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APPROXIMATING A POINT PROCESS BY A RENEWAL
PROCESS: THE VIEW THROUGH A QUEUE, AN
INDIRECT APPROACH*

- WARD WHITT

This paper investigates simple approximations for stochastic point processes. As in several
previous studies, the approximating process is a renewal process characterized by the first two
moments of the renewal interval. The approximating renewal-interval distribution itself is a
convenient distribution with these two moments; it is constructed from exponential building
blocks, e.g., the hyperexponential distribution. Here the moments of the renewal interval are
chosen to produce the same level of congestion when the renewzl process serves as an arrival
process in a lest queueing systern as is produced when the general point process is the arrival
process, The procedure can be applied to predict the behavior of a new service mechanism in a
queucing system with a complicated arrival process; then we use the system with the oid
service mechanism as the test system. But the test system can also be an artificial device to
approximate any point process. This indirect approximation procedure extends the equivalent
random method and related techniques widely used in ieletraffic engineering.

{(QUEUES; POINT PROCESSES; APPROXIMATION)

1. Introduction

Suppose we plan to change the service mechanism in a queueing system and we
want to describe the level of congestion to expect after the change. For example, we
may intend to change the number of servers, the queue discipline or the individual
service rate. Subpose, in addition, that the level of congestion before the change is
observable or partially observable, but the arrival process is either unobservable or
intractable. The question is: how can we approximately describe the level of conges-
tion that will prevail after the change.

We present an approximation procedure that can be used to answer this question.
Here is how it works: Based on a partial description of the congestion before the
change, we approximate the arrival process by a convenient renewal process character-
ized by two parameters. We then solve the model which has this renewal arrival
process and the new service mechanism.

There is an important assumption in this procedure that deserves mention. We are
tacitly assuming that changing the service mechanism will not itself cause a change in
the arrival process. Our procedure aims to describe the level of congestion that will
result if the same arrival process is the input to the new service mechanism, In many
applications, e.g., a traffic intersection, the arrival process may change in response to a
change in the service mechanism. However, when this phenomenon can occur,
approximate methods are if anything even more appropriate.

The choice of the family of approximating arrival processes is of course important.
The processes should be sufficiently simple that the queceing model with the new
service mechanism can be solved. At the same time, the approximation should be
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reasonably accurate, i, the model with the approximating arrival process should
adequately describe the congestion in the new system.

The greatest simplicity is achieved with a one-parameter approximation, with the
natural one-parameter approximation being a Poisson process with the correct arrival
rate. A Poisson approximation is often adequate, but also it is often not. Many arrival
processes are significantly more or less “variable” than a Poisson process, and this
variability matters. For example, overflow processes are much more variable (arrivals
tend to occur in clumps), while scheduled arrivals (constant interarrival times) or
minor deviations from scheduled arrivals are much less variable. The second parame-
ter here is intended to represent this variability.

The approximating arrival processes we propose are renewal processes charactenzed
by two parameters. To achieve the greatest simplicity, we let the renewal interval
distribution be either the mixture of two exponential distributions (hyperexponential:
H,), the convolution of two exponential distributions (generalized Erlang: Ef) or the
exponential distribution shifted by a constant (shifted exponential: M), By construct-
ing the distribution from exponential building blocks, we can solve the new models
either analytically or numerically after using the method of stages to construct a
vector-vaiued continuous-time Markov chain; see Chapter 4 of Kleinrock [11).

The approximation procedure here obviously applies to an arrival process in a
queueing system, but the procedure can be applied to any point process. Then the
queueing system becomes an artificial device to help select an approximating renewal
process. Either analytically or by simulation, we determine the level of congestion
when the given point process is used as an arrival process in the “test” system. Then
we can select the approximating renewal process by the procedures specified in this
paper. The given point process could also be used to generate the service times instead
of the arrival times; then the arrival process could be a Poisson process and we would
act as if we had an M /G /1 model instead of a GI/M /1 model. This indirect method
is very convenient when there is a handy simulation program for a queueing system
and we need to quickly examine a point process in a different setting, e.g., a reliability
ar inventory system. It should be apparent that we could also use an inventory model
as a test system lo approximale a point process in a queueing system.

This paper is part of a larger investigation of simple approximations for point
processes. Other methods for approximating peint processes by the same renewal
processes considered here are described in Whitt [18] and Albin [1]. Each approxima-
tion procedure uses certain properties of the point process to be approximated in order
to specify the moments of the renewal interval. The stationary-interval and asymptotic
methods in [18] focus on the point process in isolation. The hybrid methods in [1] for
approximating the 3G,/ G /1 queue begin to use the model context because the traffic
intensity of the queucing system is used to refine the approximation. The view through
a queue here goes further in this direction; it is entirely based on the way the point
process affects a queueing model.

It should be noted that there is considerable related literature; an effort to describe
it was made in [18]. The indirect approach here is very closely related to the equivalent
random method and its variants; see §4.7 of Cooper [3], Kuczura [13], Wallstrém [17]
and Wilkinson [20], {21}. The equivalent random method is a procedure for approxi-
mately characterizing a complicated arrival process and the blocking experienced by
these arrivals in a service system with finitely many exponential servers and no waiting
room. In the usual setting—alternate routing in a telephone network—the arrival
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process is -the superposition of overflow processes, which is quite intractable, The
arrival process is characterized by two parameters representing its rate and variability.
The variability parameter, called the peakedness, is determined by looking at the
congestion produced by this arrival process in an associated infinite-server system.
Hence in the equivalent random method the infinite-server system is used as a test
system. From the arrival rate and peakedness, good approximations of the blocking
probabilities have been obtained for loss systems.

In the original version of the equivalent random method, the complicated arrival
process is approximated by the overflow process from a single loss system, but
later,upon the suggestion of W. S, Hayward, Kuczura [13] introduced a renewal
process approximation. Thus the main ideas in the present paper come from this
earlier work; we show that these ideas can be generalized.

This paper is organized as follows: In §2 we consider approximations for arrival
processes when the service mechanism is a single exponential server with infinite
waiting room. In §3 we extend the procedure to general service-time distributions. We
consider approximations when the service mechanism is an infinite group of exponen-
tial servers in §4, With the aid of the equivalent random method, in §5 we apply the
infinite-server approximation procedure to generate approximations for arrival pro-
cesses when the service mechanism is a finite group of exponential servers without a
waiting room. Finally, we discuss a few extensions and directions for further research
in §6. Additional information appears in [19}, which is available from the author. For
the most part, [19] contains additional results describing the performance of the
indirect method. While the indirect method often performs well, it can perform rather
poorly. Users are advised to test and tune the method if possible before serious
applications.

2. Approximating the Arrival Process ina G/ M /1 /oo System

Suppose we have a G/M/1/00 queueing system: a single server with infinite
waiting room, first-in first-out queue discipline, mutually independent service times
with 2 common exponential distribution having mean p~', and an arrival process that
is independent of the service times but otherwise general (G instead of G}, We have in
mind a stationary arrival process, so that we can view the system in steady state. (The
existence of steady-state distributions in this generality is discussed at length in
Franken, Konig, Arndt and Schmidt [6].) We shall use observations about the level of
congestion in this system, i.e., various characteristics of the queue length process, to
approximate the arrival process by a renewal process. The idea is very simple: We act
as if the arrival process were a renewal process. Noting that the GI/M /1/co system
with a given service rate is characterized by two parameters, we develop a method for
obtaining these two parameters given gueue length characteristics. We then show how
to fit a renewal process to these parameters. We shall illustrate the procedure by
approximating the arrival process of a GI + GI/M/1/% queue, ie., a G/M/1/x
system in which the arrival process is the superposition of two independent renewal
processes.

2.1 Background on the G1/M /1/o0 System

Consider the special case in which the arrival process is a renewal process; see
Chapter I1.3 of Cohen [2]. The stochastic behavior of this system is characterized by
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the interarrival time c.d.f. F and the mean service time p~'. Let A~ " be the mean of F
and let ¢ be its Laplace-Stieltjes transform, i.e.,

(s) =J;me““a’F(x), s> 0. (1

[t is significant that, given p, the asymptotic stochastic behavior of this system depends
on the interarrival time distribution only through two real parameters. The first is the
traffic intensity p = A/, which we assume is less than one; and the second is the root
g, with 0 < ¢ < 1, of the equation 5 = &{ u(1 — ).

Let Q(f) represent the number of customers in the system at time ¢ and let
g:{r)= E[Q(1)),t > 0. If the interarrival time is nonlattice, which we assume, then
Q(1) converges in distribution to a finite random variable Q and ¢;(¢) converges to a
finite limit g; for each ¢ as 1 — o0, where

P(O=k)={ " k=0, 2
(@=4k)= p(1—-0)a* !, k>1, )

and
q,=p(1—a)_' and q2=p(l+o)(1—-a)_2. (3)

Note that the two moments ¢, and g, in (3) also characterize the asymptotic behavior.
In particular, we can express p and o in terms of ¢, and g¢,:

4~ 4 2‘]12
0= ——— and = 1—-0 = . 4
g+ 4 p={ Yy g+ g, : *

However, this is not the only way to express p and o. For example, from (2} and (3)
we have

p=1-P(Q=0) and o=1-(p/q) 3)

2.2 Estimating p and o in the GI/M /1/ w0 System

Now suppose that we actually have a GI/M /1 /o0 system and we want to estimate
the basic parameters p and o based solely on observations of the stochastic process
{ @), t > 0}). Suppose that we have a sequence of random observation times
{t,,n > 1} independent of the queueing system such that ¢, —> co as n—» c0. Then we
obtain the following sequences of estimators for g, and ¢,:

n
Gin= n*'kgl Q). n>l, (6)
and
Gon = n-‘él Q@) nxl Q)
Since the arrival epochs initiating busy periods are regeneration points, the variables
Q(1,), k > 1, are close enough to being independent so that sequences {§;,} and {4,,}

are strongly consistent, i.e., §,,— g, and §,, > g, with probability one as n— co; see
Iglehart [9]. Moreover, if the system starts in the steady state, ie., if the process
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{ @(e).¢ > 0} is stationary, the estimators are unbiased: £§,, = q, and E§,, = g, for
all n. It is of course important for these properties that the observation times be
independent of the queueing system. For example, if the observation times were all
arrival epochs, then §,, would have different limits; see (3.25) on page 210 of [2].
From (4), (6) and (7), we obtain the following natural estimators for ¢ and p:

A q':?.u - q‘ln a 2?12;1
0, = = =7 =z - 8
92n + qln p an + qln ( )

Obviously these estimators are strongly consistent o0, but they involve products and
ratios of random variables. Therefore, they need not be unbiased. We could introduce
maodifications to reduce the bias which may be important if the sampie is small; see
Iglehart [10] and references there. However, if the sample is not too small, then the
estimators in (8) should be satisfactory.

From (5), we see that another pair of estimators for p and o is

p.=1- n_lk% Lo(Q(x)) and 3, =1~ (5./41.), ®

where 1,(x) is the indicator function of the set 4. The estimator p, has the advantage
that it is unbiased if the queue is initially in the steady state. Moreover, p, is robust
because p=1— P(@=0) for more general arrival processes, i.e,, for G/G/1/c0
queues [6]. Again, refinement for ratios could be used. As should be expected, because
g, and p, involve §,, whereas 3, and p, do not, experiments indicate that @, and p, are
much better estimators than 4, and §,. As an illustration, we compare these estimators
in a simulation of a GI/M/1/o0 queue in Table 1. The arrival process here is

TABLE |

A Comparison of Estimators in the H $/M /1 oo Queue
Sample
Mean
Traffic and
Intensity Sid. Estimators Actual
P Dev. P 9 F g o
0.3 M 0.302 0.303 0.382 0.382 0.376
SD 0.002 0.008 0.004 0.008
0.5 M 0.499 0.516 0.587 0.581 0.592
SD 0.002 0.0i1 0.004 0.007
0.7 - M 0.700 0.663 0.780 0,791 0776
sD - 0.002 0.029 0.004 0.012

Notes: (1) The interarrival time has mean | and squared coefficient of variation ¢2 = 2 in
each case.

(2) M = Sample Mean.

(3) SD = Sample Standard Deviation.

(4) The estimate of 8D is the classic ratio estimate; see [10] or Appendix 1.

(3} The number of customers served depended on p, being 60,000 for p = 0.3; 90,000 for
p=0.5; and 300,000 for p=0.7. Before the customers were counied, a thousand initial
customers were served and not counted to let the system reach steady state. The estimates
were based on 20 batch means in each case.
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hyperexponential (H?) with squared coefficient of variation ¢?=2; see (10)-(12)
below. We considered three different traffic intensities: p = 0.3, 0.5, and 0.7. In Table
1 we have displayed the sample means and standard deviations. Note that the sample
standard deviations of p and & are significantly less than the sample standard
deviations of j and §. ‘

In [19, Appendix 1] we also compare these estimators in a simulation of an
H)+ H}/M/1/co queue, where the arrival process is the superposition of two
independent H; renewal processes. Since the arrival process is not a renewal process, a
significant bias is apparent in the estimator p, but p behaves just as in Table 1 because
p is unbiased for general G/G/1/o0 queues. Hence, we recommend using & and 5
instead of ¢ and p whenever possible.

2.3 Selecting an Approximate Arrival Process

Given the parameters p, ¢ and p or their estimates, we now want to construct an
approximating arrival process. Obviously the arrival rate should be A = pu. Hence, we
let the approximating arrival process be a renewal process with mean interarrival time
A~ ! We use the parameters p and ¢ to delermine the specific renewal process. If o > p,
we let the interarrival time have a hyperexponential distribution; if o = p, we let the
interarrival time have an exponential distribution; and if o < p, we let the interarrival
time have either a generalized Erlang distribution or a shifted exponential distribution.
These interarrival distributions are characterized by two parameters in each case so the
fit is achieved by simply fitting the remaining parameter.

The H?/M/ 1/ System. Here we let the interarrival time have a hyperexponen-
tial distribution, i.e., a mixture of exponential distributions. We use the special case of
two exponential distributions with balanced means (denoted by H7); i.e., the distribu-

tion has the density
f(x)=ghe™ + (1 — g,e ™™, x>0, (10)

where 0 < ¢ < I and
AT =2¢/A =21 ~ g)/ Ay (11)

see Kuehn [14] and page 52 of Morse [15]. With these parameters, the interarrival time
can have any coefficient of variation ¢ (standard deviation divided by the mean)

greater than one:
c={[1+2g-1)/[1-@g-1)) "> 1. (12)

The assumption of balanced means in (11) reduces the number of parameters from

three to two. The requirement that the mean be A ™! leaves one free parameter. Given

g, Ay, A, and p, we can solve for p and 0. Of course, p = A/p. To find o, we must solve

¢p(p(l~a)=oor

- g (1- 9\ . (13)
p(l=o)+A,  p(l-0o)+A,

a

Using (11) we obtain

L1 —dp(l —p)[1 —4g(1 -
ens V1 - 4p( 92)[ q( ‘I)}_ (14)
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Since p(1 — p) < 1/4 and g(1 — ¢) < 1/4, we see that ¢ > p. In order to have o = p, it
is necessary and sufficient to have g =1 — g = 1/2, but then A; = A, by (11) and the
hyperexponential distribution reduces to an exponential distribution.

From (10) and (11), we can also find ¢, A, and A, from A, ¢ and ¢. In particular,

1,1 _[e=p(—-0+p)
9"5—5\/ P(I—P) g (15)

A feasible ¢ is obtained from (15} if and only if (¢ — p)(1 — 6 + p) < p(} — p), which in
turn holds if and only if p < o < 2p. Thus, (15) always has a solution when p » 1/2,
but might not when p < 1/2. This difficulty does not seem to arise in practice, but if o
turns out to be too large, then one can apply the indirect method with a different
interarrival time distribution. One could also replace o by the largest feasible value, 2p,
but that may seriously underestimate the variability of the arrival process; see (3)
and (5).

Having found the parameters ¢, A, and A, of the approximating H? arrival process,
we can calculate the two parameters p and o of the GI/M /1 system with any new
exponential service rate using (11) and (14).

The ES/M/1/c0 System. Here we let the interarrival time be the sum of two
independent exponential random variables with means A[ ' and A}, denoted by E§.
When A, =A,, we obtain an ordinary Erlang (E,) distribution which always has
coefficient of variation ¢ = 1/y2.With A, s ),, we can obtain any coefficient of
variation between 1/y2 and I:

172

c=([)\,2+?\§]/[)\l+?\2]2) : (16)

Given the parameters A,, A, and g, we can solve for the parameters p and ¢. Of course,
A'=XA""+A; " and p=A/p. To find ¢, we must solve $(p(l ~ ¢)) =g or

Ad;

(R — ) AN u(l—0)+2y) (17)

from which we obtain

o =(1/2p)(x1 N I ) (18)
Given A, p and o, we can also solve for the parameters A; and A;:

A= (x/20) = (1/2)/(x/A)* - 4x , (19)
where
x = plo(l —a)p/(p — o). (20)
Here of course we have o < p. In order for (19) to have a solution, we must have the
discriminant nonnegative, i.e.,
o(l — o) > 4p(p — o). 2n
If 6 < p but the inequality in (21) is not satisfied, then we can try the M? arrival
process below.
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Having found the parameters A; and A,, we can find the key parameters p and o
associated with any new service rate p using (I18) and the relations p=A/u and
ATh=ArT AN

The M®/M/1/o System. Here we let the interarrival time be the sum of a
constant 4 and an exponential random variable with mean A ' This distribution,
which we call the shifted exponential distribution and denote by M¥, has density

flx)y= AgMxmD, x > d, - (22)

with mean A™' = d + A[ ! and variance ¢? = A% Hence, ¢ = 1/(1 + A,d). Obviously,
¢ can assume any value between zero and one, with the value one attained when d = 0.

Given A, 4 and p, we can solve for the root ¢. Solving the equation ¢{ u{l — o))
= ¢, we find that ¢ satisfies

Ale"*‘““")d

A+l — o) =% 23)

which can easily be solved on a computer by a search routine. (The left side of (23) is
bigger than the right for o = 0 and equal for ¢ = 1, and there is one root in the interval
0,1).) :

Conversely, after letting A = pu and d=A"'— A, we can also solve (23) for A,
given g, o and p. From (23), we see that A;”', is the solution to

e HI—AT-ATH 0(1 +p(l — a))\,“). (23a)

Note that both sides of (23a) are increasing in A;”'. Also the largest possible values on
the left and right are 1 and o(l + p — o)p ', respectively. Since s(1 +p—a)p ' < 1
because p > o, a solution to (23a) must exist when e"('~*7' < ¢ because then the
range of the left side of (23a) contains the range of the right side. Again, it is possible
for there to be no solution. This problem can occur only when o is relatively small.
Then another interarrival time distribution, such as a two-point or three-point distribu-
tion, can be tried.

24 An Example: The 3G,/ M/1/c0 System

To illustrate our approximation procedure, we consider a G/M/1/ o0 system in
which the arrival process is the superposition of independent renewal processes. For
simplicity, we consider two identically distributed M7 remewal processes. Extensive
experience with superposition processes (e.g., [1,18]) indicates that the Hf + H?
process is sufficiéntly different from a single H? process for this to be an interesting
case.

Here is the experiment: We simulated five H?+ HZ/M/1/co systems with a
common arrival process but different service rates. We let the mean and coefficient of
variation of the renewal interval in each component H? process be 2 and V2
respectively. Thus the arrival rate in the superposition process is one. From (12), we see
that the mixing probabilities in each component process are ¢ and 1— ¢ where
g = 0.78867. We considered five different service rates: p = 0.3, 0.5, 0.7, 0.8 and 0.9.
Since A = 1, p = u in each case. For each simulation we estimated-g, using §,, in (6).
Then we estimated ¢ using @, in (9) and the known p. (As can be seen from [19,
Appendix 1], the estimate p, will usually be very close to p, so similar results can be
expected if we use the estimate. However, this example illustrates that we need not

[
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always estimate p.) Given &, and p, we estimated the coefficient of variation ¢ using
(15) and (12). We need ¢ instead of ¢ because ¢ describes the arrival process alone
whereas o also depends on the service rate y. Finally, given the known arrival rate
A = pp and the estimated coefficient of variation ¢, we calculated the mean queue

" length for each of the other service rates. For each new service rate, we calculated ¢
" from (12) and the new root ¢ from (14). The mean number in the system is then

p/(1 = o). <

The values of g,, the expected number in the system, are given in Table 2. The
underlined diagonal elements are the actual values as estimated from the simulation.
The rows record the new traffic intensities and the columns record the traffic
intensities of the test system used to generate the approximation. For comparison, the
one-parameter M /M /1/00 approximation is included in Table 2. We compare the
approximation procedure here with the procedures in [18] and [1] in [19, Appendix 3].

The number of customers served in the simulation depended on p; being 60,000 for
p = 0.3; 90,000 for p = 0.5; 300,000 for p = 0.7; 600,000 for p = 0.8, and 1,000,000 for
p = 0.9. Before the customers were counted in each case, a thousand initial customers
were served and not counted to let the system reach steady state. In each case the
estimates were obtained by dividing the total sample into 20 batches and treating the
batch means as independent and identically distributed observations. The same
procedure and sample sizes were used for the other tables.

Since in all but two cases (going from p = 0.3 and 0.5 to 0.9) the percent error is less
than 10 percent, we conclude that the indirect approach works well. This is especially
true when the new service rate is not too far away from the test service rate. Moreover,
there is a systematic pattern to the errors, which suggests a possible refinement. In
particular, if the new traffic intensity is higher (lower) than the test traffic intensity,
then the approximate mean should be inflated (deflated). Table 2 could serve as the
basis for quantifying such refinements, but we do not pursue this subject here. Further

TABLE 2
The Approximate Vaiues for the Expected Number of Ciistomers in an H + H3 /M /1[0 System:
g1 =p(1 - 0) :
One-
Parameter Traffic Intensity of the Test System
M/M/\ /o 03 0.5 0.7 0.8 0.9
0459 ,
0.3 0.429 m 0.461 0.469 0472 0.483
s 0.5 1.00 113 L.13 117 118 1.24
=5 011
§ c% V 291
= 2 , . v . S LA . 16
£ :2 0.7 233 2 2.79 0.057) 297 3
o
£E 5.26
& .
0.8 4.00 487 490 5.13 0.056) 563
. 13.3
0.9 9.00 11.2 11.3 12.0 12,2 0.32)

Note: The simulated values are underlined. In parentheses below the simulated values appear the
standard errors (one sample standard deviation).
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refinements of the approximation procedure can be carried out as needed. Qur object
is to demonstrate the value of the general approach. Since we have also obtained
similar results in other cases, the conclusions apply qmte broadly. For further discus-
sion, see the next section and [19).

3. Approximating the Arrival Process ina G /G/1/00 System

The indirect method in Section 2 can be extended to cover general service time
distributions by using approximation formulas based on the first two moments of the
interarrival time and the service time. Heavy traffic approximations can be used for
~ this purpose, but we found that approximation formulas developed by Krimer and

Langenbach-Belz [12] work better. They obtained approximations for the mean
waiting time and the probability that a customer will be delayed in a GI/G/1/
system, Using Little’s formula L = AW, we can transform their approximation to
obtain an approximation for the mean number of customers in the system:

?1=P+(1‘fp)(c ;c )’1( 1€5,P), | (24)

where ¢, and ¢, are the coefficients of variation of the interarrival tune and service time

and

exp{—(2(l—p)/3p)([l-—cg]z/[cg-i-cf‘])}, ¢, €1,
g)(p{ —(1 —p)([cf— 1]/[c3+ 4c;2])}, ¢, > 1;

h(car €5 p) =
see §1.3 of [12]

Given ¢/, p and ¢, or their estlmates (# in (9) and §, in (6)), we can solve (24)
iteratively on the computer for ¢Z. A search routine is easy to implement because the
approximation formula for g, in (24) is a strictly increasing function of ¢2. Given cZ,
we can fit the appropriate distribution (H7, M, E£, or M9). As before, if ¢ > 1, we use
sz, ife=1, weuseM if I/J_ < ¢ <1, wecan use Ef; and if 0 < ¢ < 1, we can use
Me,

To illustrate this approximation procedure, we simulated several HY + H?/G / 1/00
systems in which the service time distribution is either Hz , By, or M. As in §2, we let
the renewal interval in each H? arrival process have mean 2 and coefficient of
variation y2. Thus the total arrival rate is one. We considered two different mean
service times g~ = p = 0.5 and 0.8. The coefficients of variation of H? and E, service
times were y2 and 1/42 respectively. For each simulation we estimated g, using 4,, in
(6). With this value of ¢, plus the known values of p and c,, we determined c, using the
KL (Krimer and Langenbach-Belz) formula (24). We then used this approximate
value of ¢, to approximate g, for all the other cases. Here we are using the indirect
method to describe the congestion after changing the service-time distribution as well
‘as after changing the service rate. As.can be seen from Table 3, the indirect method
-again 'seems to work well. As in Table 2, the simulated values appear on the diagonal
and are underlined. In parentheses below the simulated value is the standard error

- (one sample standard deviation).of the simulation estimate. Notice that the approxima-

tion differences are of the same order as the uncertainties in the estimates. The values
of the approximating squared coefficient of variation cZ appear in the bottom row.

(25)

Ecw
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~but because we expect the more extreme: distributions, wﬂl not often arise.. Further
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TABLE 3 i
The Approx:mre Values for the Expected Number of Customers in the HS + H $/G, / 1/ %0 Systems,
Using the KL Formula (24) :

The Test System i
The Traffic . Hi+ H}/H}/] HY + HE/ M/ HY + Hi[Ey/1
New Intensity =20 c¢t=10 Po2=05
System P p=05 p=08 p=05 p=08 p=05 p=08
by HE/HE . 146 . 1.42 1.43 140, 1.43
HE + HY/HE/ 0.5 o 1.46 140
7.16 )
0.8 ‘ 7.16 -(—13-)- 6.84 6.93 ?.72 6.93
_L16 16
Hz + H. /M/l 0.5 1.20 l..ZO (017) 1.17 . li.ls ‘ 1.17
" . . 5.30- -
0.8 5.51 . 551 5.22 m 55th ‘ 5.30
b b : . . l i
HY + HEJEy /) 0.5 1,06 106 102 A oy 103
. ' : 447
0.8 . 4.67 - 467 438 447 : 4,.27 . —_
Approximate 205 205 184 180 1; % 1%
Value of ¢2 S S SV E o

Loss t r.'

" Notes: (1} The stmulated values appear on the dlagonal and are underlmed The slanda:d efror (one
sample standard deviation) appcars in parentheses below the estimate, )

(2) The approxlmatc values of ¢2 obtained by mvertmg ‘formula (24) appear in the bottom row. Thls
value of ¢2 is used to generate the off-dlagonal elements of l‘.he cqumn

L
13

The Indirect Method for both G/M /1700 queues (§2) and the KL approximation
(24) are based on two-moment approximations. To put these approximations in
perspective, we indicate the range of possible g; values (mean number'in system} over
all possible GI/M /1 queues with glven traffic intensity p and squared coefficient of
variation of the interarrival time c?. Wc also mdlcate Where the. HZ/M /1 and KL
values fall within this range. S :

It is possible to give the range because the extremal distributions : are known, see
page 138 of Eckberg [5]. The largest posmble g value i is attained w1th thé two-point
dlstnbuuon having mass 1/(1 + ¢?) on A7'(1 + ¢%)-and mass c*/(1 + ‘cz) on 0, where
A~! is the mean of the renewal interval; “The smallest possxble g; valuelis not attained,
but the limit is the one-pomt distribution’ht

aving mass 1 on A~ '. This, distribution is the
limit as k— oo of two-point qhstnbutlons havmg mass kz/(l +k? on K"(l —-¢ / k)
and mass 1/(1+ k) on A~ (1 + ko). | |

Table 4 gives the range of g, values along W1th he Krimer and Langenbach-BeIz
approximation. It is apparent that the range is very wide, with the lower. bound ‘being
especially far away from the- HE/ M/ approximation.; - We expéct” ‘he two-moment

studies are under way to quantlfy how addltlonal propertxes such as unimodality
restrict the range.



ne
he
or
1d
in

to

Y

1€

1)

1e

Ty

et ke e = DO B g B

s

e—a ol

AFROXGM ATINy o POINT SIS
t .3
The App -vxime- Values jor the © peci d Nu ic
Us 5 the Larm
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HE s HYJHE/ 0.5 L4
: St 1028
0.8 7.16 .
Hi+ HifM ] 0.5 1.20 i
0.8 551
Hé+ HEJFL /1 0.5 1.06 tie.
0.8 4.67 4.0
Approximate
PP 2.05 20a

Value of ¢?

Notes: (1) The sumulated values zppear on the Jisonal
sample standard deviation) appears in parentheses bolow the

A

18T,
124;

Uhe

"

. 1‘\
& L

.84

116

C Q17

822

102

4,38

1.84

NEWAL PROCESS

“the HY + H2/G /1 /00 Syster

st System
HE M/ Hf+ HE/E.
=10 e2=0.5
_p=08_ p=05 -
1.43 1.40 b
6.93 6.72 6 -
1.17 1.i5 1
5.30 < -,
22 5.1 )
08 0 5
1.01 .
.03 —_— iE
1.0 (007)
4.3
4.47 4.27 oo
1.90 - L76 1.6

(S
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TABLE 4

The Possible q; Values (Mean Number in System) for Gl M /1 Queties
with Given A, u, and ¢2 =2

Traffic Kramer and

Intensity Lower Langenbach-Belz Upper
P Bound Approximation HEifM[i Bound

0.3 0.31 047 0.45 0.94
0.5 0.63 1.19 1.2 1.88
0.7 1.32 3.03 .1 3.93
08 2.15 5.44 5.5% 6.45
0.9 4.62 12.85 13.04 13.86

In order to point out circumstances in which the indirect niethod ceases to be good,
we now describe experiments with different arrival processes. In particular, we consid-
ered the three cases in §6 of [18], namely M¥ + M7, M? + /{2, and H? + H} where
c*=10.6 in each M¥ process and ¢ = 9.56 in each H} prccess. The results for the
indirect method in these cases are displayed in Tables 5-7. It is significant that the
variability of the //y process here is much greater than in Tahle 2. In the two cases in
which such a highly variable H; process is present the indirect method does not work
as well as before. This is consistent with our experience in [18]; see Appendix 10 there.
(In Tables 5-7 more customers were served in the simulation than was the case for
Tables 1—4. In particular, there were 300,000 for p = 0.3; 750,000 for p = 0.6; 4,500,000
for p = 0.8; and 7,500,000 for p = 0.9.)

Further investigations of the indirect method for G/G/1/ queues appear in [19,
Appendix 5]. Table 11 there is the analog of Table 2 in §2. For the H2 + HZ /M /1
queue, we see that the indirect method using KL approximation (24) is about the same
as the GI/M /1 fit in §2.

TABLE 5

Approximate Values for the Mean Number of Customers in the System (g,) in an
MY+ M“'/M/l Queue, with ¢* = 0.6 in each M7 Process, Using lhe

KL Approximation (24)
Traffic Intensity of the Test System
0.3 0.6 08 09
037 -
. —_— .37 0.38 (.38
2§ ooy 3
E& 06 12 S22 1.25 125
E z (0.007)
27 08 308 3.1 _319 321
3 E £ . ) {0.012)
s 09 6.77 " 685 7.05 (-34%

Apprr‘oximaling o
Squared Cocfficient 0469 0.488 0.534 0.544

of Variation ¢?
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TABLE 6

Approximate Values for the Mean Number of Customers in the System (q,) in an
HY + H}/ M/ Queue, with ¢* = 9.56 in each H¥ Process, Using the

KL Approximation (24)

Traffic Intensity of the Test System

0.3 0:6 0.8 0.9
0.54 ’
0.3 0.66 0.73 0.73
o E {0.004)
=R 3.60
§ kS 0.6 247 —( 0.035) 4,27 4.26
23 og 8.0 127 156 15.5
=T
85 40.6
= % 0.9 19.7 328 .8 o7
Approximating
Squared Coefficient 3.80 734 9.49 944 -
of Variation ¢?
TABLE 7 -

ApproximateiValues for the Mean Number of Customers in the System (q,) in an

M9+ H2/ M/ Queue (¢} =
KL Approximation (24)

9.56 and c3 = 0.6) Using the

Traffic Intehsity of the Test System

03 0.6 0.8 0.9
0.45 :
. E 0.3 m O.SI 0.56 0.57
3‘; » 2.19
g o 0.6 1.68 0.025) 2.64 275 |
=2 os 470 6.78 863 9.12
=0 (0.075) 7
EZ o9 109 165 216 29
k-] - . {04)
Approximating ) .
Squared Coefficient 1.48 295 431 4.66

of Variation ¢2

4 Approxnmating the Arrival Process ina G /M /oo System

Suppose we have a G/ M /o0 service system: infinitely many servers working in
parallel’ with mutually independent service times having a - common: exponential

distribution with mean p~!

631

and an arrival process that is independeént of the service
times but otherwise general. Again we assume the arrival process is stationary, so the

system can-be viewed as being in steady state; see/[6] for supporting theory. As before,
we shall use observations about the level of congestion to approximate the arrival
process. Here let O be the steady-state number.of busy servers and let. g ‘be the _]th

moment of Q. We shall use ¢, and g, to specify the arrival rate A'and the coeff1c1ent of .

variation ¢ of the renewal interval.
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4.1 Background on the GI /M /oo System

As in §2.1, we begin by considering the special case in which the arrival process 1s a
renewal process; see page 163 of Takdcs [16]. Again the stochastic behavior is
characterized by the interarrival time c.d.f. F and the mean service time p~'. Let A ™'
be the mean of F and let ¢ be its Laplace-Stieltjes transform, defined in (1). In this
case, given p, the steady-state distribution depends on more than two parameters of
the arrival process; in fact it depends on countably many parameters: {¢(kp), k > 1};
see [16]. However, it is significant that, given g, the parameters ¢, and ¢, depend on
only two parameters. From page 164 of [16], it follows that

9z |
=g=)\ and z=2~—-]l=+——— —a. 26
7 /¥ qx t=a(#) %)

Viewing the infinite-server system as a trivial case of a loss system and planning for the
applications to loss systems in §5, we call the parameter a here {(p before) the offered
load and the parameter z the peakedness. We use z because it is commonly used in
teletraffic applications; see [3] and references there. We can obviously estimate g, and
g, using (6) and (7). Then (26) provides the basis for consistent estimators of g and z.

4.2 Selecting the Approximate Arrival Process

Based on the discussion above, given p, we obviously let A = pa. Below we will see
how to determine ¢ for the special renewal interval distributions given p, a and z. The
particular arrival process to use depends on the peakedness z and offered load a. If
z2l,weuse H2; if Ba+ 1)/da+ 1)< z< 1, weuse Ef; and if z < (3a+ 1)/(4a +
1) or also if z € 1, we use M“. To give an indication of the ranges, we note that the
minimum peakedness given the offered load a is the peakedness associated with a
D/M /o system; them z.;, =(1— e /?)~! — g, For example, when a=1, z,,
= 0.582; when a = 10, z,;, = 0.508; and as a—> o0, z,,, > 1/2.

The HY/M/co System. Given the service rate p and an H; distribution as
specified in (10} and (11), we can calculate the peakedness using (26). We obtain

N2
z=l/[l 20 _ 22(179) }—a. @7)

—2aq+l _2a(l—q)+1

Conversely, we can use these relations to calculate the HY parameters given a, g, and z
(f z > 1). First, A = ap. By (27), we obtain

Y

A different scheme for generating a hyperexponential renewal interval approxima-
tion was developed by Kuczura [13]. This scheme, which is not based on balanced
means and thus involves three parameters, is described in [19, Appendix 7). Experience
in teletraffic applications indicates that Kuczura’s procedure usually works quite well,
but it is more complicated. :

The Ef/M /oo System. Given the E¥ distribution with parameters A; and A, as
specified in §1.3, we can calculate the peakedness using (17) and (26). To go the other
way, note that A7'=XA7"+ A" or A; + A, =AA,/A. Then solve (17) for A\A, or
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A; + A,. We obtain
A\=(B B = a\B) /2, @9

where .
B=MD/A-A+p)D) and D=1—-(z+a)"" (30)
In order for (29} to have a solution, the discriminant must be nonnegative; i.e., we
must have B > 4A% or z > (3a + 1)/(d4a + 1). In order for the solution to be feasible,

we must have B > 0, which reduces to z < 1. In other words, the Ef distribution is
appropriate for z such that (3a + 1)/(4a + 1) < z < 1. Use M“ below if z is not in the

right range.
The M9/ M /oo System. Given the shifted exponential distribution with the density

in (22), we can use (26) to solve for the peakedness:
e
A+

=l—(z+a)-"'. €29

Alternatively, given p, a and z, we can let A=au and d=A"" /\‘l and. then solve
(B1) for A,. As d—0, z—>1; as d>A"", z>(1 — e~ /D)~ l—a the minimum
peakedness associated with D/ M /oo systems.

4.3 An Example: The 5,G,/ M /oo System

To illustrate the indirect method for G/M /o0 systems, we apphed it to the
H!+ HY /M [0 system in which the two component arrival processes are identically
distributed with ¢? = 2.0 or, equivalently, with g = 0.788675. We first considered the
H}/M /e system with offered loads of a =1, 2, 5, 10, and 20. We calculated the
peakedness in each case using (27). These peakedness values also apply to the
H} + H{/M/c system, so we obtained the actual offered loads and peakedness
values for the Hf + H} /M /oo system. These in turn were used with (28) 10 obtain an
approximating H arrival process. The results are displayed in Table 8. Based on the

TABLE 8 L
Approximate Values of the Peakedness (z) for H2 + HS/ M /oo Systems Using the Indirect Method
-Offered Load in the Test System _

a=2 a=4 a=10 a=20 . a=40

£g a=2 1.20000 1227 1.256 1269 Tan

T8 a=¢d 1.250 1.28563 1.324 1.341 1352

S@ a=10 1.294 1.338 1.38462 1411 - 1420

B3 a=20 1312 1.360 1.410 1.43478 1:449

3Z a=4 1.323 1372 1.426 1449 146511

&5 i’
Approximate 0.75000 0.76349 077639 0.78204 0.78522 .
Value of ¢ _ h
Approximate 1.67 177 1.88 193 1:96
Value of pz _ o

Notes: (1) Each component #2 process has ¢? = 2.0 or, equivalently, ¢ = 0.788675.. .. -
(2) The true values obtained from (27) are given on the diagonal and are underlined.
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criterion of having less than 10 percent error, the indirect method again performs well,
but the approximation does not discriminate as well from the test system value as was
the case in Tables 2 and 3. (Here the peakedness does not change much in the range
studied.) Of course, the approximate peakedness obtained via this indirect method is
closer to the actual peakedness than the peakedness of the test system. Also, in judging
these approximations, note that they are for the peakedness or second moment; no
approximation is needed for the first moment, which is just the offered load a.

S. Approximatiog the Arrival Processina G/ M /s /0 System

We can also apply the method in §4 to -approximate the arrival process in a

‘ G/M/s/0 system, i.e., a system with s homogeneous exponential servers and no .

waiting room. In this setting it is common to observe the number of arrivals and the
number of blocked arrivals in a given time interval. The number of arrivals yields an
-estimate for the arrival rate A. This together with the known service rate p or its

estimate yields an estimate for the offered load a = A/p. To proceed further, we use

the equivalent random method or one of its variants; see §4.7 of Cooper [3} and
Wilkinson [20], [21]. The estimated blocking probability together with the offered load
a and the number of servers s can be used to obtain an estimate of the peakedness z.
We then apply §4 to characterize the approximating renewal process. -

The basic procedure for obtaining the peakedness z is to solve the following three
equa.tlons for a’, s', and v (see page 137 of [3]):

=aE(s+s,a), .
a=a'E(s,a’), . (32)
—afl—gqt—a_

U_a(l a+s+1+a—a)

and then set z = v/a, where B is the estimated blocking probabrhty, a is the offered
load to the artificial group of s’ servers such that the resulting overflow behaves like
our arrival process; a is the offered load and s is the number of servers in our actual
system; and E(s,a) is the Erlang loss formula. However, given z, 4, and s, it is
convenient to use the Rapp approximation to determine @’ and s'; see p. 138 of [3] or
(A7.3) and (A7.4) in (19, Appendix 7). This provides an iterative procedure to obtain
z: Choose a candidate z value and solve for &', s, and the associated blocking
probability, then revise the choice of z accordingly, making it bigger 1f the canchdate
blocking probability is too small.

There are several other possibilities too. First, it is possible to use the graphs and

tables in [21]. Second, it is possible to use Hayward’s approxrmatlon, i€, we can
approximate the blocking probability B(s,a,z) as.a function of s, ‘g, and z by

E(s/z;a/z). We then use an iterative procedure based on the Erlang loss formula to

search for z.
- We conclude this section with an example. Consnder the Hf /M /s /0 system wnth
A=4, p=1, s=15 and H; parameter g= 0984123 which corresponds to the

- ,'-'proba.brhty in thls system is about. 0046 Now. Suppose that we change the service .

. mechanism without changing the arrival process. In particular, supposé: we dectease




elt,
ras
ige

is
ng
no

no .

he
an
its

T e ek

I R

“ciated with a renewal process in whﬁeh the mterarnval—tune dxstnbu‘ho 1

system?

Of course; no approximation is. heeded here because we know the : :
However, suppose we did not; a srmple approximation procedure . that 'lm ;
here is to let the peakedness be just what it was before. Using the graphs en pag‘e.‘

f21] for the case s =150, a =40, and z =4, we obtain the approxlmate blockrng

probablllty B =0.10. However when we calculate the peakedness assoc:ated mth

ity. This example demonstrates the value of the mdlrect method

6. Extensions and Dir‘e'c‘ﬁons for Fu‘tur‘é Rmdif?

The indirect method in §§4 and 5'can be extendéd to general servr
tions. First, by Little’s formula L= )\W .the mean.. number of busy
steady state in a G/ G /o0 system isa= )\/ T8 Eckberg [4] has shown th:
G/G/e the peakedness z as a function of the service tlme dlstnbutno

2(G)=1+ a-lf_ "[k(x) - Aa(x)]G<2)(x)dx

where B - e Y

L S : E»{? :
i Fafy
1

;{o,.y}

8 is the Dirac delta function and ¥ x)is the eovanance densrty of tjle
(See [18, §7] for further discussion;and; references) E7ES A

Given the first two moments of the servrce time djstnbuuon G, we:e
special distributions. Moreover we: can’ assume - thé covariance: deLsit

our special disiributions. Then we can mvert (33) to caﬂculate the re' 'a

characlermng the mterarnval Umen'dlsmbutlon

interarrival tlme c2
When there 15 wartmg room an

supported b .

'lmut theorem in
Whitt [8]. ~ -~
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Finding a way to apply the indirect method to G/G/s/k systems seems to be a
promising direction for future research.’

''The simulation and associated data collection in support of the numerical comparisons were done by my
colleague Susan Albin. I am grateful to her for comments on the manuscript and many helpful discussions. I

_ also thank the referees for their assistance.
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