
MATHEMATICS OF OPERATIONS RESEARCH
Vol. 13. No. 4. November 1988
Printed in U.S.A.

AN LIL VERSION OFL =

PETER W. GLYNN* AND WARD WHITT*

This pqjer establi^es a law-of-the-iterated-logarithm (LIL) version of the fundamental
queueing fonnula i — X(f: Under regularity conditions, the continuous-time arrival counting
process and queue-length process jointly obey an LIL when the discrete-time sequence of
interanival times and waiting times jointly obey an LIL, and the limit sets are related. The
standard relation L — \W appears as a corollary. LILs for inverse processes and random sums
are also established, which are of general probabilistic interest because the usual independence,
identical-distribution and moment assumptions are not made. Moreover, an LIL for regenera-
tive processes is established, which can be used to obtain the other LILs,

1. Introduction ami summary. The fundamental queueing formula L = XW estab-
lished mathematically by Little [18] and Stidham [24] represents a relation among
strong laws of large numbers (SLLNs): For a large class of queueing systems, the
time-average of the queue-length process converges w.p.l (with probability one) to a
limit L (obeys an SLLN) if the customer-averages of the interanival times and the
waiting times converge w.p.l to limits X~̂  and W, respectively, and the limits are
related by L = XW. Underlying L = XW is a relation among cumulative processes in
continuous time (the integral of the queue-length process) and in discrete-time (the
sum of the waiting times). Except for remainder terms that usually are asymptotically
negligible, the two cumulative processes are random time-transformations of each
other. This relation among the stochastic processes is the basis for corresponding
relations among other classical limit theorems besides SLLNs, such as central limit
theorems (CLTs), weak laws of large numbers (WLLNs) and laws of the iterated
logarithm (LILs). In [6] we established relations among all these classical limit
theorems in the setting of L = XW by exploiting functional limit theorems, i.e., weak
convergence of probability measures on the function space D[0, oo) and argtiments
related to the continuous mapping theorem, as in Billingsley [3]. In [9] we discussed
applications of the CLTs to statistical estimation of queueing parameters.

It is also of interest to know whether it is possible to establish similar relations
among the associated ordinary (nonfunctional) limit theorems. Since the ordinary limit
theorems are weaker (except for the SLLN; see Theorem 4 of [8]), both the condition
and the conclusion are weaker, so that neither result contains the other. In [8] we
showed that it is indeed possible to establish similar relations among the corresponding
ordinary CLTs and WLLNs. TTie purpose of this paper is to establish similar relations
among the ordinary LILs. As in [8], we find that the ordinary limit theorems are
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694 PETER W. GLYNN AND WARD WHITT

harder, requiring extra conditions and very different arguments. Comparing the LIL
results here with the stronger functional laws of the iterated logarithm (FLILs) in §7 of
[6] also illustrates the advantage of the functional limit theorems when you can get
them. The ordinary limit theorems are projections of the functional limit theorems; to
consider only ordinary limit theorems is to live in flatland [1]; see Remark 1.3 and
Example 1 below. However, the statements and proofs here have appeal because of
their simplicity. We use elementary methods; e.g., no Jcnowledge of functional limit
theorems is required.

As in [6] and [8], we use the standard L = XW framework involving the sequence of
ordered pairs of random variables ((^4^, D^)\ A: > 1} where 0 < 4̂̂  < .4^+1 and
y4̂  < Djt for all A:. This framework is obviously very general, so that there are many
applications. (However, an even more general framework, encompassing the extension
to H = XG, relating more general customer averages and time averages in queueing
models, is introduced and analyzed in [10].) In queueii^ we interpret A,^ and D^ as
the arrival and departure epochs of Uie A:th arriving cust(»ner, where arrival and
departure are understood to be with respect to the system under consideration. For
example, if we are interrated in the waiting time before beginning service, then the
relevant system is the waiting room or queue, not counting the servers, and the
departure epochs Z)̂  refer to the instants customers leave the queue and begin service.

Let the associate interarrival times be U,^ = A^- A^^_^ tor k>\ where AQ = 0
without there being a 0th customer. Let the queue length at time t, Qit), be the
number of k with A/^^ t ^ D,^ and let the waiting time of the kth customer be
Wi^ = D^ — A^. Let Nit) and D(0 count the number of arrivals and departures,
respectively, in the interval [0, t].

The starting point for our ordinary-LIL version of L = XW is an ordinary joint LIL
for A^ and the cumulative process associated with !¥„; we assume

(1.1) "^(i) ^n - X~^n, Y, ^A; ~ ••'« Lr* f^Aw as « - •<» .
I *-l /

where 0 < X < oo, w < oo,

(1.2) 4>{t) = (2HoglogO'' '^, t > 3,

is a compact subset of R^ with the usual Euclidean norm || • ||, and the notation
^ K a& n ^ CO denotes that w.p.l the sequoice {X^: n> 3} is relatively compact

with AT as the set of limit points for all convergent subsequenoes. RecaU that a set is
relatively compact if its closure is compact A sequence in /{'' is relatively compact if
every subsequence contains a convei^ent subsequence; the set of all limit points is thus
compact; see Chapter 9 of Royden [22]. The LIL convergence is quite remarkable: It
says that excq}t for a set of sample patfais of prc^ability zero, each sample path of { X„•.
n ^ 1} is arbitrarily ck^e to each point in K infinitely often, and arbitrarily close to
each point not in K tuily finitdy often. Hus kind of LIL is sometimes called a compact
LIL to distinguish it from other forms, such as statemraits that only tocns cm the
lim sup or lim inf. Hie references provide badcground on LILs.

Throu^out this p^per we use die standard LIL normalizing function (1.2), but the
results also hold for other normalizing functions; see Remark (3.6) of [6]. Since
Mt)/t -» 0, an LIL with the n<Hinalization (1.2) is a lefin^oent of an SLXN. For
practical purpc»es, ^ ( 0 is usually not m\x^ greater than (2{)^^ since lc^log t grows
so slowty; e-g., tor t = 10^ 10* and 10', 4>it)/i2tf^ = 1.39, 1.62 and 1.74
tivdy.
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Given (1.1), we have LILs for the marginals separately by simply applying the
projection, e.g.,

(1.3) 4>in){A„-nX-^)^ K^ as n-* oo

where K^ is the projection of K^fy on its first coordinate. Since the projections are
continuous, the marginal limit sets K^ and Kfy are compact subsets of R. Usually the
limit sets K are convex as well. (The only compact convex subsets of R are closed
bounded intervals.) However, it is not to be expected that K^^ = K^X Kn,.

The object now is to obtain LILs for the arrival counting process Nit) and the
cumulative process JoQis) ds, assuming the initial LIL (1.1). We first state two results
that are of general probabilistic interest outside of queueing theory. Our first result is
for the "inverse" processes {A„•. n > 1} and {Nit): t >Q} alone; our second result is
for the family of random sums {T'^^l^k- ' ^ 0}. Our proofs begin in §2.

THEOREM 1. Assume that 0 < X < oo. The UL (1.3) holds if and only if

(1.4) 4,it)iNit) - Xt) ̂  K^= -

in which case the limit sets K^ and Kf^ are convex.

REMARKS. (1.1) It is significant that there are no independence, identical-distribu-
tion or moment conditions in Theorem 1. Of course, such conditions play an important
role in establishing (1.3) or (1.4), but they are not needed to go from one to the other.
The SLLN, WLLN, and CLT analogs of Theorem 1 are Theorem 2(a) of [6] (well
known). Theorem 3 of [8] and Theorem 6 of [8], respectively. Functional-limit-theorem
analogs appear in §7 of [26] and references cited there. By Theorem 4 of [8], a SLLN is
equivalent to the corresponding functional strong law.

(1.2) For the special case of a renewal process in which the renewal interval has finite
second moments, (1.3) and its FLIL generalization are well known; see Strassen [25]
and Gut [11]. In the renewal case, the LIL (1.4) follows immediately from the FLIL in
Theorem 2.3 of Iglehart [15]. For the special case of a renewal process, EiU^) < oo,
the LIL (1.3) and the CLT for A^ are all equivalent; see p. 507 of Kuelbs and Zinn
[17]. By Theorem 1 above and Theorem 6 of [8], these are also equivalent to the LIL
(1.4) and the CLT for Nit). A recent strong approximation for renewal processes that
yields an LIL is contained in Horvith [13].

(1.3) TTie situation is easier when we can work with FLILs; we can then simply
apply §7 of [26] to get the equivalence of FLILs, from which (1.3) and (1.4) follow.
However, with the Skorohod J^ topology on D[0, oo), see [3] and [26], the FLILs must
have limit sets containing only functions with continuous paths. No such restriction is
required for Theorem 1. Other FLILs can be obtained with the Afj topology though;
see Wichura [27] and §7 of [26]. The FLILs yield a stronger conclusion than the
ordinary LILs. In particular, if either FLIL version of (1.3) or (1.4) holds, then as in
Corollary 7.1 in [6] we can characterize the joint limiting behavior. In particular,

(1.5) «^(O(^(Arj - t. Nit) - Xt) f^ K^f, inR^ as / -» oo where

(1.6) K^^={ix,-Xx).x&K^}.

In this paper we establish an FLIL as well as an LIL for (1.1), and thus also (1.3), in a
r^aierative context; see Tbecvems 8 and 9 and Remark 1.9. Thus, we establish (1.5) as
wdl as (1.3) and (1.4). However, our main focus is on ordinary LILs.
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EXAMPLE 1. To see that the stronger joint limit (1.5) does not hold under (1.3)
alone, let \ = 1 and

(1-7)
, n, otherwise.

asn -* oo and <>(/X^^(0 "̂  / ) ) ^ [-1,0] as f-» oo, but
U] ^ ^ ^ a s t - ^ c o w h e r e K ^ ^ = { ( 0 , 0 ) , ( 1 - x , - x ) : Q ^ x

1}. It is also not difficult to see that the corresponding FLIL for {A^: « > 1} in
(1.7) does not hold with continuous limit functions. Finally, also note that, even though
the limit sets K^ and Kf/ are convex, the limit set K^^^ in this example is not even
connected. •

Even when U, and W,^ are both nonnegative, the limit set K^yf, in (1.1) need not be a
convex subset of R^.

EXAMPLE 2. To see that K^,^ need not be convex, modify Example 1 above as
follows. Let A„ and W„ be defined by

n, otherwise.

^ ^ ()
In , otherwise.

Then K^ff, = ((0, x),ix,O): 0 < ;c < 1). •
Our next result is for Nit) and the random sum T.^!^lW^. (A limit theorem similar to

(1.10) below appears in Gut [11].) For this purpose, let T be the matrix

(1.8) r

and note that F is invertible because 0 < X < oo. We do not require that W/^ be
nonnegative here; in particular, the results of Theorem 2(b)-(e) are applicable not just
to queues, but more generally as well. Elements of R^ are regarded as row vectors.

THEOREM 2. Assume that 0 < X < oo and w < ao.
(a) / / W^ is nonnegative, then the limit set of {HtYX-kiHWk - Xwt): t > 3} is

convex.
(b) / / (1.1) holds, then the limit set of

(1.9) <l>it)\ N i t ) - X A ^ , , , , Y,W,- XwA^,,, \ : t > 3
{ \ k - i 1 1

is a subset of
(c) / / (1.1) holds andU„>O for all n w.p.l, then

(1.10) ^ ( 0 U ( 0 - X^ (̂,). ^I ^k (O r

(d) / / HnWn -» 0 w.p.l as n -* oo, then

(1.11) ^it){t - Af,^,^)-^ 0 w.p.l as t-^ CO.
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(e) Under the assumptions of (c) and (d),

(1.12) ^ ( r ) Nit) - Xt, Y, f** - Xw? lr-» X /̂̂ AT̂ ^̂ r a.r/ ^ oo.
I *:-l /

The nonnegativity of U„ and W„ is crucial for the convexity of the limit sets K^
and Kty.

EXAMPLE 3. To see that the nonnegativity is necessary for Kf^ to be convex, let W^
be defined so that El^iW^ = nw + (-l)"/<^(n); then Kfy = ( - 1 , +1}. In contrast,
convexity is easy in the classical case of partial sums of i.i.d. real-valued random
variables with finite second moments because the individual terms are o(<^(n)). •

The extra conditions in Theorem 2(c)-(e) are needed for the conclusion (1.12).
EXAMPLE 4. To see that (1.12) need not hold under (1.1) alone, return to Example 2

and note that the limit set for < (̂/){A (̂/) - Xt,L^^lW^ - Xwt) is {i-x, -;c),(0, x):
0 < X < 1}, which is not equal to X /̂̂ AT̂ r̂ = {(0, x),i-x,O): 0 < x < 1}. •

It is possible to remove the positivity condition in Theorem 2(c) by controlling the
growth rate of both Nit) - Nit - ) and ff̂ , but something is needed.

EXAMPLE 5. We show that (1.10) need not hold without the assumed positivity for
U„. In the setting of Example 3 let U2„ = 0 for all «. The E î'̂ JK^ = wNit) -f-
^iNit))-\ so that

' as / -» 00
k = l J

by Theorem 1. •
Unfortunately, we have difficulty in showing that T,k~i^k ^'^'^ foQ(^) ^ can be

appropriately related, despite the strong foundation in §2 of [6]. We need to impose
extra conditions on the fiuctuations of iA„, W„). Our conditions are not too difficult to
verify because they are for A„ and W„ separately.

THEOREM 3. If n~^A^ -^ X~\ 0 < X"^ < oo, and there exist positive constants a
and P with a < /8 < 1/2 such that

(1.13) ii) n-''W„-^O w.p.l asn^ao and

(ii) for any « > 0,

(1.14) {A^„+^„fi^-A„)/en^-* X~^ w.p.l asn-* oo,

then

(1.15) t-^Qit) = t-^{Nit) - Dit)) ^ 0 w.p.l ast^ ao and

(1.16)
NU)
ZW,- Qis)ds
-1 •'o

0 w.p.l as t -* 00.
k-

We now combine TTieorems 2 and 3 to obtain the LIL version of £ = XW.

TtlEOREM 4. If (1.1) holds with 0 < X < oo and w < oo, U„ > 0 for all n w.p.l, and
(1.13) and (1.14) hold for positive constants a and fi such that a < yS and a + fi < 1/2,
then

(1.17) ,l>it)i^Nit)-Xt,f'Qis)ds-Xwt^^Kf,Q^X^^K^^T ast^ oo.
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REMARK. (1.4) Tbe fluctuation condition (1.14) niay be interpreted as an a.s.
version of the Anscombe [2] condition that is frequently used in random time-change
weak convergence arguments. Condition (1.14) also implies that 4>in)U„ -* 0 w.p.l as
required in TTieorem 2(d). To see this, note that (1.14) implies that 4^in)iA„ -
Ain-,nt]) -^ 0 w.p.l, while 0 < £/„ < .4„ - A^„_^„fy

It is obviously not trivial to verify fluctuation condition (1.14), but (1.14) is
convenioit to apply Borel-Cantelli arguments. Furthermore, (1.14) is a standard
conclusion of a strong approximation theorem for the process {U„: n > 1}; see Csorgo
and Rivesz [4] and PhiUpp and Stout [21]. For example, we ^ply TTieorem 3.2.1 of
Csorg5 and R6vesz [4] to obtain a cleaner sufficient condition for the case in which the
interarrival times are i.i.d.

THEOREM 5. / / {U„: n>l) is i.i.d. with EiU^^^) < oo, i8 < 1, then (1.14) is
satisfied.

REMARKS. (1.5) Our proof of Theorem 5 follows directly from a strong approxima-
tion result for partial sums of i.i.d. random variables, and a known result on the
increments of Brownian motion. With more work, it should be possible to improve this
result significantly. In fact, a referee has proved that (1.14) holds with fi = 1/2 under
the condition of Theorem 5 with )8 == 1. This improvement carries over to Theorem 6
(Remark 1.9 below), but not Theorems 4, 8 and 9 because Theorem 8 does not use
(1.14) and Theorems 4 and 9 needs a + ^ < 1/2.

(1.6) For /S = 1/3, a weaker result than Theorem 5 (the same conclusion under a
slightly stronger moment condition) can be established by a relatively elementary
argument based on the Borel-Cantelli theorem. In particular, it is not difficult to show
that it {U„: n > 1} is i.i.d. and £l4«<i+*> < oo for some S > 0, then (1.14) holds for
fi = 1/3.

(1.7) The real power of (1.14) is for treating dependent sequences {U„: n > 1} such
as regoierative, <^mixing and martingales. One way to do this is to apply strong
approximation theorems; see Philipp and Stout [21]. The strong approximation theo-
rem gives us A^- Bin) = 0(n^/^~') w.p.l for some 8 > 0 where [Bit): t > 0} is a
nice stochastic process such as Brownian motion. Then

{A^„..r,'', - AMr^^ = (5{[« + en'']) - Bin))/.n^ = O(«V2-«-^),

so that in orda" to invoke known properties about Bit) we need to take fi > 1/2 — 8.
The quality of the strong approximation for A„ decreases as 8 decreases. In turn, the
requirement for W^ in (1.13) increases as 8 decreases. (The permissible a decreases as
fi increases and 8 decreases.)

(1.8) A major goal in this paper is to see what can be done relating the various LILs
without resorting to FLILs. However, the strong approximation theorems used to
establish (1.14) are intimately corm«;ted to FLILs. On the other hand, it is easy to see
that the conditions of Theorem 4 do not also imply the FLIL generalization of (1.1). In
particular, it is easy to see that (1.1) and (1.13) do not imply an FLIL for partial sums
of the waiting times W„.

EXAMPLE 6. To see that the conditions of Theorem 4 do not directly imply the
FLIL analog of (1.1), let A^ = n for all n. Trivially ^(nX^« - n ) ^ {0} as n -^ oo,
so that it suffices to consider W^ alone. In particular, it suffices to show that an
ordinary LIL for the partial sums of W^ plus (1.13) does not imply an associated FLIL
for the partial sums of W„. Suppose that 0 < c < a < 1/2 and let {n^: * > 1} be a
r^idly increa^g subsequence of positive int^ers such as ŝ ^ °» 2^. Let Wj'^ Q exc^t
for ^>ecial j , namely, Wj^nl'", m,^'''n^-i4>in^)n'~*)~^ <J ^ n^. Note that
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j J j * 1 for each A:. It is easy to see that (1.13) holds and 4>in)L%iWj^
[0,1] as « -* 00, so that the LIL (1.1) holds. However, there is no FLIL for the partial
sums of W„. To see this, consider the subsequence {n^}. As n^ -^ oo, {H" ky^"-i'i^r
n^>l} converges w.p.l to 1 for r = 1 and converges w.p.l to 0 for each other t in the
neighborhood of 1. Since the prospective limit function is not in D[0, oo), the FLIL
carmot hold. •

To further illustrate the use of (1.14) in conjunction with the strong approximation
theorems, we apply Theorem 3.2.1 of Cs6rg8 and R^vesz [4] again to establish another
sufficient condition for (1.14) that will be part of a general result for regenerative
processes.

THEOREM 6. Let {A„: n > 0} be a i possibly) delayed regenerative process with
regeneration times r_i = 0 < TQ < Tj < . //, /or 0 < y < 1,

(1.18) E[iT^ - To)'/^] < 00 and E < 00,

then (1.14) holds with X'^ = EiI.f-^Uk)/EiTi - Tg) and fi = y.

REMARKS. (1.9) By applying Remark 1.5 (rather than Theorem 5) in the proof of
Theorem 6, one can show that if (1.18) holds with y = 1, then (1.14) is valid for
regenerative processes with fi = 1/2.

(1.10) We give a direct proof of Theorem 6 by applying Theorem 3.2.1 of Cs6rg8 and
Revesz [4] again. An alternate proof, following Remark (1.7) above, might be to
directly apply a strong approximation theorem for regenerative processes. For exam-
ple, the strong approximation theorem for Markov chains in §10 of Philipp and Stout
[21] extends easily to regenerative processes. However, it does not yield (1.14). The
condition 8 < 2 of p. 118 there prevents it from applying. We conjecture that Theorem
10.1 of Philipp and Stout [21] is valid for all 8 > 0, but their proof is only valid for
5 < 2. In particular. Lemma 10.2.1 there requires 5 < 2. The difficulty in obtaining
strong approximation theorems for regenerative processes is illustrated by Horvdth's
[13] treatment of the special case of renewal processes.

We now develop a simple sufficient condition for (1.13). We use the following basic
result.

PROPOSITION 7. If {X^: « > 1} is a sequence of random variables for which
n~^T,%^iX^ -* X w.p.l as n ~* oo, wherep > 0 and \X\ < oo w.p.l, then

n~^^' max l^f^l-* 0 w.p.l asn-* oo.
l k

We then can apply Birkhoff's ergodic theorem to obtain the following consequence.
Note that there is no indq>endence condition.

COROLLARY 1. If {X„: n ^ 1} is stationary with EQX^]'') < oo for p > 0, then
^ ^ „ \ ^ O w.p.l.

The next result ccHnbines Theorems 4 and 5 and Corollary 1 to obtain simple widely
applicable suffiident conditions for the fiuctuation conditions (1.13) and (1.14) and the
LIL (1.17).

COROLLARY 2. (a) If {U^: n>l} is i.i.d. and {W„: n > 1} is stationary with
EiU^) <ao and EiWj) < oo, Oten both (1.13) and (1.14) hold with a-^ 1/1 and
P = 1/3.
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(b) // , in addition (1.1) holds with 0 < X < o o , M ' < O O and U„> Q w.p.l, then the
UL (1.17) holds.

In order for Theorems 1-4 to have applied value, of course we need to have an
initial LIL. To apply Theorem 4 in cases of interest, we need (1.1) as well as the
fluctuation conditions (1.13) and (1.14). As a basis for a large class of applications, we
provide sufficient conditions in the regenerative context. The rest of this section thus
parallels [7].

We suppose that the sequence {(!/„, ]¥„): n > 0} is regenerative (possibly delayed)
with regeneration times [T„•. n ^ 0) such that

I T —1 \^
I \U,\\ < 00 and £ E \wA < oo,

I j
but here we do not need to require that f/̂ . or W^ be nonnegative. (If nonnegativity
does not hold, then we need the absolute values in (1.19).) Let X and w be defined by

(1.20) \ - i = £ £ £4 EiT^-T^) and »v =

and let

(1.21) Z,= I {U,~X-\W,-w)

Let C be the covariance matrix of Z,^ and assume that it is positive-definite, so that it
possesses an invertible square root, i.e.,

(1.22) C = BB' = B'B.

Let ||x|| be the usual Euclidean norm in R^, i.e., ||x|| = ixj + ^2)^^^ for x = (Xj, X2).
The key to proving the following results is the LIL independent random vectors in

R^ with uncorrelated marginals; see Lemma 2 of Finkelstein [5].

THEOREM 8. / / the basic sequence {({/„, W^): n > 0} is regenerative satisfying
(1.19)-(1.22), then the UL (1.1) holds with

(1.23) K^^ = [xB{E[T^ - To])'/': \\x\\ < l ) .

REMARKS. (1.11) If the covariance matrix C of Z^ in (1.21) is singular, then the
LIL holds with the limit set K^yy being a line segment.

(1.12) It turns out that the conditions of Theorem 8 also imply the FLIL analog of
(1.1); cf. Remark 1.8 above. This is a consequence of FLIL for partial sums of i.i.d.
random vectors; see TTieorem 1 and Corollary 1 of Philipp [20]. (We provide the
additional supporting details in §9.) In this special case, we thus can get (l.S) and
(1.17) as well as (1,1) without checking the extra conditions in Theorem 4 or Theorem
6; see [7].

Finally, we combine Theorems 6 and 8 to obtain conditions to have both (1.17) and
(1.1) in the regenerative (xmtext. In view of Remark (1.12) above, we are primarily
diecking that conditions (1.13) and (1.14) are reasonable. At the expense of some extra
moment conditions, we obtain all UK LILS directly via the fluctuation conditions (1.13)
and (1.14), without reference to FLILs.
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THEOREM 9. / / the basic sequence (({/„, W„): n > 0} in the L = XW framework
iwith U„> 0 and W„^ 0 w.p.l) is regenerative ipossibly delayed) as above with

(i) £(7\ - To)* < 00,
(ii) E[(Xi^Z^U,f] < 00,

I ^ ; ! )
(iv) C = EiZ[Z{} for Zj in (1.21) is positive definite,

then (1.1) and (1.10)-(1.17) hold with K^y^ in (1.23), K^^Q in (1.17), a = 1/7 and
fi = 1/3.

The rest of this paper is devoted to proving Theorems 1-8. We remark in closing
that LILs for specific queues have been proved by Iglehart [14], [15]. Of course, there
are many LILs in the literature that could be applied to obtain (1.1) besides Theorem
8. For example, a LIL for martingales is on p. 126 of Hall and Heyde [12].

2. Proof of Uteorem 1. We first give a revealing proof under the assumption that
(4 > 0 for all k, and then a quite different one without this condition. Throughout we
assume that 0 < X < oo. We use the following lemmas in this first proof and later.

LEMMA 0. If {x„. n '^ 1] is a sequence of real numbers such that x^n -» c > 0 as
n -* 00, then ^ix^/^in) -^ c~^^'^ as n -* oo.

LEMMA 1. / / (1.3) or (1.4) holds with 0 < X < oo, then
(a) /l~l4„ -^ X~i ay « -» 00 and t'^Nit) -^ X as t -^ oo w.p.l, and
(b) ^iA„)/^in) -* Xi/2 as n-^ oo and ^iNit))/4,it) -^ X-^/^ as / -^ oo w.p.l.

PROOF OF LEMMA 0. Since x^n -* c, log x„ - log « -> log c, so that log A;yiog n
* 1. This in tum implies that log log x, - log log « -* 0, so that log log x

1 and '/^

PROOF OF LEMMA 1. (a) Suppose that (1.3) holds. Since «<>(«) -• oo, n'^A„ -* X~̂
directly from (1.3). Then r W ( O -* X by Theorem 2(a) of [6]. A similar argument
applies starting with (1.4).

(b) This is an immediate consequence of Lemma 0 and Lemma l(a). •

PROOF WITH POSITIVE INTERARRIVAL TIMES. Fix a sample path and let K^ and A'̂ y,
be the limit sets for (1.3) and (1.4). The positivity assumption implies that the set
{HA„)in - XAJ: A^ > 3} is a subset of {^it^Nit) - Xt): t > 3}. Since
^(^J/<^(«) -» X̂ /̂  by Lemma l(b), this implies that -X /̂̂ AT̂  c AT̂v- On the otiier
hand, the set { (̂Af(OX^Ar(,) - Nit)X-^): Nit) > 3} coincides with the set {^inXA„
- X-^n): n > 3}. Since ^(iV(O)/*(O -» X'^^^ by Lemma l(b), ^it^Nit) -

/̂̂  as t-* oo. A similar argument proves that 4>it)iNit)-
A as t -» 00. Note, however, that

(2.1) N i t ) - X ^ ^ ( , ) ^ , < N i t ) - X t ^ N i t ) -

It follows, by the convexity of K^ (Lemma 3 below), that Ar;̂  c -X /̂̂ AT ,̂ which
completes the proof. •

(2.1) A somewhat shorter proof could be obtained from (2.1) under the
assumption that U„ = o{ipin)); then Aff^,^+i - Af^,^ = o(^(0). However, we did not
assume that U„ = o(4>(n)). TTie LIL only implies that U„ = O(<>(«)).

PROOF IN THE GENERAL CASE. We no longer assume positivity of C .̂ The new
proof is obtained by combining the following three lemmas.

LEMMA 2. For every sample path, the set of limit points of {^it^Nit) - Xt): t ^ 3}
as t -* ao is a closed interval.
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PROOF. Since the set of limit points is necessarily compact, we need only show that
it is convex to complete the proof. Suppose that a < fe are two limit points of {/(/):
r > 0} as r -» 00 where / ( / ) = 4>itXNit) - Xt). Then, for any c > 0, there exists a
sequence /„ ^ oo such that /(f2n) > b - e and /(/an+i) < a + «• Since the only
discontinuities of / are positive jumps, it follows that for any ce [ a - ( - e , d — c], there
exists tl, e [/jn, '2B+I] such that fit^) = c. Hence, c is a limit point of [fit): t > 0} as
t -* oo. Since e was arbitrary, any point c lying between a and 6 is a linmt point, so
the set of limit points is convex. •

LEMMA 3. For every sample path, the set of limit points of
n>3}asn-*ooisa closed interval.

PROOF. The reasoning is essentially the same as in Lemma 2, because the sequence
{A„: n > 1} is nondecreasing. Of coiu-se, here there is discreteness, but it is easy to see
that it is asymptotically negligible as n -^ oo: Any jump down at n is bounded in
absolute value by X'^in) -* 0. Let gin) = <|>inXA„ - X~^n). If g(n2*) > b > a >
gin2k+i) for some increasing subsequence [n^], then for any c with a < c < b and
for any c > 0, |g(n) - c| < c for infinitely many n. m

LEMMA 4. For each sample path,

lim ^(f)(iV(f) — Xt) =

to ^(/)(iV(/) -Xt) = -

PROOF. We use the basic inverse relation

(2.2) A„ < t if and only if Nit) > n.

Suppose that ^in)iA„ - X~^n) > c, then

so that N(t„) < n and

Since /„ -• oo and ^(/ ,) /^(n) -* X'/̂  as n -* oo by Lenuna l(b), if 4>in)iA„ - X~^n)
> c infinitely often (only finitely often), then ^it„)iN(t„) - Xt^) < -t^'^c -I- c in-
finitely often (< -X'/^c - c only finitely often). A similar result holds starting with
i^itXNit)-Xt)<c. m

REMARK. (2.2) Note that we never used the fact that the limit sets K^ and Kf^ are
deterministic.

3. Proof of Tbewem 2. First, part (a) is covo-ed by the same proof as in Lemma
2: Tlie process {'^it)(X-k!^i^k ~ Xw/): / > 3] has only positive jump discontinuiti^.

To prove (b), we first note that

(3.1) |*(iV(O)Mw) - X-W(0, £ W, - N(t)w\: Nit)
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is a random subset of

(3.2)

where Nit) -* oo as t -* oo. Since ^iNit))/^it) -* X"*/^ by Lemma 0,

(3.3) {^(0) = UioU^u) - "̂'A (̂'). L V * - Nit)w\: Nit)

has limit set contained in }}^K^^. But the process in (1.9) is Xit)T for Xit) in (3.3)
and r in (1.8), so that the limit set of (1.9) is indeed contained in X̂ /̂ AT̂ ĝ r.

Part (c) follows because if !/„ > 0 for all n, then Nit) increases in jumps of size 1, so
that the limit points of (3.1) and (3.2) coincide (as in the first proof of Theorem 1 under
the positivity condition).

For part (d), if *(/i)l4 ^ 0 w.p.l, then <t>(f^it))U^(,^_i -» 0 w.p.l, so that
^(/)C/y(,)+i -^ 0 w.p.l, which in tum implies (1.11).

Part (e) is obtained by combining (c) and (d). •

4. Proof of Theornn 3. Let 7(5) be the indicator function of the set B; i.e.,
/(i?X<«') = l i f " ^ * and 0 otherwise. Reasoning as in §5 of [8], recall that, for any
y>0,

N(t)

< E ii^k < ^ ^t + yk" > 0 + I H^k >
k-1 k~l

NU) »

< L iUk + yk'>t)+ E I{W^ > yk")
k-1 k-1

< E f{^k + yk' > >ty(,)) + E
k-l k-l

where E"_i/(»fc > yk') is finite w.p.l by virtue of (1.13). Hence, to establish (1.15), it
suffices to show that

NU)

r^ E KA + yk' > Asu)) -* 0 w.p.l,

which in tum is equivalent to

NU)

Nit)-'' E H^k + yi^'>ANU)) -*0 * p i
k-l

because r~W(l) -• X by virtue of the assumed convergence n'^An -* X~^ w.p.l and
Tlieorem 2(a) of [6]. Hence, it suffice to show that

* + Tik" > ^ J - 0 w.p.l
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which is implied by

but

(4.1) n-

w.p.l.

A„) + n 1).

By (1.14), Y can be chosen so that A„ — A[„_^„»^ < yn^ only finitely often, w.p.l.
Hence the first term on the right side of (4.1) is 0 for all sufficiently large n, w.p.l.
Since e was arbitrary, the proof of (1.15) is complete.

By Theorem 1 of [6],

(4.2)
mo

- Qis)ds
•'o

- Dit))ttiax{W^: 1 <)fc < Nit)}.

Under (1.13), taaK{W^: 1 < A: < « } / « " - * 0 w.p.l, so that max{PF :̂ 1 < A: <
Nit)}/Nit)" -^ 0 and ttiax{W^: 1 < A: < Nit)}/t'' -* 0 w.p.l. Hence, (1.16) follows
by combining this with (1.15) and (4.2). •

5. Proof of Hieorem 5. We apply Theorem 3.2.1 of Csorgo and Revesz [4],
letting a, = ew" and Hix) = x^/^. By (3.1.6) there, for any e > 0,

(5.1)

(5.2)

As a consequence of (5.1), for all e > 0,

i -A„\ = YatiU,) where

n^) + log log n)] " ' ' ' ' .

„| = eX-l w.p.l. •

6. Proof of Theorem 6. By Theorem 5 (Theorem 3.2.1 of Csorgo and Revesz [4])
twice.

'7-,-!

,k-T^

(6.2)

W.p.l as « -» 00 and

) w.p.l as n -^ 00
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for any 5, y > 0. Let £(jc) = max{k > -1: T̂  < x}. (Note that L(x) is well-
defined.) From renewal theory, it follows that Lin)/n ->• l/EiT^ - TQ) w.p.l as
n ^ 00, so that Lin) -» oo as « -» oo w.p.l. Hence,

) -^ E\ Z^ U^\ w.p.l as n ^ 00,
\ * 'o /

which implies that

j.ĵ  ^ — Aj- | / i ~* ' g w . p . l as n —> 00.

Since Lin) < n.

so that, by our moment hypothesis and Corollary 1 to Proposition 7,

(6.4) i^A^^^^^^-A„)|n^/'^O w.p.l asn-^oo .

Combining (6.3) and (6.4), we obtain

By the same reasoning applied to (6.2) instead of (6.1),

['^lL(«) + yL(»f]- TL^n)]lyL(n)^ ^ EiT^- To) W.p.l aS « "^ 00,

so that

(6-6) [TiLin)^,L(r.)''i-T^i.)]/n^^y[EiT,-To)Y-^ w.p.l asn^oo.

Since

|7i(«) - «| < max \T, - J^.J,

our moment of hypothesis and Corollary 1 to Proposition 7 yield

(6.7) \TL(n) - nljn^^-> 0 w.p.l a s n ^ o o .

Combining (6.6) and (6.7), we obtain

[^[£{n)+r£(»/j - "J/"^ -^ Y[-£'(7I - 2o)]^~^ w.p.l as « -• 00.

By (6.7),

! ( ") l/^-^O w.p.l asn-oo .
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SO that, choosing y - t/lEiT^ - To)f~^, we find that

(6.8) [T^n„^.^yn„)f] - 7i(«+«^)|/n'' -» 0 w.p.l as n ^ 00.

We claim that (6.8) implies the limit

)-I-Y£(n)^l - L ( « + e«^) ] /n^^O w.p.l a sn-^oo .

To see this, suppose that there exists TJ > 0 such that [Lin) -t- yL(n)^] - Lin +
> r\n^ i.o. Then (6.2) implies that

which contradicts (6.8); a similar proof works for TJ < 0.
Since [Lin) + yLin)^] = Lin •¥ tn^) + o(«^), it follows from (6.1) that

~* ̂  w.p.l a sn-* 00.

We conclude from (6.5) that

, — AA n^ -» —Ta = cX ^ w.p.l as w - • 00

for X~̂  defined in Theorem 6. It follows from (6.4) that

so that

(•̂ (B+cn"] ~ A^/tn^ -* X~^ w.p.l as n -» 00,

as stated in (1.14). •

7. Proof <rf PrqiosttHMi 7. Under the condition, n'^X^ = n"^E*_iJf^ -
* 0 w.p.l, so that n~^^'X„ -^ 0 w.p.l. For m^ n,

n~^^' max \XA < n~^^^ max \XA + max k

max \Xk\ -I- maxfc
k>m

First let n - • 00, then m -» oo.

8. PnM^ <rf Tlwwein 8. We first apply (1.22) to obtain i.i.d. vectors ZjB~^ with
uncorrelated marginals; i.e..
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Next apply the LIL for i.i.d. random vectors in jR̂  with uncorrelated marginals, see
Lemma 2 of Finkelstein [5], to obtain

(8.1) '!>{")
k-1

asn

where K2 is the imit disc in R^, Le., K2 -

(8.2) 4 ' ( « ) E Z , r - A

^- \\x\\ < 1}. As a consequence.

as « -» 00.

From (8.2), we have

(8.3)
Un)

asn-»oo.

where L(n) = max{A:: T^^n), n > 0, so that by Lemma 0

Un)
(8.4)

Finally,

asn

k-1

i(n)-l

k-1

k-T,,
{U,-X-\W,-w)

max 4| + max £ \W,\ max ^ -h w)).

which is o(n ^/^) w.p.l by our moment condition (1.19) and Corollary 1 to Proposi-
tion 7. •

9. R^oaik (1.10): The FLJL. In this final section we provide additional details to
show that the conditions of Theorem 8 indeed imply the FLIL generalization of (1.1),
Le., the sequential compactness of

(9.1)
["•]

W,-[n]w\:n>3
k-Q

in the function space D[0,00) w.p.l. (See [3], [6] md [26] for additional background on
Z>[0,00) and FLILs.) l%us (1.17) can also be obtained from §6 of [6] in this
regenerative case under the weaker conditions of Hieorem 8 instead of Hieorem 9.
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To establish the sequential compactness of (9.1), it suffices to identify for any
subsequence {n,^: k ^ 1} a further subsequence {n,': / > 1} and a limit function y
such that

(9.2) sup
I"'.']

-y{t)

w.p.l as « ' -» 00

for each T > 0. We use the topology of uniform convergence on compact subsets
because the limit functions will all be continuous. We use a previously established
FLIL to identify {n'} and y given [nf.]. The stated conditions directly imply the
FLIL for the i.i.d. random vectors at regeneration points (Theorem 1 and Corollary 1
of Philipp [20]); i.e., given any subsequence (n^) there exist a further subsequence n,'
and a continuous Umit function x such that, for each T > 0,

(9.3) sup

W.p.l as n- -» 00,

which clearly implies that for each T

(9.4) sup

T

0 w.p.l

Now,

W.p.l
0<r<T

by the moment condition (1.9) and Corollary 1 to Proposition 7. Similarly,

^ta.<l) [nt]

k'O t-0

• [n/] | = o(n^/^) w.p.l.

sup w.p.l and

SO that by (9.4)

sup

0 w.p.l.
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By the FLLN, for each T,

sup \n'^T^„,^ - tEiTi - Jo) I -^ 0 w.p.l as /i ^ oo,

so that

sup |«" 7t[n,j — / I ' " 'L ( [« / ] )£ (T ' I — 7 )̂ I -> 0 w.p.l as « -» oo.

Hence, since

sup |7£([n,j) — [n/] | = oin^^^) w.p.l.

709

sup 0 w.p.l.

Using the uniform continuity of x on compacts, it follows that for each T.

sup
Li{n.t])

— X 0 w.p.l as n, -» 00.

What we have shown so far is that the sequence (9.1) is indeed relatively compact and
that the set of limit points L* includes the set

(9.5) L= \y: yyt) = x\t/EyTy — 7 )̂), x e L j .

when L is the set of limit points of (9.3).
To show that L* = L, let y G L*. Then there exists a subsequence «, such that for

each T,

sup - [n,t]w] -

W.p.l as n, -• 00.

This implies that, for each T.

sup
\ * -o /

w.p.l as /I, -» 00.

By the same uniform continuity argument as above,

sup |U(n~'^[„_,J] - yiEiT^ - Tft)t) || ->• 0 w.p.l as n, -• oo.

Thus, yiEiT^ — TQ)/) e L, which implies that L* c L, completing the proof. •

Adcoowiedgemente. We thank Allan Gut and an anonymous referee for very
careful readings. As noted in Remarks 1.5 and 1.9, the anonymous referee provided a
significant improvement to TTieorem 5 (which we did not include).
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