪN ≡ ρR−1

R
∑

i=1

N−1

N
∑

i=1

Ii, (42)

where R is the number of replications.
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7.3. A DTMC Numerical Algorithm

If the traffic intensity ρ and the interarrival time 1+ c2a are integer multiples of a common

δ > 0, then the steps of the random walk are confined to a lattice subset of the real line

and the possible values of the idle time lie in a finite subset. In particular, consider the

alternative recursion

Zk+1 =Zk + ρNk/δ− (1+ c2a)/δ, k≥ 1, Z0 ≡ 0. (43)

Clearly, each step in (38) is divided by δ in (43). Hence, Yk = δZk, k≥ 0. However, now Zk

takes values in the integers. We assume that ρ and the interarrival time 1+ c2a are indeed

integer multiples of a common δ and we use the largest δ with that property.

Thus, from (39) The number of customers served in that busy cycle, Nc, and the length

of a busy cycle, C, are then

Nc = inf {k≥ 1 :Zk ≤ 0} and C =Nc(1+ c2a)δ. (44)

The associated idle-time random variable is thus distributed as

I
d
=−δZNc

. (45)

However, before hitting a nonpositive value, the random walk now must start in some

nonnegative integer state. If the workload RW visits positive states, then it must start

from a strictly positive integer, but we could have two idle times in a row. Then we could

start in 0. Hence, we have

0≤−ZNc
≤ 1+ c2a− ρ

δ
and 0≤ I ≤ 1+ c2a− ρ. (46)

Given the alternative recursion in (43), the random walk takes values in the integers, so

we can calculate the distribution of I by calculating the absorption probabilities of a DTMC

with integer state space. The absorption can take place on a finite subset of nonpositive

integers. Specifically, the state space is the set S ≡ {k : k≥ ρ/δ−(1+c2a)/δ} with absorbing

states {k :−1≥ k ≥ ρ/δ− (1 + c2a)/δ}. We obtain a finite DTMC by truncating the state

space at some level N ; i.e., let the truncated state space be ST ≡ {k : ρ/δ− (1+c2a)/δ≤ k≤
N}, let all transitions that initially go above N go instead to N , so that P is a legitimate

DTMC.
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As usual, let Q be the square submatrix of transition probabilities between transient

states and let R be the submatrix of one-step transition probabilities from the transient

states to the absorbing states. Let the fundamental matrix be (I−Q)−1. Then the absorp-

tion probabilities are given by B ≡ (I −Q)−1R. The first column of B corresponds to the

absorption probabilities starting at state 0. We thus can use it to compute the moments

E[I] and E[I2].

7.4. Numerical Experiments for the DTMC Algorithm

To illustrate the DTMC numerical algorithm, we consider the example with c2a = 4. First,

Table 7 shows the results of the DTMC numerical algorithm for two values of ρ: 0.5 and

0.8. The required values of δ for these two cases are 1 and 0.2, respectively. We also show

the performance for other (smaller) candidate δ, which satisfy the integer requirement, but

make the state space larger.

Table 7 Performance of DTMC(N) with Different Truncation Levels N and δ

ρ= 0.8 ρ= 0.5

N\δ 0.2 0.1 0.5 0.25 0.1

1 14.831987 14.831987 3.456240 3.436333 3.436333

10 14.862050 14.842114 3.469846 3.473675 3.467565

100 14.913166 14.904170 3.470132 3.470132 3.470163

500 14.916936 14.916816 3.470132 3.470132 3.470132

1000 14.916937 14.916936 3.470132 3.470132 3.470132

2000 14.916937 14.916937 3.470132 3.470132 3.470132

5000 14.916937 14.916937 3.470132 3.470132 3.470132

Table 7 shows that both the truncation level N and the scale factor δ have an impact

on E[W ], but the algorithm converges with six decimal accuracy when N reaches 5E+03.

The running time of algorithm depends on truncation level N . Constructing the N ×N
transition matrix requires computation of order O((N +X)2) =O(N 2), while computing

the inverse matrix of Q. which is done by Gaussian elimination, requires O(N 3). Hence,

the overall complexity of the algorithm is O(N 3).

To elaborate, Table 8 shows the performance of the DTMC algorithm as a function of

N for other ρ. The appropriate δ is used in each case.
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Table 8 Performance of DTMC Algorithm for Other Traffic Levels

N\ρ 0.95 0.90 0.70 0.60 0.40 0.30

1E+00 74.512312 34.621172 8.372901 5.243412 2.289971 1.493015

1E+01 74.512312 34.696376 8.381077 5.267151 2.296621 1.498390

1E+02 74.568945 34.719782 8.434009 5.294671 2.304104 1.499233

5E+02 74.608460 34.719782 8.441300 5.294825 2.304105 1.499234

1E+03 74.616306 34.721369 8.441305 5.294825 2.304105 1.499234

2E+03 74.619898 34.721484 8.441305 5.294825 2.304105 1.499234

5E+03 74.620917 34.721484 8.441305 5.294825 2.304105 1.499234

1E+04 74.620917 34.721484 8.441305 5.294825 2.304105 1.499234

Finally, Table 9 shows the corresponding performance for ρ = 0.99, for which we need

δ = 0.01, leading to a larger number of possible idle times. Given that the scale is 0.01,

there are 102 possible idle time values, ranging from 0.00 to 4.01 in increments of 0.01, as

indicated in (46). We report the results for different N .

Table 9 Performance of DTMC(N) for ρ=0.99

δ\N 1E+02 5E+02 1E+03 2E+03 3E+03

0.01 394.420259 394.476457 394.496173 394.511729 394.518208

δ\N 5E+03 1E+04 2E+04 4E+04 6E+04

0.01 394.524273 394.529090 394.531611 394.533189 394.533189

Compared with performance of NB algorithm in this case, the DTMC algorithm is less

efficient. The DTMC algorithm needs more than 1E+05 seconds CPU time for N ≥ 2E+04

to attain six decimal places accuracy for ρ= 0.99. In contrast, with only 7E+03 seconds

cpu time, the NB can attains more than 15 decimal places accuracy. That advantage also

holds for lower traffic intensities. For ρ= 0.8, NB only needs around 0.7 seconds CPU time

for 15 decimal places accuracy while DTMC requires around 20 seconds cpu time with

N = 2000.
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8. Simulation Algorithms and Experiments

In this section we compare three different simulation algorithms for estimating the extremal

mean steady-state waiting time E[W (F0,Gu∗)]: (i) the standard Monte Carlo (MC) algo-

rithm, (ii) the Minh and Sorli (1983) (MS) algorithm and (iii) the method from §7.2 based

on simulating a discrete-time random walk.

8.1. The Simulation Algorithms

We now describe the three simulation algorithms.

8.1.1. Multiple Replications. In order to estimate the overall statistical precision as

well as to improve it, for each simulation experiment, we perform multiple (usually 20−40)

i.i.d. replications of the entire experiment. Thus, E[W ] is estimated by the sample average

W̄R ≡R−1

R
∑

i=1

W̄[i], (47)

where W̄[i] is the estimate from the ith replication and R is the number of replications.

By using multiple i.i.d. replications, we can construct confidence intervals in the standard

way. In particular, the sample variance is

S2≡ (1/(R− 1))

R
∑

i=1

(W̄[i]− W̄R)
2, (48)

so that the halfwidth of the confidence interval is CIL= t∗S/
√
R where t∗ ≡ t(R)∗ is the

critical value of the Student statistical t-test with R − 1 degrees of freedom. We use a

95% confidence interval, so t(20)∗ = 2.09. To show the numerical and simulation methods

accuracy, we compare the different computational methods with 95% confidence interval.

8.1.2. The Standard Monte Carlo Algorithm. The standard Monte-Carlo simulation

method to estimate the mean steady-state waiting time in the GI/GI/1 queue exploits the

Lindley recursion in (1). For each successive customer (indexed by n), we obtain a realiza-

tion of the random variable Wn. The steady-state mean waiting time can be estimated by

the sample average

W̄ ≡ W̄ (N)≡N−1
N
∑

n=1

Wn. (49)

From (2), we see that the expected value of the estimate W̄ (N) approaches the limit from

below as N increases. Because the sequence {Wn : n ≥ 0} is a regenerative process, with
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empty times serving as regeneration points, we can apply the strong law of large numbers

to deduce that the estimator is consistent as N →∞. As an alternative, we could use the

regenerative approach in §IV.4 of Asmussen and Glynn (2007).

In some cases, in order to reduce the estimation bias, within each replication we look

at the long-run average after deleting an initial portion to allow the system to approach

steady state. We exploit the two point distributions to simplify the event generation. In

the simulation algorithm, the successive events are classified in three ways: (i) arrival is

next, (ii) departure is next and (iii) next event occurs after given time T , where T is total

simulation length.

The computational precision gradually improves as N →∞. Unfortunately, the algo-

rithm is not efficient for F0/Gu/1 with large Ms, primarily because the large service times

are rare events, which cause significant problems; e.g., see §VI of Asmussen and Glynn

(2007) and §XIII.7 of Asmussen (2003). Moreover, the standard simulation method is not

efficient under heavy traffic levels because of its slow convergence; e.g., see Whitt (1989).

8.1.3. The Minh and Sorli (1983) Simulation Algorithm. The idea is to exploit The-

orem 4. In particular, we exploit the the discrete event simulation method to estimate the

first two moments of the steady state idle period I; i.e., we exploit (29) and estimate φ(I)

in (31). In the simulation algorithm, the successive events are classified in three ways: (i)

arrival is next, (ii) departure is next and (iii) next event occurs after given time T , where

T is total simulation length.

Thus, within each replication we estimate E[I] and E[I2] and then apply Theorem 4

to obtain an associated estimate of E[W ]. We then compute confidence intervals for this

alternative estimate of E[W ] by performing multiple replications, as described in §8.1.1.

8.2. Comparison of the Three Simulation Algorithms

We now apply and compare our three simulation algorithms to estimate the mean steady-

state waiting time in the extremal F0/Gu∗/1 queue: (i) the standard Monte Carlo (MC)

algorithm, (ii) the Minh and Sorli (1983) (MS) algorithm and (iii) the method from §7.2
based on simulating a discrete-time random walk.

Estimates of E[W ] for the F0/Gu∗/1 model by the three algorithms are shown in Table

10. These are for the case c2a = c2s = 4.0 and Ms = 1000 for MC algorithm and Ms =∞
for other two simulation algorithms. Results are reported for a range of traffic intensities

ranging from ρ= 0.1 to ρ= 0.99.
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We now describe the simulation parameters for each algorithm. The MC method had

truncation level N =1E+07 in (49) and R= 20 i.i.d replications in (8.1.1). The MS method

had total run length T =1E+06 again with R= 20 iid replications. (We used all idle periods

that fall within that time interval.)

Table 10 shows the simulation estimates from all three approaches. Table 10 shows that

the simulation methods are mutually confirming, but that the confidence intervals are quite

different. The accuracy is ordered by MS >RW >MC with MS being best.

Table 10 Comparison of Three Different Simulation Algorithms

simulation estimates of E[W (F0/Gu∗)] for c2a = c2s = 4

ρ MC UB 95% CI Length MS UB 95% CI Length RW UB 95% CI Length

0.10 0.422 5.08E-04 0.422 7.79E-05 0.422 9.28E-04

0.20 0.904 2.29E-03 0.904 1.30E-04 0.903 1.64E-03

0.30 1.484 4.44E-03 1.499 1.71E-04 1.498 1.47E-03

0.40 2.310 1.47E-02 2.304 1.90E-04 2.305 1.68E-03

0.50 3.472 2.15E-02 3.470 2.25E-04 3.472 2.00E-03

0.60 5.276 5.39E-02 5.294 2.43E-04 5.295 3.14E-03

0.70 8.381 7.80E-02 8.442 3.05E-04 8.442 2.62E-03

0.80 15.016 1.54E-01 14.917 3.22E-04 14.919 3.13E-03

0.90 34.525 4.60E-01 34.722 5.17E-04 34.720 1.95E-03

0.95 76.059 1.24E+00 74.621 7.11E-04 74.621 2.26E-03

0.98 193.206 3.07E+00 194.556 9.29E-04 194.558 2.75E-03

0.99 394.763 1.02E+01 394.532 1.45E-03 394.532 2.62E-03

8.2.1. Simulation Efficiency. To compare statistical efficiency and computational effec-

tiveness, we consider the MC method with three different N , the RW method with three

different N , and the MS method with three different total simulation time T . For each,

95% confidence intervals as a function of these parameters as well as the number R of

replications numbers and the traffic intensity ρ are reported in Table 11.
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Table 11 A Comparison of Three Simulation Methods

Confidence Interval Length for the MC method as a Function of N , R and ρ

N = 5E+04 N = 1E+05 N =1E+06

R\ρ 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9

20 5.03E-01 2.60E+00 1.08E+01 3.73E-01 3.33E+00 1.09E+01 1.78E-01 4.88E-01 2.78E+00

30 4.85E-01 2.73E+00 1.11E+01 2.41E-01 1.25E+00 6.91E+00 1.42E-01 3.26E-01 2.90E+00

40 3.90E-01 1.48E+00 9.27E+00 2.66E-01 1.16E+00 4.60E+00 1.28E-01 2.85E-01 2.63E+00

50 3.95E-01 1.55E+00 6.34E+00 3.37E-01 1.04E+00 4.91E+00 1.07E-01 3.47E-01 1.79E+00

60 4.42E-01 1.10E+00 8.84E+00 2.61E-01 1.15E+00 5.14E+00 6.86E-02 3.41E-01 1.58E+00

70 3.32E-01 1.16E+00 7.32E+00 2.59E-01 8.35E-01 4.49E+00 8.67E-02 2.61E-01 1.52E+00

80 3.18E-01 1.29E+00 7.82E+00 2.78E-01 7.22E-01 5.18E+00 8.88E-02 2.78E-01 1.31E+00

90 3.87E-01 1.07E+00 6.35E+00 2.61E-01 9.79E-01 4.28E+00 7.33E-02 2.85E-01 1.29E+00

100 2.99E-01 1.04E+00 4.78E+00 2.14E-01 8.15E-01 3.76E+00 8.02E-02 2.22E-01 1.33E+00

Confidence Interval Length for the RW method with Number of Copies N

N = 100 N = 500 N = 1000

R\ρ 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9

20 1.77E-02 2.90E-02 2.27E-02 9.47E-03 1.06E-02 9.12E-03 8.13E-03 6.52E-03 7.43E-03

30 1.85E-02 1.83E-02 1.80E-02 6.78E-03 9.34E-03 7.82E-03 5.86E-03 5.07E-03 7.74E-03

40 1.51E-02 1.66E-02 1.73E-02 6.51E-03 8.11E-03 7.92E-03 5.25E-03 4.34E-03 6.14E-03

50 1.35E-02 1.49E-02 1.75E-02 5.84E-03 6.36E-03 7.06E-03 4.27E-03 3.97E-03 4.14E-03

60 1.21E-02 1.17E-02 1.39E-02 4.79E-03 6.02E-03 5.65E-03 3.49E-03 4.54E-03 4.24E-03

70 1.11E-02 1.30E-02 1.24E-02 4.81E-03 5.37E-03 5.84E-03 2.95E-03 3.44E-03 4.17E-03

80 1.14E-02 1.20E-02 1.11E-02 4.92E-03 3.90E-03 5.01E-03 3.08E-03 3.52E-03 3.78E-03

90 8.84E-03 9.94E-03 9.84E-03 4.18E-03 4.34E-03 4.62E-03 2.93E-03 3.15E-03 3.99E-03

100 8.30E-03 8.50E-03 1.09E-02 3.95E-03 4.22E-03 4.46E-03 2.95E-03 3.30E-03 3.42E-03

Confidence Interval Length for the MS method with Simulation Length T

T = 1E+03 T = 1E+04 T = 1E+05

R\ρ 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9

20 1.88E-02 1.91E-02 2.42E-02 5.51E-03 7.87E-03 9.33E-03 1.34E-03 2.01E-03 3.16E-03

30 1.31E-02 1.47E-02 3.78E-02 4.50E-03 5.27E-03 9.97E-03 9.59E-04 1.36E-03 2.43E-03

40 1.01E-02 1.56E-02 2.67E-02 4.04E-03 4.78E-03 8.65E-03 1.19E-03 1.56E-03 2.94E-03

50 1.04E-02 1.39E-02 2.25E-02 3.35E-03 4.02E-03 7.47E-03 8.93E-04 1.46E-03 2.11E-03

60 9.72E-03 1.21E-02 2.39E-02 2.60E-03 3.51E-03 6.65E-03 7.58E-04 1.03E-03 1.91E-03

70 9.32E-03 8.66E-03 1.87E-02 2.51E-03 3.74E-03 5.96E-03 8.77E-04 1.16E-03 1.99E-03

80 8.55E-03 9.71E-03 1.78E-02 2.07E-03 3.31E-03 7.06E-03 8.62E-04 1.16E-03 1.70E-03

90 6.85E-03 8.56E-03 1.59E-02 2.22E-03 3.30E-03 5.74E-03 7.13E-04 9.58E-04 1.57E-03

100 7.74E-03 8.46E-03 1.81E-02 2.14E-03 3.04E-03 4.72E-03 7.49E-04 8.71E-04 1.37E-03

The MS and RW methods are based on sample means from i.i.d. samples and thus

are unbiased estimators, but that is not the case for MC. So the bias is also a concern,

especially for high ρ. Thus, the MC method is even worse than shown. To illustrate the
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problem, we compare the RW and MC algorithms for ρ= 0.99 in Table 12. Table 12 shows

the large error for smaller N with MC, but no problem at all with RW.

Table 12 A Comparison between MC and RW Simulation for ρ= 0.99

N = 1E+02 N = 1E+02 N = 5E+02 N = 5E+02 N =1E+03 N =1E+03

R= 100 E[W ] 95% CIL E[W ] 95% CIL E[W ] 95% CIL

RW 394.533 1.02E-02 394.530 4.57E-03 394.535 3.29E-03

N = 5E+04 N = 5E+04 N = 1E+05 N = 1E+05 N =1E+06 N =1E+06

R= 100 E[W ] 95% CIL E[W ] 95% CIL E[W ] 95% CIL

MC 182.41 2.43E+01 261.62 3.30E+01 385.48 3.34E+01

After comparing the computational outcomes from these three tables, we see that the

MS algorithm clearly is more efficient than the other two simulation algorithms. To elab-

orate, we describe the computational effort. With 100 seconds of CPU time and 100 iid

replications, the MS method can reach 1E-04 95% confidence interval length for most of

the traffic levels, while the MC can only have 1E-03 confidence interval length.

Expressed differently, in order to achieve 1E-03 or 1E-02 confidence interval length for

all traffic levels, the MS method needs at most needs CPU computational time less than 1

second, but RW needs several seconds. The MC method is the worst method which has bad

performance in computational cost and accuracy typically for heavy traffic. Even though

it takes more than 200 seconds CPU time with 100 replications and N=1E+06 copies, the

confidence interval length can still be large than 1 for some heavy traffic levels.

Finally, the MC and MS methods are far easier to generalize. The MC method applies to

many models, while the MS method applies to any GI/GI/1 queue, but the RW method

depends on the detailed special structure. Hence, there exist more strict requirements to

implement the RW method.

8.3. Simulation Comparisons for Three Related Models

In order to better understand the c0mputational issues provided by the extremal F0/Gu∗/1

model, we now compare the MC and MS algorithms on three different models: (i) the

F0/Gu/1 with Ms = 1000, (ii) the F0/D/1 model (avoiding the rare large service time) and

(iii) the reduced D(1/p)/RS(D(ρ), p)/1 model obtained from the model reductions.
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8.3.1. A Monte Carlo Simulation Comparison for Three Queues. We now com-

pare MC simulation performance for three queues F0/Gu/1 with Ms = 103, F0/D/1 and

D/RS(ρ, p)/1 for traffic level ρ = 0.5,0.7,0.9 and report the confidence interval length

based on statistical T test.

Table 13 A Comparison of Monte-Carlo simulation for Two Queues

Confidence Interval Length for MC for F0/Gu/1 with Ms = 1000

N =5E+04 N =1E+05 N = 1E+06

R\ρ 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9

20 5.03E-01 2.60E+00 1.08E+01 3.73E-01 3.33E+00 1.09E+01 1.78E-01 4.88E-01 2.78E+00

40 3.90E-01 1.48E+00 9.27E+00 2.66E-01 1.16E+00 4.60E+00 1.28E-01 2.85E-01 2.63E+00

60 4.42E-01 1.10E+00 8.84E+00 2.61E-01 1.15E+00 5.14E+00 6.86E-02 3.41E-01 1.58E+00

80 3.18E-01 1.29E+00 7.82E+00 2.78E-01 7.22E-01 5.18E+00 8.88E-02 2.78E-01 1.31E+00

100 2.99E-01 1.04E+00 4.78E+00 2.14E-01 8.15E-01 3.76E+00 8.02E-02 2.22E-01 1.33E+00

Confidence Interval Length for MC for F0/D/1

N =5E+04 N =1E+05 N = 1E+06

R\ρ 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9

20 4.60E-03 4.99E-03 1.40E-02 1.72E-03 1.54E-03 3.39E-03 4.25E-04 7.84E-04 1.23E-03

40 3.41E-03 4.31E-03 7.89E-03 1.18E-03 1.36E-03 2.57E-03 3.16E-04 4.25E-04 8.54E-04

60 2.94E-03 3.77E-03 6.14E-03 8.50E-04 1.30E-03 2.22E-03 2.93E-04 3.50E-04 6.49E-04

80 2.63E-03 3.30E-03 5.49E-03 8.19E-04 1.01E-03 1.83E-03 2.56E-04 2.85E-04 4.96E-04

100 2.43E-03 2.89E-03 5.31E-03 8.18E-04 9.07E-04 1.40E-03 1.87E-04 2.86E-04 4.45E-04

Confidence Interval Length of MC for D(1/p)/RS(D(ρ), p)/1

N =5E+04 N =1E+05 N = 1E+06

R\ρ 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9

20 6.19E-03 3.40E-02 4.76E-01 4.61E-03 2.08E-02 3.23E-01 1.61E-03 7.61E-03 8.19E-02

40 3.29E-03 2.66E-02 2.92E-01 2.61E-03 2.00E-02 2.19E-01 1.04E-03 6.46E-03 7.13E-02

60 3.03E-03 1.79E-02 2.80E-01 2.07E-03 1.16E-02 1.68E-01 7.27E-04 4.79E-03 6.03E-02

80 2.62E-03 1.89E-02 2.10E-01 2.04E-03 1.19E-02 1.47E-01 5.75E-04 3.67E-03 4.63E-02

100 2.82E-03 1.57E-02 1.90E-01 1.63E-03 9.84E-03 1.23E-01 6.19E-04 3.14E-03 4.83E-02

As expected, Table 13 shows that the model reduction makes the Monte-Carlo simulation

more efficient and accurate. Typically, the simulation is most accurate for F0/D/1.

8.3.2. A Minh-Sorli Simulation Comparison for Three Queues. We have shown MS

method has the same performance for the two queues F0/D/1 and F0/Gu/1 as Ms→∞ in

§4. So we compare the simulation performance for F0/Gu/1 with givenMs = 1000, F0/D/1

and the queue D/RS(ρ, p)/1.
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Table 14 A Comparison of Minh-Sorli simulation for Three Queues

Confidence Interval Length of MS for F0/Gu/1

T = 5E+04 T =1E+05 T =1E+06

R\ρ 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9

20 1.88E-02 1.91E-02 2.42E-02 5.51E-03 7.87E-03 9.33E-03 1.34E-03 2.01E-03 3.16E-03

40 1.01E-02 1.56E-02 2.67E-02 4.04E-03 4.78E-03 8.65E-03 1.19E-03 1.56E-03 2.94E-03

60 9.72E-03 1.21E-02 2.39E-02 2.60E-03 3.51E-03 6.65E-03 7.58E-04 1.03E-03 1.91E-03

80 8.55E-03 9.71E-03 1.78E-02 2.07E-03 3.31E-03 7.06E-03 8.62E-04 1.16E-03 1.70E-03

100 7.74E-03 8.46E-03 1.81E-02 2.14E-03 3.04E-03 4.72E-03 7.49E-04 8.71E-04 1.37E-03

Confidence Interval Length of MS for F0/D/1

T = 5E+04 T =1E+05 T =1E+06

R\ρ 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9

20 4.07E-03 5.04E-03 1.13E-02 3.61E-03 3.96E-03 8.32E-03 1.05E-03 1.33E-03 2.86E-03

40 3.28E-03 4.12E-03 6.79E-03 2.20E-03 2.23E-03 4.18E-03 6.46E-04 8.24E-04 1.72E-03

60 2.57E-03 2.77E-03 6.67E-03 1.75E-03 2.91E-03 3.66E-03 4.85E-04 6.94E-04 1.49E-03

80 2.22E-03 3.05E-03 4.51E-03 1.59E-03 2.04E-03 3.44E-03 5.04E-04 6.27E-04 1.06E-03

100 1.65E-03 2.63E-03 4.27E-03 1.32E-03 1.51E-03 3.49E-03 4.43E-04 5.28E-04 9.82E-04

Confidence Interval Length of MS for D(1/p)/RS(D(ρ), p)/1

T = 5E+04 T =1E+05 T =1E+06

R\ρ 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9

20 4.60E-03 5.74E-03 1.10E-02 2.43E-03 4.16E-03 9.07E-03 9.40E-04 9.97E-04 2.54E-03

40 3.82E-03 3.26E-03 6.97E-03 2.43E-03 3.22E-03 5.97E-03 7.31E-04 9.14E-04 1.88E-03

60 2.48E-03 3.33E-03 6.66E-03 1.77E-03 2.34E-03 4.26E-03 5.40E-04 6.64E-04 1.37E-03

80 1.89E-03 2.48E-03 4.68E-03 1.68E-03 2.06E-03 3.11E-03 5.18E-04 6.36E-04 1.16E-03

100 1.89E-03 2.56E-03 3.95E-03 1.16E-03 1.51E-03 3.20E-03 4.33E-04 5.36E-04 9.18E-04

The Minh-Sorli algorithm for all queues have the almost same simulation accuracy,

typically F0/D/1 and D/RS(ρ, p)/1 are slightly better than F0/Gu/1. Regarding the com-

putational effort, the cpu time is around 20−100 seconds for F0/D/1 while that is around

50−300 seconds for D/RS(ρ, p)/1 when R increases from 20 to 100. So The model reduc-

tion makes the Minh-Sorli algorithm more efficient.

Tables 13 and 14 show that the inter-arrival-time and service-time model reductions

both make the algorithms more accurate and efficient, but the service-time reduction is

slightly better. Moreover, the Minh-Sorli simulation outperforms Monte-Carlo simulation

for any of the three models.

8.3.3. The Idle-Time Distribution in Two Queues. We apply the Minh and Sorli

(1983) simulation algorithm to compare the first two moments of steady-state idle time for

the extremal queue F0/Gu∗/1 queue and the M/M/1 queue.



Chen and Whitt: Algorithms for the Upper Bound Mean Waiting Time
32 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

For the M/M/1 model with λ= 1, it is well known that both I and Ie are exponential

with mean 1 for all ρ, so that E[I] = 1, E[I2] = 2 and E[Ie] = 1 for all ρ. Nevertheless, as an

independent check, we apply the MS algorithm to both the M/M/1 and F0/Gu∗/1 models.

The results are shown in Table 15.

Table 15 A Comparison of the idle-time Distribution in the F0/Gu
∗/1 and M/M/1 queues, using the

Minh and Sorli (1983) algorithm with T =1E+06

ρ= 0.8 ρ= 0.99

F0/Gu∗/1

R E[I] E[I2] E[Ie] E[I] E[I2] E[Ie]

20 2.453 7.766 1.583 2.111 6.298 1.492

40 2.452 7.765 1.583 2.114 6.307 1.492

60 2.452 7.763 1.583 2.114 6.304 1.491

80 2.451 7.760 1.583 2.114 6.309 1.492

100 2.451 7.760 1.583 2.113 6.306 1.492

ρ= 0.8 ρ= 0.99

M/M/1

R E[I] E[I2] E[Ie] E[I] E[I2] E[Ie]

20 1.000 1.999 1.000 1.000 2.003 1.001

40 0.999 1.997 0.999 0.999 1.994 0.997

60 1.000 1.999 1.000 1.002 2.002 0.999

80 1.000 1.999 1.000 1.001 2.005 1.001

100 1.000 2.001 1.000 1.000 2.002 1.001

Figure 1 shows an estimate of the steady-state idle-time distribution by MS. To get good

precision, we increase T to T = 5E + 09 under ρ = 0.99. We remark that this is also the

steady-state idle-time distribution for model F0/D/1.
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Figure 1 Simulation estimates of the steady-state idle-time distribution in the F0/Gu
∗/1 model under traffic

level ρ= 0.99.

9. Conclusions

In this paper we developed numerical and simulation algorithms to compute the mean

steady waiting time E[W ] in the extremal GI/GI/1 queue given the first two moments of

the interarrival-time and service-time distributions, as specified by the parameter vector

(1, c2a, ρ, c
2
s). In Chen and Whitt (2018) we showed that E[W ] is attained (asymptotically)

in the F0/Gu∗/1 model, involving two-point distributions. In §2 we present evidence that

the tight upper bound provides a significant improvement over previous upper bounds.

Our algorithms are based on three different convenient alternative representations for

the mean waiting time E[W ] in the F0/Gu∗/1 extremal model. In §3 and §4, we showed

that it suffices to calculate E[W ] in the D(1/p)/RS(D(ρ), p)/1 model, where p= 1/(1+c2a)

and the service time is a geometric random sum of deterministic values taking the value ρ.

In §5 we developed effective numerical algorithms to compute the mean steady-state

waiting time E[W (D(1/p)/RS(D(ρ), p)/1] using recursive algorithms for the negative bino-

mial distribution. We also conducted experiments showing that they are effective. We

exposed and resolved an underflow problem that can arise in heavy traffic.
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In §6 we showed that it also suffices the compute the first two moments of the steady-

state idle-time distribution in the D(1/p)/RS(D(ρ), p)/1 model. Theorem 5 shows that the

idle time is better behaved than the waiting time as the extremal service mass increases. In

§7 we showed that effective numerical and simulation algorithms can be developed based on

this approach as well, but so far this approach does not seem better than the NB algorithm

in §5.
In §8 we studied three possible simulation algorithms for estimating E[W ] in the

F0/Gu∗/1 model: the standard monte Carlo simulation (MC) and two methods exploiting

the idle-time representation: the Minh and Sorli (1983) algorithm and a new algorithm

based on a discrete time random walk (RW). We showed that both MS and RW provide

significant improvement over MC, but that MS tends to be best.

Overall, we found that, first, the reductions are powerful for simplifying the algo-

rithms and, second, that the refined negative-binomial numerical algorithm in §5 and

the Minh and Sorli (1983) simulation algorithm in §8 are most effective for computing

E[W (D(1/p)/RS(D(ρ), p)/1].
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e-companion to Chen and Whitt: Algorithms for the Upper Bound Mean Waiting Time ec1

e-Companion to ”Algorithms for the Upper Bound Mean
Waiting Time in the GI/GI/1 Queue” by Y. Chen and W.
Whitt

We now present additional results to supplement the main paper. Tables EC.1 and EC.2

are analogs of Tables 1 and 2 for the mixed cases c2a = 4.0, c2s = 0.5. and c2a =0.5, c2s = 4.0.

Table EC.1 A comparison of the unscaled bounds and approximations for the steady-state mean E[W ] as a

function of ρ for the case c2
a
=4.0 and c2

s
= 0.5

ρ Tight LB HTA Tight UB UB Approx δ MRE Daley Kingman
(9) (10) (8) (6) (5)

0.10 0.00 0.025 0.403 0.403 0.000 0.00% 0.425 2.23
0.15 0.00 0.060 0.607 0.607 0.001 0.06% 0.660 2.36
0.20 0.00 0.113 0.816 0.818 0.007 0.21% 0.913 2.51
0.25 0.00 0.188 1.04 1.04 0.020 0.45% 1.19 2.69
0.30 0.00 0.289 1.27 1.28 0.041 0.76% 1.49 2.89
0.35 0.00 0.424 1.54 1.55 0.070 1.10% 1.82 3.12
0.40 0.00 0.600 1.83 1.86 0.107 1.31% 2.20 3.40
0.45 0.00 0.828 2.18 2.21 0.152 1.63% 2.63 3.73
0.50 0.00 1.13 2.60 2.64 0.203 1.51% 3.13 4.13
0.55 0.00 1.51 3.08 3.14 0.261 1.89% 3.71 4.61
0.60 0.00 2.03 3.71 3.78 0.324 1.79% 4.43 5.23
0.65 0.00 2.72 4.51 4.59 0.393 1.62% 5.32 6.02
0.70 0.00 3.68 5.56 5.66 0.467 1.74% 6.48 7.08
0.75 0.00 5.06 7.07 7.17 0.546 1.39% 8.06 8.56
0.80 0.00 7.20 9.29 9.42 0.629 1.31% 10.40 10.80
0.85 0.28 10.84 13.04 13.17 0.716 0.93% 14.24 14.54
0.90 1.08 18.23 20.53 20.67 0.807 0.68% 21.83 22.03
0.95 3.54 40.61 43.00 43.17 0.902 0.39% 44.41 44.51
0.98 11.02 108.0 110.5 110.7 0.960 0.17% 112.0 112.0
0.99 23.51 220.5 223.0 223.2 0.980 0.09% 224.5 224.5
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Table EC.2 A comparison of the unscaled bounds and approximations for the steady-state mean E[W ] as a

function of ρ for the case c2
a
=0.5 and c2

s
= 4.0

ρ Tight LB HTA Tight UB UB Approx δ MRE Daley Kingman
(9) (10) (8) (6) (5)

0.10 0.00 0.025 0.072 0.072 0.000 0.03% 0.075 0.300
0.15 0.00 0.060 0.128 0.128 0.001 0.03% 0.135 0.347
0.20 0.00 0.113 0.200 0.201 0.007 0.30% 0.213 0.413
0.25 0.00 0.188 0.292 0.294 0.020 0.68% 0.313 0.500
0.30 0.00 0.289 0.409 0.414 0.041 1.07% 0.439 0.614
0.35 0.00 0.424 0.558 0.565 0.070 1.32% 0.599 0.762
0.40 0.00 0.600 0.746 0.757 0.107 1.48% 0.800 0.950
0.45 0.011 0.828 0.986 1.00 0.152 1.58% 1.05 1.19
0.50 0.250 1.13 1.29 1.31 0.203 1.91% 1.38 1.50
0.55 0.569 1.51 1.69 1.72 0.261 1.45% 1.79 1.90
0.60 1.000 2.03 2.21 2.24 0.324 1.40% 2.33 2.43
0.65 1.589 2.72 2.91 2.95 0.393 1.26% 3.04 3.13
0.70 2.427 3.68 3.88 3.92 0.467 1.23% 4.03 4.10
0.75 3.63 5.06 5.25 5.33 0.546 1.41% 5.44 5.50
0.80 5.50 7.20 7.42 7.48 0.629 0.74% 7.60 7.65
0.85 8.71 10.8 11.18 11.13 0.716 0.48% 11.3 11.3
0.90 15.3 18.2 18.47 18.53 0.807 0.32% 18.7 18.7
0.95 35.1 40.6 40.87 40.93 0.902 0.15% 41.1 41.1
0.98 95.1 108.0 108.3 108.4 0.960 0.06% 108.5 108.5
0.99 195.0 220.5 220.8 220.9 0.980 0.03% 221.0 221.0
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