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This paper develops and evaluates relatively simple closed-form approximations
for the M/M/1 busy-period cdf (cumulative distribution function). The first-
order effect of the traffic intensity is identified and isolated by scaling. The
principal approximations considered for the scaled busy-period cdf are:
hyperexponential (H,) approximations (mixtures of two exponentials) obtained
by matching moments and derivatives of the cdf at the origin, asymptotic
expansions as t—o0 and related approximations, approximants based on
Widder's formula for Laplace transform inversion, and inverse Gaussian distri-
butions. For small times, the hyperexponential approximation obtained by
matching three derivatives at the origin performs best among these candidates.
For larger times, an asymptotic normal approximation and an inverse Gaussian
distribution perform remarkably well. Inverse Gaussian distributions arise
naturally via diffusion approximations, but significantly better inverse Gaussian
approximations can be obtained by making additional refinements, e.g., by
matching moments or by matching the asymptotic exponential rate as t—oo.
Overall, the results provide a better understanding of the M/M/1 model and a
basis for developing approximations for busy-period cdf's in more general
models and other quantities of interest in the M/M/1 model.

1. INTRODUCTION AND SUWARY
In the preface to the first edition of his fundamental book, The Single Server
Queue, COHEN [15] describes the focus:

‘The present book concentrates on the most basic model of queue-
ing theory, i.e., the single server model. Its aim is twofold. Firstly
a description of those mathematical techniques which have been
proved to be the most fruitful for the investigation of queueing
models, and secondly, an extensive analysis of the single server
queue and its most important variants.’

Thus, the single server queue is of great interest for its own sake, as a model
representing many queueing phenomena, as well as a means to illustrate useful
techniques that can be applied to other stochastic models.

For these same reasons, we have also been studying the single-server queue
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[1-6]. Our goal is to obtain simple approximations and a better understanding
of the basic queueing models in order to facilitate practical engineering appli-
cations. In particular, our research has been directed toward developing sim-
ple approximations describing the transient behavior of the standard GI/G/1
model. We are trying to contribute theoretical insight to empirical investiga-
tions such as have been made by ODONI and RoTH [39]. Of course, we want
to obtain good numbers, but more than numbers we want relatively simple for-
mulas. The simple formulas help communicate understanding and help do
further analysis, e.g., optimization and description of more complex models.

We also intend to apply our methods and results to analyze queues with
time-dependent parameters, as in CLARK [14] and Dupa [20,21], but so far we
have concentrated on the standard GI/G/1 model; we have been studying the
transient behavior of a stationary model with general initial conditions. In
fact, much of our work so far, including this paper, focuses on the most ele-
mentary M/M/1 special case. We hope to gain from such a narrow focus, just
as Cohen does with The Single Server Queue (although some may think we are
carrying a good thing to an extreme).

1.1. Simple approximations and asymptotic analysis

Developing simple approximations and a practical understanding is an impor-
tant activity for the mathematician as well as the engineer. The possible
. benefits of mathematical insight applied in this direction are well illustrated by
the approximations for the M/G/s queue developed by Boxma, COHEN and
HuUFFELS [12].

In our analysis of transient behavior, a major role is played by asymptotic
analysis. In particular, we exploit diffusion approximations resulting from
heavy-traffic limit theorems [29]. The heavy-traffic limit theorems provide a
scaling of time that is very useful. With appropriate scaling of space and time,
the M/M/1 queue-length process approaches a nondegenerate limit as the
traffic intensity p approaches 1. The limit at 1 is of course regulated or
reflecting Brownian motion (RBM). With this scaling, we can thus regard
RBM as the special M/M/1 model with p=1. We can thus obtain insight
about RBM and M/M/1 from each other, as was done by COHEN and
HOOGHIEMSTRA [16].

We are also interested in limit theorems showing how the time-dependent
distribution approaches steady state, i.e., the theory of relaxation times as
analyzed extensively by CoHEN [15]. In agreement with NEWELL [38], we find
that the first-order effect of the relaxation time is captured by the time scaling
associated with the diffusion approximation. In agreement with ODONI and
RoOTH [39], we also find that the approximations following naturally from the
relaxation-time limit theorems are not especially accurate. Of course, they do
describe the important first-order effects, but they can be significantly
improved. It appears that the region where the limit theorems related to the
relaxation time are relatively accurate (within 10%) is usually considerably
beyond the region of primary practical interest; see Table 3 of [1], Table 5 of
[3], and Table 10' here. Fortunately (for applying steady-state results), the

1. All tables of this paper have been collected in Appendix A.
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M/M/1 processes tend to be closer to their steady-state limits than the relaxa-
tion times predict at times of primary interest. (This summary judgement
requires some qualification: It is correct for the quantities we have considered,
such as the mean-queue length starting empty or starting with relatively few
customers, but it is not correct for the mean queue length starting with a great
number of customers; then the approach to steady state is essentially linear.)

We not only investigate the quality of approximations of the transient
behavior via relaxation-time limit theorems, but we also develop new approxi-
mations that are easy to apply and understand, and that are reasonably accu-
rate. For example, mixtures of two exponentials (hyperexponential or H, dis-
tributions), which have three parameters, have proven to be very useful in our
previous work [1-5]. Many M/M/1 quantities of interest turn out to be com-
pletely monotone (a general mixture of exponentials), which provides theoreti-
cal support for the H, approximations. Moreover, in regions of interest often
one exponential dominates, so that we obtain a simple exponential approxima-
tion there. Then we have a very simple formula describing the time-dependent
behavior of the queue.

1.2. The M/ M/ 1 busy-period distribution

We continue this line of investigation here by investigating approximations for
the M/M/1 busy-period distribution. It is well-known that the busy period
plays a fundamental role in both the equilibrium distribution (e.g., via regen-
erative structure) and the transient behavior; see [4], {15] and [28). In this
paper, we consider several different approximations for the M/M/1 busy-
period distribution and compare their accuracy. It turns out that the H,
approximation obtained by matching three moments does not work as well for
the busy-period distribution as it does for other M/M/1 quantities, so that we
end up proposing different approximations. A specific approximation is pro-
posed in Section 7, but additional insight is gained from seeing how all the
candidates fare. The entire analysis illustrates, as others have discovered
before, that the busy-period distribution is rather strange and difficult.

As indicated above, our motivation is not only to describe the M/M/1
model itself, but also to develop results and techniques applicable to more gen-
eral models. In a sequel to this paper we apply the results here to develop
approximations for the GI/G/1 busy-period distribution. We briefly discuss
approximations for the GI/G/1 busy-period distribution in Section 8, but all
numerical comparisons here are restricted to the M/M/1 model.

1.3. What is the busy-period distribution like?

Before discussing any formal results, it seems worthwhile to give a brief intui-
tive discussion of the behavior of the GI/G/1 busy-period distribution,
because it has somewhat peculiar properties that are easy to understand after
some thought. The main observation is that the behavior for small time values is
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very different from the behavior for large time values. The entire paper ela-
borates on this theme.

For small time values, the GI/G/1 busy-period distribution is quite sensitive
to the specific interarrival-time and service-time distributions. For example,
the probability that the GI/G/1 busy period coincides with one service time is
P (v<u) where v is a service time and « is an interarrival time. For very small
time values, the busy-period cdf (cumulative distribution function) B (¢) is usu-
ally approximated very well by

B(t) = P(v<t,v<u), (L.I)

which obviously depends strongly on the specific distributions for u and v.
Moreover, for small time values the busy-period cdf does not depend criticaily
on p. There is no dramatic change as p approaches 1 from below or even as p
becomes greater than 1. Even if p> 1, the busy period may be fairly short.

On the other hand, for large time values the busy-period distribution is pri-
marily determined by a large number of convolutions of the interarrival-time
and service-time distributions, so that central-limit-theorem behavior begins to
play a central role. Thus, for large time values the busy-period distribution
primarily depends on the interarrival-time and service-time distributions only
through their first two moments, and approximations by RBM and other
related quantities (normal and inverse Gaussian distributions) should be good.
Moreover, for large time values the busy-period cdf obviously depends criti-
cally on p. As p approaches 1, the busy period can have a very fat tail. If
p>1, then the busy period may not terminate at all.

The point we wish to emphasize is that the small-time and large-time
behavior are quite different. Thus it should come as no surprise that we
obtain useful results, both theorems and approximations, by treating these
different regions separately. For example, we can describe the heavy-traffic
behavior as p—1 in each of the separate time regions quite nicely, as we show
below in Sections 2.6 and 2.7.

1.4. Literature review

There obviously is an enormous body of related literature, including the funda-
mental papers by KENDALL [33], BAILEY [8,9] and KARLIN and MCGREGOR
[32]). For the most part, we refer to COHEN [15] for a map of the known
world. With regard to previous work on approximations of busy-period distri-
butions in the single-server queue, we cite RICE [40], RIORDAN [42, pp. 106-
109], KOSTEN [34, pp. 42-45], HEYMAN [26] and Dupa [20,21]. We will discuss
these previous approximations as they relate to our work.

1.5. Organization of this paper

We review supporting theory for the approximations in Section 2 and discuss
the main approximations in Sections 3-7. We discuss hyperexponential
approximations in Section 3, approximations related to asymptotic expansions
in Section 4, approximations based on Widder’s formula for Laplace transform
inversion in Section 5, and inverse Gaussian approximations in Section 6. We
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present a final composite approximation in Section 7. We briefly discuss
approximations for the GI/G/1 busy-period distribution in Section 8, and
related approximations for the M/M/1 expected cumulative idle time up to
time ¢ in Section 9. Finally, we present conclusions in Section 10.

2. BACKGROUND

In this section we review supporting theory for our approximations. We draw
. on our previous M/M/1 papers [3-6], but we also make connections to the
extensive literature.

2.1. The M/M/1 model with time scaling
Let Q(t) represent the queue length (including the customer in service, if any)
at time 7 in the M/M/1 model. Without loss of generality, let the service rate
be 1, so that the arrival rate coincides with the traffic intensity p. Assume that
p<1, so that the system is stable with Q(z) converging in distribution to Q(o0)
as 100, where P(Q(o0)=k)=(1—p)d*, k=0.

As in [3-6), we further scale time by (262)~!=2/(1—p)?; ie., we consider
Q(2t/(1—p)*) and let P,(¢) be the time-scaled transition function

Py(r) = P(QQ/(1—-p))=j|QO)=i). 2.1

The time scaling in (2.1) is a very important part of the story. Our goal is
to describe the queue length process Q(¢), its transition function Py(1) and the
associated busy-period distribution. It is significant that the first-order effect
of the single parameter p is captured by this time scaling. As discussed in Sec-
tion 2.2 of 3], the time-scaling captures the heavy-traffic behavior as p—1. In
particular, the family of processes {27 !(1—p)Q(2t/(1—p)?): =0} indexed by
p converges to canonical regulated or reflecting Brownian motion (RBM), hav-
ing drift coefficient —1 and diffusion coefficient 1, as p—1. Thus, with the
time scaling, we can treat RBM as the nondegenerate M/M/1 queue with
p=1. With the time scaling the M/M/1 processes for different p tend to
fluctuate in about the same time scale; we remove the dominant p effect, so
that we can more easily compare M/M/1 processes with different p. A simple
practical consequence is that we can more meaningfully compare M/M/1
quantities for all possible traffic intensities p, 0<<p=<1, in the same table; see
Table 1. In contrast, without the scaling, the interpretation of a given time ¢,
depends more on p, so that one table including several different p is less mean-
ingful; e.g., see HEYMAN [26]. (In fact, for the M/M/1 busy-period distribu-
tion, additional scaling is appropriate, as we will indicate in Section 2.7
below.)

For more general models, such as GI/G/1 or GI/G/m, it is useful to scale
time so that canonical RBM aiso appears as the limit as p—1. As indicated in
Section 2 of [1], it is easy to convert RBM with negative drift x and variance
coefficient » to canonical RBM, so that it is easy to obtain the appropriate
scaling; see Section 8. With such a scaling, we identify and isolate the first-
order effect of the variability (as it differs from M/M/1) as well as the traffic
intensity.
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2.2. The busy-period distribution and related quantities

Here we are primarily interested in the busy-period distribution. Let B(t) be
the time-scaled busy-period cdf (cumulative distribution function); let
B°(1)=1—B(1) be the complementary busy-period cdf; and let b(t) be the
density. Let B (s) and b(s) be the associated Laplace transforms. From Ken-
DALL [33] or BAILEY [8,9], we know that

b(s) = [e~*b(t)dt=z,(s)=[1—0+8s—6¥(s)V/p,
[1]

B°(s) = 20/[1+0s+¥(s)], @2
where

6 = (1—p)/2, Y(s)=[1+2(1 —8)s +(85)*]'/?,

ri(s) = ¥+(1—8s), ry(s)=¥—(1—08s),

pzy = 1—6r,, pz;=1+0r,, @3)

rir, =2s, pz1z3=1 and p(1—z,}z;—1)=26s.

The functions z,=z,(s) and z,=z,(s) are the two roots of the basic quadratic
equation pz2 —(1+p+26*s)z+1=0. The Laplace transform b(s) is derived by
KENDALL [33] by making connections to branching processes and by BAILEY
[8,9] by considering a modified M/M/1 Queue length process that is absorbed
when it reaches the origin. As indicated in the proof of Theorem 3.1 of [4], we
can also obtain b(s) directly from Plo(s) and Pgy(s) using first principles,
where P, i(s) is the Laplace transform of Py(t) in (2.1); in particular,

b(S) = Plo(S)/Pm(S). (2.4)

Indeed, the time-domain version of (2.4) is the starting point for Cohen’s treat-
ment in [15]; see (2.30) on p. 187.

Additional properties of the M/M/1 busy-period distribution appear in
{3-5). For example, Corollary 4.2.3 in [4] establishes an interesting connection
between the probability of emptiness Pgy(?) and B(z), namely,

Pyo(t) = 1—pB(t), t=0, 23

which quickly yields expressions for the expected cumulative idle time in [0, ¢],
say Ely(t); the expected workload in the system at time #, EWo(¢); and the
expected queue length EQ,(z); all given that Q(0)=0 (this condition being
indicated by the subscript), namely,

Elyt) = {Poo(s)d-‘:' { [1—pB (u))du,

EQo(t) = EWo(t)=pt—t+EIly();

see Corollary 4.2.6, the alternate proof of Corollary 5.2.1, and Theorem 8.1 of
{4]. (In fact, (2.5) is an immediate consequence of the relation pz; =1-—0r, in
(2.3), because Pyy(s)=0r,/s and b(s)=z, by (2.6) of [4] and (2.2) above.) As

(2.6)
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indicated in Remark 4.1 after Corollary 4.2.3 in (4], (2.5) evidently has a long
history, but it does not seem to have been given enough emphasis.

Relations (2.5) and (2.6) provide additional motivation for this paper
because they show that other M/M/1 quantities of interest can be expressed in
terms of the busy-period distribution. (For more on this, see [4-6] and Section
23 below.) Our approximations for B(r) automatically yield associated
approximations for these other M/M/1 quantities. We discuss some of these
. related approximations in Section 9.

In this regard, it is significant that the busy-period distribution coincides
with the equilibrium waiting-time distribution in an M/M/1 queue with the
last-come first-served (LCFS) discipline, as was first noted by RIORDAN [41].
This LCFS waiting-time distribution is useful for its own sake, but also
because it provides an upper bound on the waiting-time distribution for a large
class of service disciplines, as noted by VAULOT [47]; see p. 416 of HEYMAN
and SoBEL [27]. Not only do the results here apply to this M/M/1-LCFS
waiting-time distribution, but previous descriptions of the M/M/I1-LCFS
waiting-time distributions in VAULOT [47], RIORDAN [41] and pp. 106-109 of
[42], and pp. 42-45 of KOSTEN [34] also apply here. Indeed, this previous work
seems most closely related to our interest in relatively simple closed-form
approximations. Vaulot, Riordan and Kosten discovered exact representations
that are convenient for generating numbers as well as relatively simple closed-
form approximations.

2.3. The stationary-excess relations

An important discovery in [3-5] is a connection between various M/M/1 quan-
tities and the busy-period cdf B(r) via the stationary-excess operator [51]. For
any cdf G(r) on the positive real line with mean m,, the associated stationary-
excess (or equilibrium-residual-life) cdf G,(¢) is defined by

G.(t) = mi! j [1-G(u)ldu, t=0. Q.7
! .

In [3] we focused on moment cdf's which are the (time-scaled) moments
E[Q(1)*] under the condition that Q(0)=0, divided by their steady-state lim-
its. Corollary 3.1.3 of [3] and Corollary 5.2.1 of [4] show that the first-moment
cdf, denoted by H,(¢), coincides with B,(t), the stationary-excess cdf associ-
ated with the busy-period cdf B(r). In fact, this is just a restatement of the
second relation in (2.6).

Theorem 1 of [5] shows that the correlation function of the stationary (time
scaled) queue length process, denoted by c,(¢), in turn coincides with Hf.(r),
the complementary stationary-excess cdf associated with the first-moment cdf
Hy(1). Thus, c,(t) is obtained from the busy-period B(r) by applying the
stationary-excess operator in (2.7) twice.

These stationary-excess relations have important implications for both
theory and approximations. For example, the spectral representation and the
asymptotic behavior for B(r) thus easily extend to H,(r) and c,(¢); see
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Sections 2.8 and 4. Since the stationary-excess operator tends to be a smooth-
ing operator [51], the functions B“(f), H{(f) and c,(¢) tend to be successively
better behaved. In particular, the stationary-excess relations help explain why
it is harder to obtain good approximations for B°(¢) than it is for BS(¢)=HS(¢)
or ¢,(t). DELBROUCK [18] and ERLANDER [22] previously considered B,(r) and
noted that it has nice properties.

2.4. Numerical inversion of the Laplace transform
As first shown by KENDALL [33], the Laplace transform b(s) in (2.2) can be
inverted (using pair 556.1 from CAMPBELL and FOSTER [13]) to obtain

b(t) = ——e~"" e~ 1,)), 120, 2.8)
} p «

where I;(v) is a modified Bessel function of the first kind, e.g., p. 377 of
ABRAMOWTTZ and STEGUN [7],

= ﬂ-*—;—/—ﬂﬁ and »=16"2Vp. @.9)

The parameter 7 in (2.9) is the time-scaled relaxation time which describes
the asymptotic behavior of (2.8) as r—cc. (Recall that f(v)~g(v) means that
f(@)gv)»1 as voeo. Use 97.1 on p. 377 of [7] to see that
e 'I,()~Qmy)"? as v—ooo, so that eI, (v)~Vt as r—o0; ie,
b(1)~Kt~32e~t" so that e ~"/" is the dominant term in (2.8) as r—co; see
Section 4. The unscaled relaxation time is (1— Vp)~2, as given on p. 180 of
CoHEN_[15]; 7_is the time-scaled relaxation ume because (1—p)*=
a- \/;)2(1 + \/;)2 Note that the dominant portion of the unscaled relaxa-
tion time for high p is in the time scaling.)

Asymptotic results related to the relaxation time can be used to generate
approximations, but as in [1,3], we show that the natural approximations gen-
erated from these limits do not perform well for times of primarily practical
interest. However, in Section 4 we show that appropriate refinements of the
asymptotic results do perform well for times of practical interest.

We focus on_ the complementary cdf B<(t) instead of the density b(?).
Unfortunately, B (s) in (2.2) is not as easily inverted as b(s) SO to_ obtam ,
numerical values of B¢(t) we numcncally invert the Laplace transform B ‘(s) in
(2.2). Indeed, numerical transform inversion is not an unreasonable way to
obtain numerical values for b(¢) in (2.8).

Given that so many queueing results are expressed in terms of Laplace
transforms, it is surprising that relatively little attention has been given to
numerical Laplace transform inversion in the applied probability literature.
For example, queueing textbooks do not provide practical guidelines and pro-
cedures for numerically inverting Laplace transforms. However, as we indi-
cated in Section 4.4 of [1], there are numerous techniques for the numencal
inversion of Laplace transforms. As in [1], we use the Gaver-Stehfest pro-
cedure [23,43]. It yields good (but not exceptional) accuracy on a small com-
puter (a personal computer with BASIC) with little programming effort. The
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Gaver-Stehfest procedure was also employed and compared to other pro-
cedures by NANCE ET AL. [37]. For still other procedures plus comparisons,
see DAVIES and MARTIN [17].

Our goal in numerical transform inversion is only to obtain limited accu-
racy. We are primarily interested in relatively simple analytical approxima-
tions that are convenient for practical engineering applications. If we actually
wanted great numerical accuracy, we would use a different inversion technique.
. In fact, the best way to get numerical results is not to use transforms at all,
but to exploit integral representations, as discussed in [6] and Section 2.8
below.

Numerical values of the complementary time-scaled busy-period cdf B¢(r)
obtained by applying the Gaver-Stehfest procedure are given in Table 1.
(These values were checked by also applying an independent numerical inver-
sion technique of JAGERMAN [30,31].) Table 1 shows that we have approxi-
mately the right time scale for times when 0.001<B€(#)=<0.2, which we call the
second regime [1]. (The second regime is the time interval where the process
reaches steady state for practical purposes.) For example, consider r=3.00
where B(1)=0.00378 with p=0.50. With the time scaling, as p changes, the
value of B€(3) changes quite slowly, until p gets very high. (This unusual
behavior as p—1 is very different from our experience in [3] and [5]; we will
discuss this anomaly further in Section 2.7.) _

On the other hand, for very small times (which we call the first regime),
B<(1) changes more slowly when we omit the time scaling. In Table 1 we
remove the time scaling by considering the times 62/2 and 6°>. The fact that
the time scaling helps for larger times, but not for smaller times, reflects the
special nature of the busy-period distribution discussed in Section 1.3.

2.5. Moments
While the M/M/1 busy-period distribution is somewhat inaccessible, its
moments are readily available. Theorem 3.2 of [4] gives a basic recursion due
to RIORDAN [41,42]: Let m; be the k-th moment of the time-scaled busy-period
distribution; then

M4y = 2k +1X1—0)my 4 — (k2 — 1) m; (2.109)

for my=1 and m;=60. (This result appears in a description of the M/M/1-
LCFS waiting-time distribution.) Moreover, an explicit formula for the
moments is given on p. 232 of TAKACS [44], namely,

+i+ 2Dk i1 —20)

k
(k
= : 2.11
h+2 ,.§, i+ D2+ ik — i) 211
The first five moments are
my = my=0, msy=30(1—0), m4=150[1—2a+-‘;-021,
(2.12)

ms = 1050[1—30+'7802—%m1
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From these moments we can obtain important insight into the busy-period
distribution, especially its large-time behavior, and how it behaves as a func-
tion of 6=(1—p)/2 or p. First, the squared coefficient of variation (variance
divided by the square of the mean) is

2
my—mi 4§ 1+
= =g~'-1=——L, 2.13

m} ¢ 1-p @13
which is independent of the time scale. Formula (2.13) shows that the distri-
bution becomes highly variable as p—1; c3— as p—1.

Moreover, the skewness and kurtosis also explode as p—1; i.e.,

my__ 36(1—6) _31-6) _3V2(1+p)

m3’? Y E N/ Vi-p

4 4
ma 156(1 2a+502]_15[1 2a+502]

ms _ = =30 -
= 7 7 ]_p+6(l p).

ch

(2.14)

2.6. A power-series representation

In Theorem 9 of [5] we obtained a power-series representation for the comple-
mentary busy-period cdf in terms of the moments described in Section 2.5. In
particular,

k+1
my )t

(k+ 2k + 116 +3
We can use a few terms from (2.15) to get a good approximation for B(z) for
small . However, the times ¢ must be relatively small before time scaling. With
t=af* (to undo the time scaling), the first three terms from (2.15) yield

3

B(t) = 1+ i(—l)**' 2.15)
k=0

ma«a m;az mayQ

Be(at) ~ 1=~ Ta4g
~ -2 (4pe®  (+3p+phe’ 216
2 8 48
For example, for a=1/2, (2.16) becomes
B€(6*72) = 0.779+0.023p—0.0026p%. .17

From Table 1, we see that (2.17) is very accurate, having a maximum relative
percent error of about 0.1%. Similarly, when a=1, we obtain

B°(6%) =~ 0.604-+0.063p—0.02080?, (2.18)

which yields a maximum relative percent error of about 1%.

In summary, (2.15) provides an alternative way to obtain numerical results
and relatively simple approximations such as (2.16). However, the simple
approximation (2.16) is only valid for relatively small times (small in the origi-
nal time scaling).
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2.7. Light and heavy traffic

Further insight into the busy-period distribution can be obtained by consider-
ing the limits as p—0 and p—1. As in Corollary 5.2.2(b) of [4], we can work
with the Laplace transform to obtain the light-traffic limit. In particular, by
the argument in [4],

ey = —2 .
lim b(s) = 355 (2.19)

) so that
li.m B(t) = 1—e ) ’?0. 2.20

In other words, the busy-period distribution converges (weakly) to a simple
exponential with mean 1/2 as p—0. Indeed, this is obvious because the busy
period obviously approaches a single service time as p—0. (The 2 appears
because of the time scaling.) Moreover, this limit could be anticipated (and
deduced) from the limit for the first-moment cdf H,(r) established in Corollary
5.2.2(b) of [4] plus the stationary-excess relation discussed in Section 2.2.
(Empirically, note that the p=0 column of Table 1 here coincides with the
p=0 column of Table 1 in [3].)

The heavy-traffic limiting behavior is more complicated. Unlike H,(f) in
Corollary 5.2.2(a) of [4], B°(t) does not converge to a proper limit as p—1.
However, Theorem 3.5 of [4] describes the limit as p—1. It is significant that,
even with the time scaling, it involves an additional normalization by
0=(1—p)/2 as p—1. The limits for the normalized complementary cdf B(t)
and density b(t) are

lim 2(1—p) ™' B(0) = hi(t) = 2~V 2g(" )= A1 -0V, 10,
p—

im 2(1-p)"'b() = @m?)V2e72, 120, @21)
p—

where ®(t) is the cdf of a standard normal cdf (with mean Q and variance 1)
and ¢(¢) is its density. The limits in (2.21) are the density A(r) of the first-
moment cdf H,(t) for RBM (M/M/1 with p=1) as given in (4.4) of {1] and its
derivative h,’(r). (We use the notation ~ to designate the RBM case with
p=1.) This is not too surprising, once we recognize that 6! B¢(t) on the left
side of (2.21) is just the density of the stationary-excess cdf B.(f)=H,(t) for
given p, as indicated in Section 2.3 above. Thus, (2.21) represents convergence
of densities (i.e., & (t)—>h,(t) as p—1, a local limit theorem) and their deriva-
tives, paralleling the convergence of distributions as p—1 established in Corol-
lary 5.2.2(a) of [4]. -

By Theorem 1.3 of {1}, the limit A,(f) in (2.21) also coincides with an
exponential mixture of inverse Gaussian densities, i.e.,

hi@t) = [2e~%f (t;x,0)dx, 222)
0

where £ (;x,0) is the density of an inverse Gaussian cdf F(t;x,0), with
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x0) = —X _fx—=nf
f(t;x,0) \/mexp[ % }, =0,

(2.23)

Vi Vi

as in (1.5) and (1.6) of [1]; f(t;x,0) is the density of the first-passage time
from x to O for (canonical) RBM. Inverse Gaussian distributions arise natur-
ally in diffusion approximations for first-passage-time distributions in queue-
ing; e.g., see HEYMAN [26] and Dupa [20,21]. We will be considering the
inverse Gaussian distribution further in Section 6.

The extra normalization by § in (2.21) means that

Fgx,0)=@

Limt % JGVTY [ ""‘], =0,

BE(t) = L;’-’li,(z), 224)

which converges to 0 as p—1, as can be seen by looking at the p=0.95 and
p=0.99 columns of Table 1. A better scaling for the busy-period distribution
is thus 87! B<(¢). (We are including the time scaling.) Note that 6! B(r) has
proper limits both as p—0 and as p—1, just as H,(z) and c,(?) do after the
time scaling alone. Part I of Table 2 displays the numerical values of 6~ B¢(r)
obtained by multiplying the values in Table 1 by §!. Note that this doubly-
scaled function is indeed even less sensitive to p. For example, for =1,
0~ B<(¢) decreases from 0.27 to 0.16 as p increases from 0 to 1. The remain-
ing adjustment is not uniform over ¢ though. In Table 2, 8! B¢(z) is increas-
ing and then decreasing for 1=0.10 and 0.25, strictly decreasing for
0.50=<¢=<1.50, and then strictly increasing for 7 =2.00.

To a large extent, the behavior of B(¢) as a function of p is captured by the
two scalings. What is left is shown in Part I of Table 2; the function 6! B‘(z)
moves from an exponential at p=0 to h(r) at p=1. A simple light-and-
heavy-traffic-interpolation approximation based on this is the convex combina-
tion

0-1B(r) = (1—w)2e ™% +wh,(£), 1=0, (2.25)

where w=w(p) is an increasing function of p such that 0<<w<1. For approxi-
mation (2.25) to perform reasonably well, it helps for 8~!B¢(f) to be mono-
tone. As we observed above, in Table 2 this is not true for 1<0.25, but it is
true for 1>0.5. From Table 2, it is easy to see that (2.25) should perform
quite well for 1=0.25. Moreover, from (2.12) here plus Corollary 1.3.4 of [1},
we see that (2.25) with w(p)=p yields the correct first three moments of B(¢).
(It does not yield the correct fourth moment.) On the other hand, for very
small 7, (2.25) can not be good; e.g., B(0)=1 and A;(0)=oc0. Nevertheless,
(2.25) can be a pretty good approximation for 1=0.25. Experiments with a
few weighting functions suggested the weight function w(p)=p* for x=0.75;
this is displayed in Part II of Table 2. The performance is pretty good for ¢
neither too small nor too large, e.g., for 0.50<¢=<4.00. Having x <1 in this
weighting function is consistent with the observation that the heavy-traffic limit
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(p=1) is more descriptive for p near 1 than the light traffic limit (p=0) is for p
near 0. (Of course, the nice behavior near p=1 is achieved by the double scal-
ing.) Approximation (2.25) is not very satisfying because, beyond the double
scaling, it is ad hoc and because it evidently deteriorates for both small and
large 1. Some of our other approximations will do better in both regards.

2.8. The spectral representation

. It is significant that the busy-period distribution can be represented as a mix-
ture of exponmential distributions, i.e., B°(r) is completely monotone; see
Theorem 3.3 of [3]. An explicit representation as a mixture of exponentials
follows from the spectral representation for B¢(t). The spectral representation
for the M/M/1 busy-period distribution was first given in (6.4) of KARLIN and
MCGREGOR [32]; another derivation is given in [6]. With our time scaling, the
spectral representation for the busy-period distribution has a remarkably sim-
ple form (taken from [6]), namely,

B(r) = je-'/yw(y)dy, =0, (2.26)
where
0-‘/ -— —_
w(y) = b 11)2(12 ) , ISYSTY,
il (227)
_1tp=2Vp . _14p+2Vp _(1+VeP
n= 2 an T2 = 2 - 2 )

i.e., the mixing distribution has a proper probability density w(y), which is
given in (2.27). The mixing density w(y) in (2.27) is unimodal with mode

_ 3(1+p)— V1+34p+p?
Ymax = 4 )

(2.28)

The relaxation time appears as the upper limit of integration r,.

Note that (2.26) is an ideal representation for obtaining numerical results by
numerical integration. Also the asymptotic behavior as 1—co0 (to be discussed
in Section 4) can easily be derived by applying Laplace’s method to (2.26).

As noted in [6], corresponding simple spectral representations also hold for
the complementary first-moment cdf Hi(7) and the correlation function c,(7),
by virtue of the stationary-excess relations discussed in Section 2.3; it is ele-
mentary to integrate with respect to ¢ in (2.26). These spectral representations
for H\(r) and c,(¢t) easily extend to RBM by taking the limit as p—1. The
nice spectral representation for the correlation function of RBM was previ-
ously discovered by. WOODSIDE ET AL. [53]. The resulting mixing distributions
are all simple modifications of the beta distribution.
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2.9. Connections to the unrestricted process

As indicated in Section 7 of [4] and as discussed by others before, one way to
analyze the M/M/1 queue is to relate it to the unrestricted process on all the
integers with transition function Q;;(¢). For this process, a basic role is played
by Qgo(?) or the scaled version (with our time scaling)

V(1) = 071 Qoo(t) = 07 eI (3), (2.29)

which is a bonafide probability density function; see (7.7) of [4]. From Corol-
lary 7.2.2 of (4], we immediately obtain the representation

1+p

0-'B(t) = 2%

[27p (1) = Ype (0)] +%Y;(I ), =0, (2.30)

where y,.(r) is the density of the associated stationary-excess cdf defined by
(2.7). The heavy-traffic limit (2.21) follows directly from (2.30) as indicated in
[4]. Moreover, all M/M/1 approximations could be generated from approxi-
mations for the basic quantity y,(t) in (2.29) and its relatives y,.(¢) and v,'(t).

2.10. A differential equation for the busy-period density

We conclude this section with a curiosity. We point out that the busy-period
density b(¢) satisfies a second-order linear differential equation with monomial
coefficients, namely,

thb”(t)+[2(l—H)t‘+302]b'(t)+[t+3(l—0)]b(t) =0, (231
with boundary conditions
b(0)=1/26> and b'(0)=—(1—6)/26". (2.32)

This follows from the Bessel function representation (2.8) and the differential
equation for Bessel functions in 9.6.1 on p. 374 of [7].

3. HYPEREXPONENTIAL APPROXIMATIONS

In this section we consider hyperexponential (H,) approximations for the
M/M/1 complementary busy-period cdf B¢(t). An H, distribution is a mix-
ture of two exponentials; i.e., a complementary H, cdf is of the form

G()=1-G(1) = pe ™ M+(1=p)e ™™, =0, 3.1

for 0<p<1, A; =0 and A, =0, so that it is determined by the parameter triple
(p’Al ’AZ)-

3.1. Motivation and methodology

We are motivated to consider H, approximations because we already have had
considerable success using them to approximately describe the transient
behavior of the M/M/1 queue and regulated Brownian motion (RBM) [1-5].
In particular, the first and second moment of the M/M/1 queue length at time
¢t starting at 0 and the correlation functions of several stationary M/M/1
processes are well approximated (for ¢ neither too small nor too large) by H,
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approximations obtained by matching the first three moments; see Tables 3
and 5 of [1], Tables 1-2, 5-7 of [3] and Tables 1-2, 6-9 of [5]. The qualification
on time is somewhat vague and unpleasant, but as in Section 1.6 of [1], we
contend that it is useful to consider three regimes: small time, medium time
and large time, with the middle regime being when most M/M/1 processes
reach steady state for most practical purposes, e.g., when the moments are
within 0.1-15.0 percent of their steady-state limits. We evaluate our approxi-
" mations with regard to their performance in the different regimes. Approxima-
‘tions that perform reasonably well in at least one regime seem worth consider-
ing, but we are primarily interested in the first two regimes; the third regime
usually involves exceptionally large times that are of little practical interest.

As with many of the previous M/M/1 quantities studied, there is a strong
theoretical basis for using an H, approximation for the busy-period distribu-
tion, because its density is completely monotone; i.e., the busy-period distribu-
tion is a mixture of exponentials, as indicated in Section 2.8. However, an H,
fit still involves an approximation because the busy-period distribution is not a
mixture of two exponentials, but uncountably many exponentials. Neverthe-
less, we might expect to capture the rather distinct small-time and large-time
behavior of the busy-period distribution via the two exponential components.

An H, approximation for the busy-period cdf by moment matching is also
attractive because the busy-period moments are readily available, as indicated
in Section 2.5. Moreover, there are relatwely straightforward schemes for
expressing the H, parameter triple (p,A;,A;) in terms of the' moment triple
(my,m3,m3), i.e., the first three moments; see Section 5.1 of [1], especially (5.7)
there. In fact, the three-moment H, approximation for the complementary
busy-period cdf was previously developed by RIORDAN [42, p. 108] in his
analysis of the waiting-time distribution in the M/M/1-LCFS system. (Rior-
dan claims that the H, approximation matches the fourth moment too, but
this seems to be incorrect.)

Moment matching usually is pretty accurate in describing the cdf for rela-
tively large times, but not for small times. For smaller times, it is natural to
match derivatives at the origin. As interest moves from times very near the
origin to larger times, it is natural to shift from a three-derivative (3D) fit to a
two-derivative, one-moment (2D, 1M) fit, to a one-derivative, two-moment
(1D, 2M) fit, and eventually to a three-moment (3M) fit. Working with
moments and derivatives at the origin, there are thus four candidate H,
approximations we might consider. (We could of course obtain better numeri-
cal results by considering mixtures of more than two exponentials, but we
would then lose the desired simplicity. Remember that the goal is not pri-
marily numbers.)

It is significant that we can obtain all four of these H, approximations by
the single three-moment matching procedure mentioned above. We obtain this
simplification in fitting because the cases involving one or more derivatives are
mapped into the three-moment case by the stationary-excess operator, as
described in Section 7 and 8 of [5]. For a cdf G(r) with a density g(¢), sup-
pose that m; is the k-th moment and d is the k-th derivative of G(¢) at t=0
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(assume they exist); e.g., d; =g(0). The stationary-excess cdf G,(t) associated
with G(1) is defined in (2.7). The key property is that the k-th moment m,;
and the k-th derivative (at 1=0) d,, of G,(t) are expressed in terms of the
associated quantities of G () by

My = my iy /(k+1)my, doy =1/m; and d,g+1) = —d.1ds. (32)

As a consequence, specifying the first i moments and first j derivatives of
G(r) is equivalent to specifying the first (i —1) moments and first (j +1)
derivatives of G,(t). Moreover, the stationary-excess cdf associated with an H,
cdf is another H; cdf with the same exponential parameters. Consequently,
we only need to perform three-moment H, fits.

3.2. The H, formulas

Six H, approximations for the complementary busy-period cdf B°(1)=1—B(r)
are displayed in Table 3; they come from Table 4 of [5]. In addition to the
four H, approximations based on derivatives and moments, we also display
the simple one-moment exponential fit and the two-moment bounding H, dis-
tribution consisting of an atom at 0 plus a single exponential (the special case
of (3.1) with A; =0). In a certain sense, all two-moment H, fits fall between
these last two special cases; see [50].

It is significant for interpretation and further application, that we obtain all
six H, approximations as relatively simple closed-form expressions of the
traffic intensity p (the single M/M/1 parameter). Purely numerical results
could be helpful too, but they would not provide nearly as much beyond
numerical transform inversion of (2.2) or numerical integration of (2.26).

3.3. Performance for larger times (second regime)

Of course, it remains to describe how these various H, approximations per-
form. For relatively large times (e.g., =1 in scaled time), the quality of the
approximations improves as we replace derivatives with moments; in particu-
lar, for larger times the three-moment H, fit is substantially better than the
others. Table 4 compares the two leading candidates, (3M) and (1D, 2M),
with the exact values obtained by numerical transform inversion in the case
p=0.70. (Other approximations appearing there will be discussed later.)
Tables 5 and 6 display the (2D, IM) H, approximation, along with other
approximations to be discussed later, for the cases p=0.25 and p=0.75. For
times away from zero with time scaling, replacing moments with derivatives
clearly does not help.

To help put the H, three-moment approximation in perspective, we also
compare it to HEYMAN’s [26] diffusion approximation for the M/M/1 busy-
period distribution in Table 4. This table and other cases show that the new
H, three-moment approximations offer order-of-magnitude improvements for
times away from zero. Heyman’s approximation is motivated by GAVER [24]
and is related to our inverse Gaussian approximation in Section 6.

Table 4 shows that the three-moment H approximation for the busy-period
distribution performs pretty well, but it does not perform nearly as well as
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previous three-moment H, approximations for other M/M/1 quantities; cf.
Tables 1-2, 6-7 of [3] and Tables 1-2 of [5S]. In particular, the three-moment
H, approximation deteriorates significantly as p increases. This is demon-
strated by Table 7, which compares the three-moment approximations to the
exact values for the cases p=0.25, p=0.95 and p=0.99. The relative percent
errors (100{approx. —exact]/ exact) are also given there. From Tables 4 and 7,
we see that the (3M) H, approximation performs best in the second regime;
the performance is not good for times that are very small or very large.
(Indeed, it does not have the correct exponential rate as t—c0.) When p gets
very high, the (3M) H, approximation really does not perform well at all.
This observation motivated us to look for explanations and other approxima-
tions.

3.4. Performance for smaller times (first regime)

Of course, in the first regime, i.e., for very small time values (e.g., without time
scaling), the derivatives do help. With time scaling, we achieve this by consid-
ering times of order §2, which undoes the time scaling. As indicated by Table
8, for such smaller times, the H, approximations based on three derivatives or
two derivatives plus one moment perform very well. Moreover, for these
times, the (3D) H, approximation is uniformly better than the (2D, 1M)
approximation. As in Section 3.3, the quality of the approximation degrades
somewhat as p increases. '

In this time range, the relevant comparison is with the power series represen-
tation in Section 2.6. However, the three-derivative H, approximation per-
forms better than a few terms from the power series. The power-series approx-
imation, keeping terms up to 3, is (in unscaled time)

2 3
oy g () ma ()P me (o
BO=1=% 1% |* 120 oz] 1440[02]
o ioLlfe) atn [ gz (o) &P
2|e |78 |#F| 8 &

Three terms from the power series representation perform well only for
times less than . For very large ¢, the truncated power series obviously per-
forms very poorly.

When the three-derivative H, approximation is expanded in a power series,
the first three terms necessarily coincide with the first three terms of the power
series representation. In addition, the three-derivative H, approximation has
approximately the correct shape overall. We thus conclude that the three-
derivative H, approximation dominates the power-series representation, so
that we do not consider the power-series representation further for approxima-
tions.
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Furthermore, for p=0.75 the relative percent error using (4.1) is 11%, 6% and
4% for the large times +=8, 10 and 12, respectively. (From Table 1, we see
that B<(8)=0.000037, so that =28 is already quite a large time.) Thus, just as
in Table 3 of {1] and Table 5 of [3], we find that the standard asymptotic
theory related to the relaxation time is not very useful for generating good
approximations. (Of course, relaxation times do give at least a rough indica-
tion.)

In Corollary 5.2.3 of [4] we produced another asymptotic expansion for
B€(t) related to the heavy-traffic limit in (2.21), which we call the asymprotic
normal approximation. In particular, in [4] we show that

-1 B(r) ~ P32/4 [t_“2¢(\/21/1’)— \/2/7[1—@(\/2”1')]] as 1o, (43)
where again v is given in (2.9), §=(1—p)/2, ® is the standard normal cdf and
¢ is its density. Since 7—2 as p—1, the right side of (4.3) approaches the
heavy-traffic limit 4,(z) in (2.21) as p—1. Moreover, as shown in [4], the two
asymptotic expansions for B¢(¢) in (4.1) and (4.3) are asymptotically equivalent
as t—oo. In fact, (4.3) was previously developed for the M/M/1-LCFS
waiting-time distribution; see p. 109 of RIORDAN [42] and p. 45 of KOsSTEN
[34].

It turns out that the asymptotic normal approximation for 6! B€(z) in (4.3)
performs significantly better than both the standard asymptotic expansion in
(4.1) and the heavy-traffic limit h;(¢) in (2.21). First, as indicated above, it
coincides with the standard asymptotic expansion as t—oo and the heavy-
traffic limit as p—1. However, (4.3) performs significantly better than the
standard asymptotic expansion for 1<<co and the heavy-traffic approximation
for p<1.

Numerical comparisons with exact values are made for the asymptotic nor-
mal approximation in Tables 5, 6, 10 and 11. (Inverse Gaussian approxima-
tions will be discussed in Section 6.) Tables 5 and 6 make numerical com-
parisons for the cases p=0.25 and p=0.75, while Table 10 makes numerical
comparisons for p=0.50. As should be expected, these tables show that the
quality of the approximation improves as ¢ increases for fixed p and as p
increases for fixed ¢. Table 11 shows the values of ¢, as a function of p, where
the relative percent error is less than 1%. For p=0.5, the asymptotic normal
approximation is excellent in both the second and third regimes. In these
regimes, it clearly dominates all the hyperexponential approximations dis-
cussed in Section 3. On the other hand, the asymptotic normal approximation
for B¢(¢t) is not good for small ¢; e.g., it need not even be a cdf. (An obvious
refinement to any approximation for B¢(¢) is to replace values greater than 1
by 1)

It is apparent from Tables 5, 6 and 10 that the asymptotic normal approxi-
mation is an upper bound on B(f). However, we have yet to prove this.
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3.7. The spectral representation

Further insight into the performance of the H, approximations is gained by
considering the spectral representation, i.e., the explicit representation as a
mixture of exponentials given in (2.26). For example, typical values for the
case p=0.75 are given in Table 9. Note that the mixing density w(y) in (2.27)
has a sharp peak near the mode at 0.012 and very little mass at values near the
upper limit 7, (the relaxation time). In this case, there is very little mass above
. »=0.50. On the other hand, the three-moment H, fit in this case is

BE(t) = 0.933¢ "% 4+0.0670¢~1/0%8, =0, (3.6)

From (3.6), we see that the H, approximation cannot be asymptotically
correct as t—o0 because its relaxation time 0.93 does not agree with the true
value 1.74. On the other hand, 0.93 is in the region above 0.50 where w(y) has
little mass. The low mass near 7, in w(y) in (2.27) is a clear danger signal for
approximation.

In contrast, the mixing densities for the first-moment-function complemen-
tary cdf Hi(z) and the correlation function c,(?) studied in {3] and {5] are
(y/6)w(y) and (2y2/0)w(y), respecuvely, for w(y) in (2.27). (These are easily
obtained from using the stationary-excess operator, as mentioned in Section
2.8.) These other mixing densities clearly have much more mass near the
upper end point 1,, as is shown in Table 9. Indeed, the mixing density for the
correlation function c,(f) is a symmetric beta distribution about (1+p)/2.
Consequently, we should expect the H, approximations to perform better for
H (1) and c,(¢) than for B*(¢), as they do.

4. ASYMPTOTIC EXPANSIONS
In this section we consider appronmauons associated with the exact asymp-
totic behavior as t—co. The standard asymptotic expansion (three terms) for
the complementary busy-period cdf B<(z) is
2
(1) v ] 3| A2 1T 1
Be(t) ~ 10L(1, p)[l p [2]a|+ 2] a2+0[t3”, 4.1

where 0=(1—p)/2 as in_(2.3), r=(1+Vp)*/2 as in (29), a;=1-+¢,
a;=1+e—€/2, e=60*/4rVp,

L@t,p) = Qup*23)"V2e~t1, 130, @2

and f(t)~g(¢) means that f(¢)/g(z)—1 as t—o0. The expansion (4.1) can be
obtained directly from the Laplace transform B (s) in (2.2) by applying
Heaviside’s theorem; p. 254 of DoErscH {19] or p. 165 of GNEDENKO and
KOVALENKO [25]. Alternatively, it can be obtained from (2.8) using 9.7.1 of 7]
plus integration by parts.

However, even with all three terms displayed in (4.1), we get quite poor
numerical results for times of primary practical interest. For example, large
relative percent errors at medium times (2<<7<<5) are shown in Table 10 for
the case p=0.5. (Other approximations yet to be discussed also appear there.)
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Furthermore, for p=0.75 the relative percent error using (4.1) is 11%, 6% and
4% for the large times +=8, 10 and 12, respectively. (From Table 1, we see
that B°(8)=0.000037, so that t=38 is already quite a large time.) Thus, just as
in Table 3 of [1] and Table 5 of [3], we find that the standard asymptotic
theory related to the relaxation time is not very useful for generating good
approximations. (Of course, relaxation times do give at least a rough indica-
tion.)

In Corollary 5.2.3 of [4] we produced another asymptotic expansion for
B<(t) related to the heavy-traffic limit in (2.21), which we call the asymprotic
normal approximation. In particular, in [4] we show that

071 B(t) ~ —2— [t~ 12¢( Vi)~ VIIr[1-0(V21/T))| as t—oo, (43)
p3/4

where again 7 is given in (2.9), §=(1—p)/2, ® is the standard normal cdf and
¢ is its density. Since 7—2 as p—1, the right side of (4.3) approaches the
heavy-traffic limit A,(z) in (2.21) as p—1. Moreover, as shown in [4], the two
asymptotic expansions for B°(z) in (4.1) and (4.3) are asymptotically equivalent
as t—oo. In fact, (4.3) was previously developed for the M/M/1-LCFS
waiting-time distribution; se¢ p. 109 of RIORDAN [42] and p. 45 of KOSTEN
[34].

It turns out that the asymptotic normal approximation for 87! B¢(¢) in (4.3)
performs significantly better than both the standard asymptotic expansion in
(4.1) and the heavy-traffic limit 4,(¢) in (2.21). First, as indicated above, it
coincides with the standard asymptotic expansion as t—>co and the heavy-
traffic limit as p—1. However, (4.3) performs significantly better than the
standard asymptotic expansion for t<<oco and the heavy-traffic approximation
for p<1.

Numerical comparisons with exact values are made for the asymptotic nor-
mal approximation in Tables 5, 6, 10 and 11. (Inverse Gaussian approxima-
tions will be discussed in Section 6.) Tables 5 and 6 make numerical com-
parisons for the cases p=0.25 and p=0.75, while Table 10 makes numerical
comparisons for p=0.50. As should be expected, these tables show that the
quality of the approximation improves as ¢ increases for fixed p and as p
increases for fixed ¢. Table 11 shows the values of ¢, as a function of p, where
the relative percent error is less than 1%. For p=0.5, the asymptotic normal
approximation is excellent in both the second and third regimes. In these
regimes, it clearly dominates all the hyperexponential approximations dis-
cussed in Section 3. On the other hand, the asymptotic normal approximation
for B<(¢) is not good for small 7; e.g., it need not even be a cdf. (An obvious
refinement to any approximation for B¢(¢) is to replace values greater than 1
by 1.)

It is apparent from Tables 5, 6 and 10 that the asymptotic normal approxi-
mation is an upper bound on B(¢). However, we have yet to prove this.
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5. APPROXIMANTS FROM WIDDER’S FORMULA

In the general theory of Laplace transforms, there are techniques for generat-
ing relatively simple analytic approximate inversions called approximants. For
example, in Section 3.6 we noted that our three-moment hyperexponential
approximation for B€(¢) can be obtained as a Padé approximant. In this sec-
tion we briefly consider simple approximants obtained from Widder’s inversion
formula ([52], [30] or Section 3.1 of [17]), which represents a function f(¢) as
the limit of successive derivatives of its Laplace transform f(s), namely,

n+1

2L Sm(n 41y, ¢.1)

t

. (=D
FO = m

where f")(s) is the n-th derivative of f(s).

Formula (5.1) is not attractive for direct numerical inversion because it
involves repeated differentiation, which leads to numerical instabilities, but it
can be used to generate approximants. According to DAVIES and MARTIN [17],
TER HAAR [45] was the first to do this (in 1951), proposing essentially the 0-th
term from (5.1),

foy=171a™), 120, (52)

JAGERMAN [30,31] also proposed the ter Haar approximant and made a
significant enhancement. In particular, JAGERMAN [30] observed that for a
log-convex function we can determine the relaxation time constant from the
singularity in the transform, so that we can force the approximant to have an
exponential term with this time constant. The resulting Jagerman approximant
is

_ e"l/f t
fO= o [ — /T], >0, BN CE )

where fo(t) is the ter Haar approximant in (5.2) and 7 is the relaxation time
constant. .

The ter Haar approximant (5.2) and the Jagerman approximani (5.3) are
particularly appealing candidates because, as JAGERMAN [30, 31} shows, they
inherit many of the structural properties of the original function f(¢). Thus,
these approximants are clearly in the spirit of the simple closed-form expres-
sions we are seeking.

Since the busy-period complementary cdf B¢(t) is completely monotone, it is
log-convex. Hence, it is natural to consider both the ter Haar and Jagerman
approximants. In our time scale, the ter Haar approximant for B¢(z) is

Bi(t) = —————2 ., =0, (5.4)
0+t+ VP +2(1—-0)+12
and the Jagerman approximant is
Bi(t) = e~ (5.5)

20 » 120,
0+(1—6/7t+ V& +2Vp1
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where 7 is the relaxation time in (2.9).

Even though the ter Haar approximant (5.4) inherits several properties of
B<(t); e.g., B5(0)=1, B§(o0)=0, and B§(z) is monotone and convex, the
numerical results are not good, as can be seen from Table 4. Indeed it is obvi-
ous that (5.4) does not nearly decay quickly enough, because the exponential
term is missing.

We might expect much better performance from (5.5) because it has the
correct asymptotic exponential decay rate. Indeed, as p—0, (5.5) agrees with
the exact result B°(f)=e~%. However, (5.5) is not asymptotically correct as
t—oo, ie, we do not have B(t)~B5(t) as t—o0. As (oo,
B¢ (t)~Kt'I ~#/7; there is a ¢ in the denominator instead of the #3/2 in (4.1)
and (4.2), so Bg (t) also does not decay quickly enough, as Table 4 shows.
Indeed (5.5) is certainly much better than (5.4), but (5.5) typically becomes
greater than the standard asymptotic expansion for 2<¢<3 (with time scal-
ing). Thus, neither approximant performs well in the second and third
regimes. In fact, even though (5.5) is asymptotically exact as p—0, it does not
even perform well in the second regime for very small p such as p=0.1. The
reason is that the order of the two limits —o00 and p—0 matters.

From Sections 3 and 4 here plus our previous work [1-5], we know that for
times of primary interest the actual exponential rate is substantially greater
than the asymptotic exponential rate. Hence, we are motivated to force a
bigger rate, as arises in the H, approximations in Section 3. Unfortunately,
however, the Jagerman enhancement in [30] permits any smaller rate, but not
any larger rate, so that we cannot improve the approximation in that way.

One approach to the poor performance of these approximants is to replace
them by higher-order terms from the sequence (5.1), but we do not pursue this
goal. With higher order terms, Theorem 8 of [30] can also be applied in vari-
ous ways to match moments, but of course the resulting approximant gets
more complicated. It is good to be aware that improved approximants by this
general approach are possible, though. Indeed, JAGERMAN [30,31] uses (5.1) as
a basis for creating a full numerical inversion procedure. To avoid the trouble-
some differentiation in (5.1), Jagerman applies complex analysis to obtain a
Fourier-series type inversion procedure from (5.1). Since such higher-order
approximants are not closed-form, they are perhaps best compared to other
numerical inversion schemes and numerical integration. From Tables III-VI of
[31], it is apparent that the higher-order approximants for B¢(t) do not get
accurate very quickly. It appears that B€(¢) is a relatively difficult function to
approximate by this general procedure.

6. INVERSE GAUSSIAN APPROXIMATIONS
Inverse Gaussian approximations for the busy-period distribution arise natur-
ally from diffusion approximations.
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6.1. Heavy-traffic limits and RBM approximations

First, the inverse Gaussian (IG) cdf F(f;x, 0) in (2.23) is the cdf of the time
required for canonical RBM to first reach 0 starting in x. Thus an IG cdf is a
natural approximation for the cdf of a first passage time downward in a queue
when we are using a diffusion (RBM) approximation for the queueing process.
Indeed, an IG cdf arises as the heavy-traffic limit for queueing first passage
times downward as p—1, as indicated in the proof of Corollary 3.4.1 of [4]. In
- particular, consider the time-scaled M/M/1 queue and let T,(p) be the first-
" passage time from state n to 0, as a function of p. (Of course, T,(p) is the sum
of n independent busy periods.) Let T,(1) be the first-passage time from x to
0 in RBM (the M/M/1 queue with p=1) with IG cdf F(f; x, 0) in (2.23). Let
= denote convergence in distribution, as in BILLINGSLEY {11]. Then the stan-
dard heavy-trafﬁc limit for T, (p) as p—1, obtained by applying the continuous
mapping theorem (Theorem 5.1 of [11]) with the usual heavy-traffic limit for
the queue-length process [29], is

Tioy(p)=T(1) as p-l, 6.1

where [x] is the greatest integer less than or equal to x. It is significant that
essentially the same result holds for GI/G/m queues and many other models,
so that the limit (6.1) suggests IG approximations for more general systems.

A difficulty with (6.1) for our purposes is that the starting state in the
M/M/1 system with traffic intensity p is [x§~'], where

[x07'] = [2x/(1~p)}>o0 as pol. (6.2)
However, we can ignore difficulty (6.2), and suppose that
Toy(p) = T(1) (6.3)

for fixed x>0 and p<<1. We then set x§~' =1 to make the left side equal to
the desired T'(p); i.e., we approximate by

Ti(p) = To(1), (64

i.e., the first-passage time for canonical RBM starting in 8. We will come back
to this later.

Instead of (6.1) and (6.4), we would probably prefer a limit directly for
T\(p) as p—1. Fortunately, such a limit has been obtained, as indicated in
Section 2.7, but the limit is not in the usual form, involving [T (p) —a(p)])/b(p)
for some functions of p, a(p) and b(p). In particular, (2.21)-(2.23) states that

0-1B(t) = -I%EP(T.(p)»)_»i () = {u-kf(z .x,0)dx; (6.5)

i.e., the limit is a mixture of IG densities, which seems to be not an especially
convenient form.
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6.2. Heuristic diffusion approximation
Diffusion process approximations can also be developed by ‘direct fits,
without considering any heavy traffic limits; this is the approach of HEYMAN
[26] and DuDA [20,21] for example. The idea is to apply some of the logic of
the queue and some of the logic of the diffusion process. For example, Hey-
man works with the virtual waiting time process and approximates it by RBM.
Since he works with the virtual waiting time process, the logic of the queue
dictates that the initial level at the beginning of a busy period be the random
amount determined by the service-time distribution. Thereafter, the process is
assumed to evolve as RBM. Thus the approximation for the busy-period cdf is
a mixture of IG cdf’s, as in (6.5).

On the other hand, if we work with the queue-length process, as we do here,
- then with this procedure we would approximate the queue-length process by
RBM but not randomize the initial position. We would thus approximate the
busy-period cdf by the cdf of an IG distribution, without any randomization.
Of course, with this procedure we still must specify the drift and diffusion
coefficients of RBM and the initial state for the first passage time. The end
result might then be (6.4). We mention that Heyman found that his approxi-
mation for the M/G/1 busy-period distribution worked best when the service-
time distribution is deterministic, i.e., when no randomization was performed.
As indicated in Table 4, Heyman’s M/M/1 approximation does not perform
very well. As discussed in {48], there seems to be a limit to what you can
obtain by the diffusion logic alone. It is important to consider refinements
based on additional properties such as moments.

6.3. Direct inverse Gaussian approximations

We propose using the heavy-traffic limit to motivate considering the IG cdf as
an approximation for the busy-period cdf, but fitting the IG parameters
directly. First, we note that there is a one-to-one correspondence between a
two-parameter IG cdf and a two-parameter RBM representation. The first-
passage time for RBM with drift coefficient p<<0 and variance coefficient v
starting in state x has the complementary IG cdf

-2

G(t) = @f[l\/’i_:.—x-]—e - 4 :_\‘7_1:1 t=0. 6.6)
\{ \{

However, there are only two basic parameters in (6.6). We can set p=—1
without loss of generality, and do, because the parameter triples (u,», x) and
(=1, »/p2, x/p) yield identical distributions in (6.6), as is easy to see. (We can
also apply Proposition 2.1 of [1] for this.) The IG distribution with parameters
p=—1, » and x has moments

m; =x, m = x(x+v), m; = 3xv(x+v)+x3,

n (Il ﬂ!x'”'l_ivi
m, = - ;
n+l ,-§0 (n —i)12it

see p. 366 (12) of TWEEDIE [46].

6.7
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A specific IG approximation is obtained by choosing x and v in (6.6). We
choose x and v by matching moments to those of B(t) in Section 2.4 and pos-
sibly by matching other properties. First, to match the mean, we set
x=0=(1-p)/2. We then consider three cases of v:

() v=1 (canonical RBM)

(i) v=1-6 (all moments match up to order §*) (6.8)
() v =%z1 —0—% - % (proper exponential rate as 1—co).

The first case in (6.8) with v=1 is just the heavy-traffic approximation (6.4)
involving canonical RBM derived from (6.1). The second case, v =1-6, is
obtained by matching the second moment, §(f+v)=6. From (6.5), we see that
in this second case

m, o1 = (2n—DIO—(n —1)6*)+0(6), (6.9)

where (2n—1)!'=(2n—1)2n—3) - - - (3)1, which together with (2.11) implies
that all moments in (6.7) match the moments of B(z) in Section 2.5 up to
order O(6°) when v=1—6. Indeed, we can obtain the whole IG approxima-
tion directly from the moments of the busy period in this way. In particular,
we can represent each busy-period moment by a power series in 8 and look for
a distribution that matches the moment sequence obtained by keeping the
leading terms (matching terms up to order ). From Section 2.5 and (6.7), we
find that the IG distribution with »=1—8 solves this asymptotic moment
problem. We thus should expect case (ii) to perform very well for higher
traffic intensities, which it does.

The third case in (6.8), v=1/2, is just what is needed to give the IG distri-
bution the proper exponential rate, as we would expect from (4.1) and (4.3);
i.e,, from (6.6) and (4.1), we easily obtain that

G(t) ~ A@B(t) as 1—co, (6.10)
where
_ =172 20/
A@) =2 e Zp_yf 6.11)
_ p3/4(l + \/‘-;)262(1—p)/(l+\/p_)z

4 -1 as p-l
The third case also matches all moments up to order O ().

In fact, the corresponding densities also have the almost asymptotic property
(6.10). Indeed all the approximations for the complementary cdf B(r) yield
corresponding approximations for the density b(r) by differentiating, but in
general the quality of approximations can deteriorate drastically upon
differentiation. However, the IG density g(f) in case (iii) of (6.8) is also good
for b(t). Indeed,

g) ~A@b() as t—oo, (6.12)
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for A(6) in (6.11). In fact, we can make the IG approximations for b() and
B¢(t) asymptotically correct by dividing g(¢) and G°(t) by A(#) in (6.11).
However, then g(¢) is no longer a probability density function and G¢(¢) is no
longer a complementary cdf. This modification gives the best numbers for ¢
not too small, though; see Section 6.5 below.

It is furthermore significant that all three IG cdf’s are asymptotically correct
in heavy traffic, in the strong sense that

}i_x_% 07 [B(t)~G()) = 0, (6.13)

i.e,, in addition to the heavy-traffic limit theorem for B¢(¢) in (2.21),
i s Yeld -k
}1_% 87°G(t) = hy(2). 6.14)

Indeed, the limit is true for the density
: -1 = Lo - —
lim 67"g(1) = hy')=—L(, 1) (6.15)

for L(t, p) in (4.2). The limit in (6.15) is easily established by differentiating
(6.6) and taking the limit.

We remark that we do not yet have any direct probabilistic explanation why
we should change the variance coefficient » to the second or third candidate in
(6.8) in the context of RBM approximations for the queue.

6.4. Numerical comparisons

Numerical comparisons of the IG approximations with exact values for the
M/M/1 complementary busy period cdf B°(r) and other approximations
appear in Tables 5, 6, 10, 11 and 12. Table 10 compares the three IG approxi-
mations with the asymptotic approximations in Section 4 for the case p=0.50.
The relative percent errors are displayed in Table 10.

From Tables 4 and 10, we see that for the first IG approximation in (6.8)
involving canonical RBM with »=1 performs better than Heyman’s diffusion
approximation using the random initial conditions, but not quite as well as the
three-moment H, approximation. More importantly, this first IG approxima-
tion is clearly dominated by the other two IG approximations with »=1-—8
and »=7/2. The second and third IG approximations perform very well
except for very small ¢. There is relatively little difference between these two
approximations when p is not too small (e.g., p=0.50) because

2=+ Vp)P/4 = 1+p+2Vp)/4 and 1—6=(1+p)/2 (6.16)

The third IG approximation may be preferred because it is nearly asymptoti-
cally correct as t—o0; it is good for the third regime as well as the second
regime.

Tables 5 and 6 show that the asymptotic normal approximation in (4.3) is
better than the second IG approximation with »=1—#@ for very large ¢, but the
IG approximations are better for small 7. Tables 5 and 6 also show that the
quality of the IG approximation with »=1—6 improves with increasing p; it is
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much better for p=0.75 than at p=0.25. Table 11 gives the range for which
the relative percent error is less than one percent. For p=0.5, the second and
- third IG approximations perform very well in the second regime; the third IG
approximation also performs well in the third regime.

We have seen that the IG distribution is not a good approximation for very
. small times. This should not be surprising because the heavy-traffic limit (6.1)
focuses on relatively large times. Indeed, the IG density f(z;x,0) is 0 and
increasing at r=0, while the true M/M/1 busy-period density is positive and
strictly decreasing. However, the IG distribution does describe the busy-period
distribution remarkably well when we consider larger times.

6.5. Density approximations

From (2.21) and (6.12), we should expect that the IG density, using (iii) in
(6.8), is a good approximation for the M/M/1 busy period density b(t) for ¢
sufficiently large, and indeed it is.

However, we have just noted that g(0)=0, while 5(0)=1/26*. In fact, all
derivatives of g at 0 are 0. In contrast, b'(0)=—(1—6)/26*; see (2.32).
Hence, for small ¢ the IG approximation is very bad. It is natural to ask how
large ¢ must be for this bad initial match to disappear. This is partly answered
by properties of the IG density. From p. 365 of TWEEDIE [46] we see that the
IG density is unimodal with mode at (in our time scale)

9"_z]l/z_ﬂ]mza2 ﬁ,
3

1 (6.17)

tmode=0

t6f W~ 3

so that the initial period where the IG density has the wrong slope is brief. In
fact, numerical evidence indicates that the IG density g(¢) is a good approxi-
mation for =26, i.e., after about one service time. Comparisons between the
IG density g(¢) and the busy-period density b(¢) for the cases p=0.50 and
0.75 appear in Tables 13 and 14.

The relative percent error,

RE = £()—5Q) 5 100, (6.18)
b(®)
is also given in Tables 13 and 14. Interestingly, the relative percent error quite
rapidly approaches the asymprotic relative percent error,

ARE = LimRE = 100(4 ()~ 1) (6.19)

where 4 () is given in (6.11). Values of the ARE appear in Table 15. The IG
approximation in (iii) of (6.8) truly does exceptionally well as long as p and ¢
are not too small.

7. A COMPOSITE APPROXIMATION

None of the approximations considered so far performs well for all 7 and p.
However, it is easy to form a composite approximation that does. For this
purpose, we suggest using the third inverse Gaussian (IG) approximation with
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v=7/2=(1 +p+2\/;)/4 from Section 6 when t=t"(p) and the three-derivative
(3D) H; approximation from Section 3 when 1<t"(p), where

() = 3¢ _ 3a-p? .1

2p 8p

From our previous analysis, we see that the composite IG-3D approximation
is asymptotically exact as p—0, p—1, and as r—0. By (6.10)-(6.12), it is nearly
asymptotically exact as t—o0, and can be modified to be asymptotically exact,
as indicated in Section 6.

Numerical comparisons supporting the composite IG-3D approximation
appear in Table 12. The relative percent error is given for the cases p=0.25,
0.50, 0.75 and 0.85. For p=0.50, the relative percent error is evidently never
greater than 2.8%.

8. EXTENSIONS TO THE GI/G/1 MODEL .

The principal approximations considered in this paper apply equally well to
the M/G/1 queue with general service-time distribution, because the moments
and derivatives of the M/G/1 busy-period cdf B(f) are readily available. In
particular, for the M/G/1 queue we propose the IG approximation in Section
6 based on a two-moment match for the second regime and the IG-3D compo-
site in Section 7 overall. _

With the identical time scaling, the first two moments of the M/G/1 busy
period are m; =6 and m; =6(c? +1)/2, where c? is the squared coefficient of
variation (variance divided by the square of the mean) of the service-time dis-
tribution. The resulting IG approximation obtained from matching the first
two moments is thus (6.6) with x =4, just as for M/M/1, and

c2+1 c2+p
v 2 6= > 8.1)

In fact, however, for the GI/G/1 queue we would scale time by
(c2+c2)/(1—p)?, where c2 is the squared coefficient of variation of the interar-
rival time. This is the proper scaling to yield canonical RBM in the limit as
p—1; see [29] and Section 2 of [1]. For the M/G/1 queue, with time scaled by
(14+c2)/(1—p)?, the first two moments of the busy period again coincide,
yielding

1 — .
1+¢?
With this time scaling and the same approximation procedure, (ii) in (6.8), we
thus set x =x(x +v)=m, to obtain the IG approximation (6.6) with

1—

= d =1-x 8.3
x H_‘_3a.n v x (3.3)

For GI/G/1 with the time scaling (c2+c2)/(1—p)?, we do not have the
busy-period moments in such a convenient form. Nevertheless, it is natural to
consider the IG approximation in (6.6) with

(82)

m; = m; =
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1-
G+l

provided that x<1. Note that (8.4) reduces to (8.3) when c2=1 and (8.3)
reduces to the second M/M/1 case in (6.8) with »=1—@ when c2=1. Also
note that this IG approximation differs from what appears in (6.4) and DupA
[20,21] because »<1 in (8.4). Table 10 shows the improvement for the M/M/1
case. We intend to discuss approximations for the GI/G/1 busy-period distri-
* bution and make numerical comparisons in a subsequent paper.

x = and » = 1—x, (8.4)

9. RELATED QUANTITIES OF INTEREST

Approximations for the M/M/1 complementary busy-period cdf B¢(r) immedi-
ately translate into approximations for the M/M/1-LCFS waiting-time cdf due
to [41,42] and the M/M/1 probability of emptiness Pgy(¢) due to (2.5). From
the probability of emptiness, we then get the expected cumulative idle time
EIy(t) and the mean queue length EQq(¢) via (2.6). Equivalently, from [3] we
know that the normalized mean queue length H(?) is just

H\() = B.() = (1—p) [B*(u)du, 1=0. 9.1)
[i]

Consequently, any approximation for B¢(¢) translates into an approximation
for H,(¢) through an integration. However, the relatively simple direct H,
approximation for H,;(r) developed in [3] still seems preferable. (Direct H,
approximations are compared to H, approximations obtained from integration
in [5).)

The approximation for H,(¢) in {3] then can be used to obtain an approxi-
mation for Ely(t) via (2.6), namely,

EIy(t) = (1—pt +EQo(f) = (1—p)t+T;Lp+T;LpH€<t). 9.2)

In fact, KUMAR and WONG [35] propose the linear portion of (9.2) as an
approximation (and bound) for Ely(¢); i.e., they use (9.2) with Hf(#)=0, and
show that it captures the essential behavior. This linear approximation can
also be motivated by the fact (Theorem 9.3 of [4]), that ETy(¢) coincides with a
constant (the mean service time) multiplied by the renewal function associated
with the busy-period distribution. Renewal functions are well-known to be
asymptotically linear.

10. ConcLusIONS

We have investigated several closed-form approximations for the M/M/1 com-
plementary busy-period cdf B°(¢). For larger times, the best approximations
are the asymptotic normal approximation in (4.3) and the inverse Gaussian
(IG) distribution in (6.6) with »=1—8 or »=1/2 (cases (i) and (iii) in (6.8)).
The light-and-heavy-traffic interpolation in (2.25) also performs well. For
small times, the three-derivative (3D) hyperexponential (H;) approximation in
Table 3 performs very well. For very small times the power series
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representation in Section 2.6 is also good. A single composite approximation
based on (3D-H;) and (IG) is proposed in Section 7.

The three-moment (3M) H; approximations, which worked so well in [1-5),
do not perform as well for the M/M/1 busy period (Section 3). Simple
diffusion approximations as proposed by HEYMAN [26] and Dupa {20,21] do
not perform especially well, as shown in Table 4, but our proposed inverse
Gaussian approximations build on these diffusion approximations. Approxi-
mants based on Widder’s formula (Section 5) also do not perform very well
here, but these are very general procedures, which in some circumstances are
excellent.

The M/M/1 complementary busy-period cdf has proven to be difficult to
approximate. As illustrated by the relatively poor performance of the (3M)
H, approximations, it is not enough to match three moments. As illustrated
by the poor performance of the three-term asymptotic expansion in (4.1), it is
not nearly enough to capture the asymptotic behavior as t—»c0. As illustrated
by the relatively poor performance of unrefined diffusion approximations in
[20,21,26], it is not enough to consider the standard heavy-traffic limits and
diffusion approximations. However, by combining several of these properties,
it is possible to obtain quite good approximations. The positive approximation
results provide a basis for treating busy periods in more general models (Sec-
tion 8) and other M/M/1 quantities (Section 9).
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Appendix A

time values of the traffic intensity

t |p=0.00{p=0.10 p=0;25 p=050{p=0.75|p=0.85|p=0.95;p = 0.99

#721.7788 |.7812 |[.7848 |.7905 |[.7961 |.7983 |.8004 |.8012
# |.6065 |[.6140 |.6249 |.6422 |.6584 |.6646 |.6707 | .6731

0.10| .8187 |.7836 |.7116 |.5158 |.2394 |.1356 |.0425 | .00829
0.25].6065 |.5495 |.4501 |.2676 |.1143 |.0646 |.0203 |.00398
0.50{.3679 |{.3128 [.2344 |.1303 [.0563 |.0321 |.0102 |.00201
0.75{.2231 |{.1837 |{.1348 |.0764 .0340 |.0196 |.00628 |.00124
1.00|.1353 {.1109 [.0827 ].0489 |[.0224 |.0130 |.00422 |.00084
1.50|.0498 .0432 |.0352 |.0229 |.0112 |.00664 |.00219 |.00044
2,00(.0183 |.0180 |.0165 |.0119 [.00619 |.00374 |.00125 (.00025
3.00(.00248 |.00358 |.00423 |.00378 |.00221 |.00139 }.000480 | .000097
4.00|.000335 | .000796 | .00122 |.00135 |.000888 | .000577 | .000206 | .000042
5.00] .000045 | .000189 | .000380 | .000514 | .000381 { .000256 | .000094 | .000020
6.00 | .000006 | .000047 { .000123 | .000205 | .000171 | 000119 | .000045 | .000009
8.00 | .000000 | .000003 | .000014 | .000036 | .000037 | .000028 | .000011 | .000002

TABLE 1. Numerical values of the time-scaled M/M/1 complementary busy-
period cdf B(t) obtained by Laplace transform inversion of (2.2).
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Part I: exact values of 67! B<(r)
time values of the traffic intensity
t p=000]|p=010|p=025{p=050|p=075]p=085|p=095]p=0.99
0.10 j 1.64 1.74 1.90 2.06 1.92 1.81 1.70 1.66
0251 1.21 1.22 1.20 1.07 0.91 0.86 0.81 0.80
0.50 | 0.74 0.70 0.63 0.52 045 043 0.41 0.40
0.75 | 0.44 041 0.36 0.31 0.27 0.26 0.25 0.25
1.00 { 0.27 0.25 0.22 0.20 0.18 0.17 0.17 0.16
1.50 | 0.100 0.096 0.094 0.092 0.089 0.089 0.088 0.088
2.00 | 0.036 0.040 0.044 0.048 0.050 0.050 0.050 0.050
3.00 | 0.0049 0.008 0.011 0.015 0.018 0.019 0.019 0.020
4.00 | 0.00067 |0.002 0.003 0.005 0.007 0.008 0.008 0.008
5.00 | 0.00009 | 0.00044 { 0.0010 | 0.0020 0.0030 | 0.0035 | 0.004 0.004
6.00 | 0.000012 | 0.00011 | 0.00035 | 0.0008 0.0014 } 0.0016 | 0.002 0.002
8.00 | 0.00000 | 0.000007 | 0.00004 | 0.00014 | 0.0003 { 0.0004 | 0.0005 | 0.0005
Part II: approximate values of 8~ B*(¢)
time values of the traffic intensity
t p=0.10 | p=025| p=050 | p=0.75 | p=095

0.10 | 1.64 1.64 1.64 1.85 1.65

025 | 114 1.06 0.96 " 0.87 0.81

0.50 | 0.68 0.62 0.54 0.46 041

0.75 | 041 0.38 0.33 0.29 0.25

1.00 | 0.25 0.23 0.21 0.19 0.17

1.50 | 0.097 0.095 0.092 0.089 0.088

200 | 0.039 0.041 0.045 0.048 0.050

3.00 | 0.0075 0.010 0.014 0.017 0.019

4.00 | 0.0021 0.0034 0.0053 0.0070 0.0082

5.00 | 0.00078 0.0014 0.0024 0.0032 0.0038

6.00 | 0.00035 0.00068 | 0.0011 0.0015 0.0018

8.00 | 0.000087 { 0.00017 | 0.00029 | 0.00039 | 0.00047

TABLE 2. Part I: numerical values of the doubly-scaled M/M/I complementa-
1y busy-period cdf, 6= B(t), obtained by multiplying the values in
Table 1 by 6! =2/(1 — p); )
Part II: light-and-heavy-traffic interpolation (1—w)2e ™% + wh (1)
in (2.25) with w(p) = p* for x = 0.75.
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type of Be(t) zpe_k" + (l—p)e—k"
approximation
P Al_l A{l
One-moment _

. 0 —_ 0= i b}
exponential fit 2
Two-moment

. m(1+c?) 1
bounding H, (1-26)=p ) > =3
(atom at 0 plus A =0
exponential)
Tfree derivatives 1— Voo +4) 26p 21—
g (0),2(0),£(0) 2 1-p P
One moment
and two derivatives % 61— Vp) 80+ Vp)
£'(0),g(0), m
Two moments
and a derivative 1+ p£(4—-3p ) ﬂl;ﬂ 1—0_31-,-
4 (O)v m;,mp
Three moments - 1-Va 1+ Vo
my,m;, m; 2 2

TABLE 3. Hyperexponential (H;) approximations for the time-scaled M/M/1
complementary busy-period cdf B(t).
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H, Fits HEYMAN’S| approximants from
exact [26] Widder’s formula (5.1)
three two
time| transform moments| Moments diffusion {TER HAAR| JAGERMAN
t |inversion aﬁgﬂ_‘;{'e approx. [45] [30]
09 317 .38 24 30 45 44
.18 .188 17 15 23 32 31
27| 132 095 13 19 26 24
36 .0994 066 1 17 22 .19
45| .0782 054 094 A5 19 .16
90| .0321 .031 045 A2 12 .08
1.00| .0273 027 038 a1 07
1.25] .0189 021 026 09 05
1.50| .0135 .016 017 08 .04
200 .0074 .0093 0075 .06 .02
3.00| .0026 20031 .0015 04 .01
4.00( .0010 0011 0003 03 .004
5.00| .0004 .0004 .0001 . 2002
6.00{ .0002 .0001 .0000 001

TABLE 4. A comparison of five approximations of the time-scaled M/M/1
complementary busy-period cdf B°(t) with exact values obtained
from Laplace transform inversion: the case of p = 0.70.
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TABLE 5. A comparison of approximations of the time-scaled M/M/1 comple-
mentary busy-period cdf B*(t) with exact values obtained by Laplace

J. Abate, W. Whitt

time exact H, fit inver§e asymptotic
transform| one moment, Gaussian normal
t inversion |two derivatives|(6.6), v = 1—6| (4.3)
#/4 = 0.035| 884 .884 98 32
.05 .840 .840 94 25
.10 712 712 7 1.5
25 450 452 435 .64
.50 234 .240 216 .28
75 135 .141 125 .15
1.00 .0827 .0869 0785 090
1.50 0352 0349 0350 .0372
2.00 0165 014 0172 0172
3.00 .00424 0024 .00486 .00436
4.00 00123 .0004 00154 .00125
6.00 000125 .00005 000187 000125

transform inversion: the case of p = 0.23.

time exact H, fit inverse asymptotic
transform| one moment, Gaussian normal
t inversion |two derivatives{(6.6), v = 1—-8| (4.3)
#/4 = 0.0039) .888 .888 .96 1.8
05 378 43 Ky P A0
.10 239 33 .236 25
25 114 17 113 .116
S50 0563 059 0560 0568
5 0340 020 .0338 0342
1.0 0224 0069 0224 0225
1.5 0112 0008 0112 0112
20 00619 00620 00620
30 00221 00222 00222
40 .000887 .000895 000889
6.0 000171 .000173 000171

TABLE 6. Same comparison as Table 5: the case of p = 0.75.
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p=0.25 p =095 p = 0.99
time ;

' exact three- |relative| exact three- |relative| exact three- |relative
transform| moment |percent|transform| moment | percent | transform| moment |percent
inversion | H, fit | error |inversion| H, fit | error |inversion| H; fit | error

0.10{0.712 0.722 + 1.410.0425 |0.0118 |—72.1]0.0083 |0.0023 —~T72.3
0.25]| 0.450 0.455 + 1.1]0.0203 |0.0098 | —50.00.0040 |0.0020 —50.0
0.50] 0.234 0.230 — 1.710.0102 |0.0076 | —20.0]0.0020 {0.0015 —250
0.75] 0.135 0.129 — 45100063 ]0.0059 |— 6.3|0.0012 }0.0012 — 438
1.00} 0.0827 }0.0796 — 37100042 {00046 | + 9.5]|0.0008 [0.00092 |+ 95
1.50{ 0.0352 }0.0357 + 1410.00219 [0.0028 | +27.3|0.00044 {0.00056 | +27.3
2.00| 0.0165 |0.0176 + 6.7]0.00129 {0.0017 | +30.8 |0.00025 |0.00034 | +36.0
3.00{ 0.0042 |0.0046 + 8.0 0.00048 |0.00061 | +27.1{0.00010 |0.00012 | +27.8
4.00] 0.00123 |0.00121 |— 1.6]0.00021 |0.00022 | + 4.8 0.00004 |0.000045 | + 7.1
5.00| 0.00038 |0.00032 | —16.8{ 0.00009 |0.00008 { —14.9 | 0.00002 |0.000017 | —15.0
6.00| 0.00013 (0.000084 | —38.5 | 0.00005 |0.00002 | —35.6 | 0.00001 }0.000006 | —35.8
8.00} 0.000014 }0.0000058{ -—57.2 | 0.000011 }0.000004{ —63.7 | 0.000002 {0.0000008] —66.7

TABLE 7. A comparison of the three-moment H, approximation of the time-
scaled M/M/1 complementary busy-period cdf B°(t) with exact
values obtained from Laplace transform inversion: the cases of
p = 0.25, 0.95 and 0.99.

. p=.25 p=.50 p=.75
time

t 2D, 1IM) | 3D) || @D, IM) | 3D) || 2D,1M) | (3D)
S5 +0.0 —0.0 +00 | —00f + 01 | —00
1.0 ¢ +0.1 —0.0 + 0.1 —0.0 + 09 | —0.1
1.5 & +04 | —0.1 + 11 | —02| + 27 | —04
2.0 # +0.7 —0.2 +24 | =07l + 51 | —12
2.5 ¢ +12 —04 +41 | —15} + 83 | —25
3.0 # +1.8 —1.1 +59 | —24| +120 | —43
4.0 ¢ +3.0 —25 I +10.1 —6.3 +198 | —94

TABLE 8. The small-time performance of two hyperexponential fits: two
derivatives and one moment (2D, 1M) and three derivatives (3D).
The values displayed are relative percent error, ie, 100X
(Approx. — Exact)/ Exact.
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time mixing density w(p)
y in B(1) (2.27) | in H{ () [3] | in ¢ (1) [9]

= 0.009 0.00 0.00 0.00
0.010 22.1 1.77 0.04
Ymax = 0012 26.6 255 0.06
y 0015 24.0 2.88 0.09
0.030 112 2.69 0.16
0.100 2.05 1.64 0.33
0.50 0.17 0.68 0.68
1.00 0.05 0.40 0.80
1.50 0.01 0.12 3.60
n = 174 0.00 0.00 0.0

TABLE 9. Values of the mixing density w(y) in (2.8) in the spectral represen-
tation of the busy-period complementary cdf B‘(t) for the case
p =0.75. Also given are the corresponding mixing densities for the
Sfirst-moment function complementary cdf HS(t) and the correlation

Junction c.(t).

time | inverse Gaussian approximations standard

(6.6) and (6.8) asymptotic asymptotic
normal expansion
! v=1l v=1-0 v=1/2 4.3) (3 terms) (4.1)

0.016 +6.2 +9.6 +9.8 +149.

0.05 —4.3 +5.0 +6.0 +51.

0.10 | —10.7 —0.8 +0.3 +24.

0.25 —11.2 =37 -2 +8.2

0.50 —5.1 —23 —-27 +43

0.75 +1.0 —2.1 —25 +3.0

1.00 +72 —14 —25 +23

.50 | +21. +0.0 —22 +1.7

2.00 +34, +1.7 —22 +1.3 +252.

3.00 +63. +34 =21 +0.8 +84.

4.00 +5.2 -20 +0.7 +39.

5.00 +8.0 —19 +0.6 +21.

TABLE 10. A comparison of five approximations of the time-scaled
M/M/1 complementary busy-period cdf B°(t) for the case
p = 0.50. The displayed values are relative percent error,
100 (Approx. — Exact)/ Exact.
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TABLE 11. Time range where the relative percent error is less than one
percent for the asymptotic normal approximation in (4.3) and
the inverse Gaussian approximation in (6.6) with x =6 and

traffic inverse asymptotic
intensity | Gaussian

p | @=1-g | rmomd
0.25 14-16 5.5-00
0.50 1.1-1.9 25-0
0.75 . 0.18-44 045 - 0
0.85 0.07 - 12 0.11 - 0
0.95 0.01 - o0 0.01 - 0

v=1-4.
traffic intensity
time
p=.25 p=.5 p=.175 p=.85
t ,
3D IG 3D IG D IG D IG
1 & | —00 —0.0 —0.1 —0.1
26 | —02 —0.7 —12 | —08 | —1.5 | —07
36 | —11 —24 | 24 —12 —10
4 # | —25 =27 —12 —10
S & | —47 —2.8 —1.2 —1.0
6 # | —81 | —83 —2.8 —1.1 —0.8
1.0 —85 —2.5 —04 —0.2
1.5 —85 —2.2 —04 —0.2
20 —85 —2.2 —04 —0.1
3.0 —8.7 —21 —04 —0.1
4.0 —8.6 —2.0 —0.3 —0.1
5.0 —8.4 —1.9 —0.3 —0.1

TABLE 12. Relative percent errors, 100 (Approx. — Exact)/ Exact, for the
composite 1G-3D approximation in Section 7 and its inverse
Gaussian (IG) and three-derivative (3D) H, approximation

components.
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time buznspie:;od IG density relauv:rg:rccm
t b(r) g() RE in (6.18)

0.00 | 128.0 0.00

0.01 19.0 25.0

0.02 12.1 13.8

0.03 8.28 8.65

0.04 5.98 6.02 +0.8

0.05 4.52 448 —0.8

0.10 1.71 1.68 —1.7

0.50 0.1295 0.1286 —0.7

1.00 0.0346 0.0344 —0.5

2.00 0.00691 0.00689 —04

4.00 0.000776 0.000773 —04

6.00 0.0001340 | 0.0001336 —03

8.00 0.0000276 | 0.0000275 —0.3

TABLE 13. 4 comparison between the inverse Gaussian (IG) density g(t) using
(iii) in (6.8) and the M/M/1 busy-period density b(t) in the case

p = 0.75.
time b“;ympsg;“ IG density ”'a"‘:TE:'“"‘
t b(r) g() RE in (6.18)

000 | 8000 0.000

001 | 7.106 2243

002 | 6333 6.726

003 | s5.662 7432

004 | 5078 6.852

006 | 4.123 5261

008 | 3388 4,030

010 | 2816 3.161 +124
020 | 1301 1.295 —04
040 | 0458 0.444 —30
080 | 0225 0219 —29
10 | 00816 0.0794 —26
20 | 00148 0.0144 —23
30 | 000407 | 000399 —21
40 | 000134 | 000131 —20
50 | 0.000482 | 0000473 —20
60 | 0000185 | 0.000181 —20
70 | 0.000073 | 00000724 —20
80 | 00000305 | 00000299 —19
90 | 0.0000129 | 0.0000126 —19

TABLE 14. 4 comparison between the inverse Gaussian density g(t) using (iii)
in (6.8) and the M/M/1 busy-period density b(t) in the case
p = 0.50.
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traffic asymptotic relative

intensity percent error
p ARE in (6.19)

0.10 —23.6

0.15 —159

0.20 —113

0.25 —8.2

0.30 —6.0

0.35 —4.48

0.40 —3.33

0.45 —2.47

0.50 —1.82

0.55 —1.32

0.60 —0.947

0.65 —0.660

0.70 —0.443

0.75 —0.283

0.80 —0.167

0.85 —0.087

0.90 —0.0359

0.95 —0.0084

TABLE 15. The asymptotic relative percent error for the inverse Gaussian
(IG) density approximation, using (iii) in (6.8), qf the
M/ M/ 1 busy-period density.






