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To understand the performance of a queueing system, it can be useful to focus on the evolution of the content
that is initially in service at some time. That necessarily will be the case in service systems that provide
service during normal working hours each day, with the system shutting down at some time, except that all
customers already in service at the termination time are allowed to complete their service. Also, for infinite-
server queues, it is often fruitful to partition the content into the initial content and the new input, because
these can be analyzed separately. With i.i.d service times having a non-exponential distribution, the state of
the initial content can be described by specifying the elapsed service times of the remaining initial customers.
That initial content process is then a Markov process. This paper establishes a heavy-traffic FCLT for the
initial content process in the space DD, assuming a FCLT for the initial age process, with the number of
customers initially in service growing in the limit. The proof addresses a technical challenge: For each time,
including time 0, the conditional remaining service times, given the ages, are mutually independent but in
general not identically distributed.
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1. Introduction The initial content process of a queueing system specifies the number of
customers that were initially in service at time 0 and are still in service later at time t and the
elapsed service times since their arrival times before time 0. Assuming that the service times come
from a sequence of independent and identically distributed (i.i.d.) random variables, independent
of the arrival process and system history, the initial content process is a Markov process, even
if the service-time distribution is non-exponential, and thus provides a useful description of the
system state at each time. In this paper we establish a heavy-traffic functional central limit theorem

(FCLT) for the initial content process of a large-scale queueing system. The key assumption is an
FCLT for the initial age process, which requires that the number of customers initially in service
grows. The technical challenge is treating non-identically distributed remaining service times.
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Our Contribution. We establish the FCLT above in a more general context. Specifically, we
consider a sequence of infinite-server (IS) queues indexed by n, which we refer to as Gt/GIo,GIν/∞
models. There are infinitely many servers, so that each customer enters service immediately upon
arrival. In system n, there is a general arrival process with a time-varying arrival rate function
λn(t) = nλ(t) (the Gt), so that the arrival rate is scaled by n, the usual many-server heavy-traffic
scaling. We will specify the arrival process only by the requirement that it satisfy an FCLT; see
Assumption 1 below.

We assume that the system operated in the past (prior to time 0) as a conventional Gt/GI/∞,
model with i.i.d. service times that are independent of the arrival process, with service times dis-
tributed according to a cumulative distribution function (cdf) G. We assume that system operates
after time 0 according to a Gt/GI/∞ IS model with i.i.d. service times that are independent of the
arrival process, with service times distributed according to the cdf Gν . As in the usual many-server
heavy-traffic scaling, the two service-time cdf’s G and Gν are not scaled by n. Our approach is
designed especially to treat the case in which these cdf’s are not exponential.

We will be interested in the system performance after time 0, which can be characterized by the
pair of two-parameter stochastic processes (Xe,o

n (t, y),Xe,ν
n (t, y)) with t≥ 0 and y ≥ 0. The variable

Xe,o(t, y) counts the number of customers that were already in service at time 0 and are still in
service at time t and have elapsed service times that are less than or equal to y (here y > t since
they started service prior to time 0). The variable Xe,ν(t, y) counts the number of customers that
arrived after time 0 and are still in service at time t and have elapsed service times that are less
than or equal to y (here 0≤ y ≤ t since they started service after to time 0). (The superscripts are
chosen to help, with e denoting elapsed, o old and ν new.) Given the assumptions on the service
times, the stochastic process (Xe,o

n ,Xe,ν
n )≡ {(Xe,o

n (t, ·),Xe,ν
n (t, ·)) : t ≥ 0} is a Markov process with

time domain [0,∞) and state space D
2, where D is the usual function space of right-continuous

real-valued functions with left limits, endowed with the usual Skorohod topology [41].
Our main result, Theorem 2, is an FCLT for (Xe,o

n ,Xe,ν
n ) jointly with other processes in the

space DD2 of D
2-valued functions in D. The use of DD2 follows [31, 33, 39]. It is an alternative

to measure-valued approaches in [5, 16, 17, 43] and distribution-valued approach in [36]. The
alternative approaches are appealing for simplifying arguments and revealing structure; e.g., [36]
shows that the the heavy-traffic limit for the G/G/∞ model can be regarded as a tempered-
distribution-valued Ornstein-Uhlenbeck diffusion process, generalizing the diffusion process limit
for the M/GI/∞ model in [5]. On the other hand, the DD framework here evidently admits more
continuous functions, and so has more immediate applications via the continuous mapping theorem.
Explicit connections between the two approaches for the fluid limits are made in [15].

Theorem 2 here extends Theorems 3.2 and 5.1 of Pang and Whitt [31] by treating more general
initial conditions. In particular, in §5 of [31] the remaining service times of customers initially in the
system at time 0 are assumed to come from a sequence of i.i.d. random variables; similar restrictive
conditions on the initial conditions are made in [17, 34, 35]. Our main contribution here is treating
the initial content process (ICP) Xe,o

n ; the limit for Xe,ν
n comes from [31]. As in [31], and in Louchard

[26] and Krichagina and Puhalskii [19] before, we work with the empirical process of the service
times. The key assumption for Theorem 2 here is that the initial age process {Xe,o

n (0, y) : y ≥ 0}
(which is just the ICP at time 0) satisfies an FCLT jointly with the arrival process after time 0; see
Assumption 1. To address the technical challenge of non-identically distributed remaining service
times, we draw on Chapter 25 of Shorack and Wellner [37], which in turn uses a symmetrization
argument from Marcus and Zinn [28]. Substantial new arguments are required as can be seen from
the tightness proof in §4.2.3. Evidently, this is the first use of symmetrization technique to analyze
a queueing model with non-identically distributed service times.

We point out that Reed and Talreja [36] also treat the ICP as part of their new approach to
obtaining heavy-traffic limits for the G/GI/∞ model, but the specific conditions assumed, as well
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as the framework, are different. We emphasize engineering relevance, e.g., by providing an explicit
characterization of the limit process, exposing key structure (see Remark 7) and providing explicit
formulas for time-varying means, variances and covariances that lead to an effective algorithm
for computing relevant performance measures (as confirmed by the simulation experiments at the
end).

Motivation. Very broadly, IS models are important to represent the time-varying offered load,
i.e. the time-varying demand, in a service system, by going beyond the time-varying arrival rate
to include the service times in a useful way; see [12, 22, 42]. Directly including the service times
is important when the service times are relatively long. Then the load through time may not be
well represented by the arrival rate function alone, because the customers are in the system for a
substantial time after their arrival epochs. The expected number of customers in an infinite-server
queue is referred to as the offered load because it represents the expected number of servers that
would actually be used as a function of time if there were no limit on their availability. The analysis
here may usefully supplement previous work on the offered load, because to understand and predict
the demand in a service system, it may be useful to partition the demand into the demand resulting
from new input after some time and the demand resulting from customers already in service at
that time. The FCLT here may be useful to predict the future demand based on observation of the
initial content process.

More narrowly, within the class of IS models, the present paper evidently is the first to establish
a heavy-traffic limit for the performance of the Gt/GIo,GIν/∞ model with general nonstationary
arrival process after time 0 when the system started some time in the past and there is a system
change at time 0, possibly leading to a new arrival process and a new service-time distribution
after time 0. Corollary 6 in §5 shows that Theorem 2 can be applied to establish an FCLT for the
Gt/GIo,GIν/∞ model, even if the general initial conditions here hold before time 0.

Even more narrowly, for the Gt/GI/∞ model, it may be important to consider IS models with
initial conditions more general than assumed in §5 of [31], where the remaining service times
conditioned on the initial number in service was assumed to be i.i.d.

For finite-server queueing systems, to understand the performance, it may be useful to focus on
the evolution of the content that is initially in service at some time, ignoring the new input after
that time. That necessarily will be the case in service systems that provide service over normal
working hours each day, if the system shuts down at some time, except that all customers already
in service at the termination time are allowed to complete their service. For example, terminating
systems with nonhomogeneous Poisson arrival processes were considered in [11]. As discussed in [6],
such performance descriptions can be useful to develop effective measures to recover after system
overloads.

Finally, it is important to note that IS models are useful for studying finite-server systems. First,
results for IS models can be used to develop engineering approximations for finite-server models;
e.g., see the peakedness approximations in [20, 32] and references therein. Second, heavy-traffic
limits for IS models can be fruitfully applied to establish associated many-server heavy-traffic limits
for finite-server systems; see [1, 23, 24, 27, 34, 35].

In fact, we intend to apply the results here in [2] to establish a FCLT for the Gt/GI/st+GI model
with alternating overloaded (OL) and underloaded (UL) intervals, time-varying staffing as well as
arrival rate and customer abandonment (the +GI), extending the FCLT for the Gt/M/st + GI
model in [24]. We intend to apply the present results in three ways. First, the theory here applies
directly to UL intervals, which can directly be regarded as IS models, starting off with customers
in service with elapsed service times, determined from the previous OL interval. Second, the theory
also directly applies to the initial content in service during an OL interval, determined from the
previous UL interval (because the dynamics of the ICP is not affected by the finite service capacity).
Third, the theory will once again apply to treat the number of waiting customers in an OL interval,
because then we can regard the abandonment times as service times; see [24].
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Organization of the paper. In §2, we specify the model operating after time 0 in more
detail. We define its key performance functions, specify the many-server heavy-traffic scaling, and
our detailed assumptions. At this point, we represent the behavior before time 0 by the assumed
behavior of the ICP at time 0 in Assumption 1. In §3 we state our main results and in §4 we
prove them. In §5 we show that our results apply to the Gt/GIo,GIν/∞ model starting some
time before time 0, if we assume that the limit for the arrival process has independent increments,
because then the ICP at time 0 has the properties assumed in Assumption 1. From this case, we
can also see that the results are consistent with the previous results in [31]. In §6 we provide the
first characterization of the steady-state distribution of the new and old content in the stationary
G/GI/∞ model. In §7 we report simulation results for a challenging test case having non-Markov
arrival process, non-exponential service-time distribution, and general initial conditions. Finally,
we provide concluding remarks in §8. Additional material appears in an appendix.

2. The Model After Time 0 We start by considering the model after time 0; we show that
the results can be applied to the Gt/GIo,GIν/∞ model starting with the initial conditions here at
some time before time 0 in §5. Even though we consider time with t≥ 0, we are especially interested
in those customers who arrived before time 0. Their history will be captured by the initial age
process, which coincides with the ICP at t = 0.

We are primarily interested in the ICP Xe,o
n (t, y), but we also consider the associated pro-

cess for the new input Xe,ν
n (t, y)). In addition to the pair of two-parameter stochastic processes

(Xe,o
n (t, y),Xe,ν

n (t, y)), counting the old and new customers in the system at time t with elapsed
service times at most y, we also define the closely related pair of two-parameter stochastic processes
(Xr,o

n (t, y),Xr,ν
n (t, y)), counting the old and new customers in the system at time t with remaining

service times at least y. Of course, these remaining-time processes are usually not directly observ-
able, but they do usefully represent the future demand. However, they are tightly linked with the
other processes. In particular, they are linked via the simple relations Xr

n(t, y) = Xn(t+y)−Xe
n(t+

y, y) and Xe
n(t, y) = Xn(t)−Xr

n(t− y, y), where Xn(t) is the total number of customers in system
n at time t; i.e., Xn(t) = Xe

n(t,∞) = Xr
n(t,0).

As indicated in §1, it is important to treat the old and new customers separately. As in [31], for
the new arrivals we have

Xe,ν
n (t, y) =

Nn(t)∑

i=Nn((t−y)+)

1(A
(n)
i +Si > t), t≥ 0, y ≥ 0, (1)

Xr,ν
n (t, y) =

Nn(t)∑

i=1

1(A
(n)
i +Si > t+ y), t≥ 0, y ≥ 0 (2)

where A(n)
i is the arrival time of the ith customer and Si is the associated service time in system

n. The service times Si has not been scaled by n, hence no superscript.
Now we turn to the processes associated with initial customers already in the system at time 0.

Let τn,i denote the length of time the ith customer has been in service (age in service) at time 0 in
system n. Without loss of generality we assume the ages are ordered 0≤ τn,1 ≤ τn,2 ≤ . . .. Then

Xe,o
n (t, y) =

Xe
n(0,(y−t)+)∑

i=1

1(ηi(τn,i) > t), t≥ 0, y ≥ 0, (3)

Xr,o
n (t, y) =

Xn(0)∑

i=1

1(ηi(τn,i) > t+ y), t≥ 0, y ≥ 0, (4)
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where Xe
n(0, (y− t)+) is the total number of customers at time 0 that have been in service for time

(y− t)+ ≡max{y− t,0}.
The key property we will exploit is the conditional independence property: Conditional on the

sequence of service age random variables {τn,i : i≥ 1}, the sequence {ηi(τn,i) : i ≥ 1} is a sequence
of mutually independent random variables with conditional tail probabilities

P (ηi(x) > t|τn,i = x)≡Hc
x(t)≡ 1−Hx(t)≡

Gc(t+x)

Gc(x)
, (5)

for x≥ 0, t≥ 0, where Gc(x)≡ 1−G(x) is the complementary cdf (ccdf) for the service distribution
of old customers. The primary difficulty in the proof stems from the fact that, conditional on
the sequence of service age random variables {τn,i : i ≥ 1}, the random variables ηi(τn,i) are not

identically distributed.
Given the processes (1)-(4) and the equalities Xn(t) = Xe

n(t,∞) = Xr
n(t,0), we can define the

departure process associated with initial and new customers from the nth queue. Let Do
n(t) (Dν

n(t))
be the total number of initial (new) customers who have departed by time t. Then necessarily
Do

n(t) = Xn(0)−Xo
n(t) and Dν

n(t) = Nn(t)−Xν
n(t). Hence Dn(t)≡Do

n(t)+Dν
n(t) = Xn(0)+Nn(t)−

Xn(t) represents the total number of departures by time t.
Associated scaled processes. Let the associated LLN-scaled processes be

N̄n(t)≡Nn(t)/n, X̄e
n(t, y)≡Xe

n(t, y)/n, D̄n(t)≡Dn(t)/n, X̄r
n(t, y)≡Xr

n(t, y)/n. (6)

Let the associated CLT-scaled processes be

N̂n(t)≡ Nn(t)−nΛ(t)√
n

, X̂e
n(t, y)≡ Xe

n(t, y)−nXe(t, y)√
n

,

D̂n(t)≡ Dn(t)−nD(t)√
n

, X̂r
n(t, y)≡ Xr

n(t, y)−nXr(t, y)√
n

, (7)

where the centering terms Λ(t), Xe(t, y), Xr(t, y), D(t) are deterministic functions (fluid limits) to
be specified below in Assumption 1 and Theorem 1.

The spaces D and DD. The limits are established in the function space D≡D([0,∞),R) of right
continuous functions with left limits equipped with the Skorohod J1 topology and the associated
metric dJ1

[7, 14, 38, 41]. Products of that space are equipped with the product topology. Since all
limits will almost surely have continuous sample paths, convergence in J1 topology is equivalent
to uniform convergence over compact sets (time intervals). For the two-parameter processes, the
processes are random elements of the space DD ≡ D([0,∞),D([0,∞),R)) of D-valued functions. Since
the space (D, J1) is a complete separable metric space, this space of D-valued functions falls within
Skorohod’s [38] original framework; see [31, 39] for more details. We prove convergence in these
spaces by using the compactness approach, i.e., by proving convergence of the finite dimensional

distribution (fidis) and tightness of the processes; see [3, 7, 14, 41] for tightness criteria in D,
Theorem 6.2 of [31] for tightness criteria in DD.

Assumptions. Our key assumption is a joint FCLT for the arrival process of new customers
after time 0 and for the initial ages. We discuss the appropriateness of this assumption in Remarks
3 and 4 below and in §5.

Assumption 1. (Joint FCLT for the arrival process and initial ages) The CLT-scaled ICP and

external arrival processes defined in (7) jointly satisfy the FCLT

(
X̂e

n(0, ·), N̂n

)
⇒
(
X̂e(0, ·), N̂

)
in D

2 as n→∞, (8)
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where X̂e
n(0, ·) and N̂ are two independent zero-mean continuous Gaussian processes. We assume

that the deterministic centering terms in (7), which come from the associated functional weak law

of large numbers (FWLLN) stated below in (10), can be represented as

Xe(0, x) =

∫ x

0

a(u)du, x≥ 0, and Λ(t) =

∫ t

0

λ(u)du, t≥ 0, (9)

where the fluid initial age density a(x) and arrival rate function λ(t) in (9) are nonnegative real-

valued functions that are integrable over all bounded intervals.

Remark 1. (FWLLN for the arrival process and initial content in service) As an immediate
consequence of Assumption 1, we have a FWLLN for N̄n and X̄e

n(0, ·), i.e.,

(
X̄e

n(0, ·), N̄n, X̄n(0)
)
⇒ (Xe(0, ·),Λ,X(0)) in D

2 ×R as n→∞, (10)

Remark 2. (The zero-mean Gaussian assumption) The zero-mean Gaussian requirement of
Assumption 1 is not required for the convergence, but it is required for drawing the useful conclusion
that the limit process also has this structure, as in (14) below. Extensions are possible, as illustrated
by §10 of [24].

Remark 3. (Independence of the limiting initial content and new input) If the arrival process
is a nonhomogeneous Poisson process, then we have an Mt/GIo,GIν/∞ IS model, for which the
new input after time 0 is independent of the initial content, so that the independence of the two
limit processes follows directly from the two separate limits in Assumption 1. But, more generally,
the number of customers in service at time 0 and the ages of the service times of those customers
typically will not be independent of the arrivals after time 0. Nevertheless, Assumption 1 is very
reasonable. For example, consider a Gt/GI/∞ system starting empty in the finite past. Even
though the arrival process may not have independent increments, from [31] we know that it is
common for the limit of the arrival process to be a time-transformed Brownian motion (BM), which
has independent increments. In particular, that occurs if we assume that the arrival process is a
deterministic time transformation of any arrival process that satisfies an FCLT with a BM limit.
For such limits, it is natural to start with a stationary process, such as an equilibrium renewal
process, but it suffices to have the FCLT with a BM limit, as discussed in §7 of [29]. With either
an ordinary or equilibrium renewal process, the limit process will be N̂(t) = cλBa(Λ(t)), where Ba

is a standard BM, Λ(t) is the deterministic time transformation, corresponding to the limiting
cumulative arrival rate function and c2

λ is the squared coefficient of variation (SCV, variance divided
by the square of the mean) of an interarrival time in the ordinary renewal process. For all these
representations, the arrival FCLT and the independence of the limit is satisfied, as assumed in
Assumption 1. In addition to [29], see [9, 21] and §5.4 of [25] for uses of this representation of
nonstationary non-Poisson arrival processes.

Remark 4. (Performance forecasting using limits in Assumption 1) For engineering purposes,
the limits in Assumption 1 can be understood as estimators (approximations) for future demand
posed by new input and initial content. The goal here is to develop performance forecasting formulas
as functions of the limits in Assumption 1. It will be clear from the formulas and examples that the
general initial conditions (represented by the initial fluid age function Xe(0, ·) and the associated
stochastic limit process X̂e(0, ·)) can be a significant part of the performance functions.

We also impose additional regularity assumptions, which evidently are not too restrictive for
engineering applications. We first impose conditions on the two service-time cdf’s. Even though
not restrictive, both assumptions are used critically in the analysis; see Remark 6 and Lemma 4.

Assumption 2. (Regularity conditions for service-time cdf ’s)
The two service-time cdf ’s G and Gν are assumed to be continuous. In addition, the cdf G has a

probability density function (pdf) g satisfying 0 < g(x)≤ g↑ ≡ supx≥0 g(x) <∞ for all x≥ 0.
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We also impose a regularity condition on the initial content. It is used in the proof of tightness
in DD in §4.2.3.

Assumption 3. (Regularity conditions for the initial content) We assume that there exists

y↑ > 0 such that Xn(0)−Xn(0, y↑) = 0 for all n≥ 1 w.p.1..

Note that Assumption 3 is quite reasonable, because it would be automatically satisfied if the
system started empty at some finite time in the past.

3. Main Results In this section, we present the new FWLLN and FCLT for the
Gt/GIo,GIν/∞ model. They extend the corresponding results for the Gt/GI/∞ model in §3 and
§5 of [31] by treating more general initial conditions. In particular, the results for the new arrivals
come from [31], but unlike §5 of [31], Assumption 1 here makes the remaining service times at time
0 be conditionally independent, given the ages, but not identically distributed random variables.
We state the FWLLN first, but give no separate proof, because it is a consequence of the FCLT.

Theorem 1. (FWLLN) Consider the sequence of Gt/GIo,GIν/∞ queues satisfying all

assumptions in §2. As n→∞,

(
N̄n, X̄e

n(0, ·), X̄r
n(0, ·), X̄e

n, X̄r
n, X̄n, D̄n

)
⇒ (Λ,Xe(0, ·),Xr(0, ·),Xe,Xr,X,D) (11)

in D
3 ×D

2
D
×D

2, where the limit is continuous and deterministic with X(t) = Xe(t,∞) = Xr(t,0),
and

Xe(t, y)≡Xe,o(t, y) +Xe,ν(t, y), Xr(t, y)≡Xr,o(t, y) +Xr,ν(t, y),

Xe,o(t, y) =

∫ (y−t)+

0

a(x)Hc
x(t)dx, Xe,ν(t, y)≡

∫ t

(t−y)+
Gc

ν(t− s)λ(s)ds,

Xr,o(t, y) =

∫ ∞

0

a(x)Hc
x(t+ y)dx, Xr,ν(t, y)≡

∫ t

0

Gc
ν(t+ y− s)λ(s)ds,

D(t) = Λ(t)−X(t) =

∫ ∞

0

a(x)Hx(t)dx+

∫ t

0

Gν(t− s)λ(s)ds (12)

and a(x) being the initial fluid limit age density and λ(s) being the arrival rate function specified

in Assumption 1.

For real numbers a and b, let a∨ b≡max{a, b} and a∧ b≡min{a, b}.
Theorem 2. (FCLT) Consider the sequence of Gt/GIo,GIν/∞ IS models satisfying all

assumptions in §2. As n→∞,
(
N̂n, X̂e

n(0, ·), X̂r
n(0, ·), X̂e

n, X̂r
n, X̂n, D̂n

)
⇒
(
N̂ , X̂e(0, ·), X̂r(0, ·), X̂e, X̂r, X̂, D̂

)
(13)

in D
3 ×D

2
D
×D

2, where the stochastic limit process for the two-parameter ICP, the scaled number

of customers in service at t with age at most y, is

X̂e(t, y) = X̂e,ν
1 (t, y) + X̂e,ν

2 (t, y) + X̂e,o
1 (t, y) + X̂e,o

2 (t, y), (14)

where X̂e,ν
1 , X̂e,ν

2 , X̂e,o
1 and X̂e,o

2 are independent zero-mean Gaussian processes with continuous

sample paths,

X̂e,ν
1 (t, y) ≡

∫ t

(t−y)+
Gc

ν(t− s)dN̂(s), (15)

X̂e,ν
2 (t, y) ≡

∫ t

(t−y)+

∫ ∞

0

1(x > t− s)dK̂ν(Λ(s), x), (16)
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where N̂ is the limit process in the assumed FCLT for the arrival process specified in Assumption 1,

and K̂ν(t, x)≡ Û(t,G(x)), with Û being a standard Kiefer process, capturing the variability of the

new service times, and independent of N̂ ; X̂e,o
1 is a zero-mean Gaussian process with the covariance

function

Ce,o
1 ((t1, y1), (t2, y2))≡Cov

(
X̂e,o

1 (t1, y1), X̂
e,o
1 (t2, y2)

)
=

∫ (y1−t1)+∧(y2−t2)+

0

Hu(t1 ∧ t2)H
c
u(t1 ∨ t2)dXe(0, u),

(17)

and X̂e,o
2 has the representation

X̂e,o
2 (t, y)≡

∫ (y−t)+

0

Hc
x(t)dX̂e(0, x)≡Hc

(y−t)+(t)X̂e(0, (y− t)+)−
∫ (y−t)+

0

X̂e(0, u−)dHc
u(t), (18)

where (Xe(0, ·), X̂e(0, ·)) is the limit of the initial age process in Assumption 1 and (10). The joint

limit (13) follows from the displayed limit. The other limit processes X̂, D̂ and X̂r are specified in

the corollaries below.

Remark 5. (Correction in [31]) The limits for the new input follow from [31], so the formulas
in (15) and (16) should be consistent with [31]. However, here we make a correction, noting that
the upper limit of the inner integrals in (2.10), (2.15) and for Xc,e

2 (t, y) in (3.16) of [31] all should
be ∞ instead of t. Similarly the upper limit of the second integral in the expression for σ2

q,e(t, y) in
Theorem 4.2 of [31] also should be ∞ instead of t. After this correction, the formulas in (16) and
elsewhere are consistent with [31].

We next characterize all the other limit processes using the limit in (14). Let
d
=t denote equal

in distribution for each t. Let Bs(·) be an independent BM (associated with service times of new
customers).

Corollary 1. (Limits for the one-parameter queue length process) Under the assumptions of

Theorem 2, the limit for the total number in service at t is

X̂(t)≡ X̂e(t,∞)≡ X̂ν
1 (t) + X̂ν

2 (t) + X̂o
1(t) + X̂o

2(t), (19)

where X̂ν
1 , X̂ν

2 , X̂o
1 and X̂o

2 are independent zero-mean Gaussian processes with continuous sample

paths and

X̂ν
1 (t)≡ X̂e,ν

1 (t,∞)≡
∫ t

0

Gc
ν(t− s)dN̂(s), , (20)

X̂ν
2 (t)≡ X̂e,ν

2 (t,∞)≡
∫ t

0

∫ ∞

0

1(x > t− s)dK̂ν(Λ(s), x)
d
=t −

∫ t

0

√
Gν(t− s)Gc

ν(t− s)dBs(Λ(s)),

(21)

X̂o
1 (t)≡ X̂e,o

1 (t,∞) is a zero-mean Gaussian process with the covariance function

Co
1 (t, t′)≡Cov

(
X̂o

1(t), X̂
o
1(t

′)
)

= Ce,o
1 ((t1,∞), (t2,∞)) =

∫ ∞

0

Hu(t∧ t′)Hc
u(t∨ t′)dXe(0, u), (22)

and

X̂o
2 (t)≡ X̂e,o

2 (t,∞)≡
∫ ∞

0

Hc
x(t)dX̂e(0, x). (23)
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Corollary 2. (Limits for the one-parameter departure process) Under the assumptions of

Theorem 2, The limit for the number of departures by t is

D̂(t) = D̂ν
1 (t) + D̂ν

2(t) + D̂o
1(t) + D̂o

2(t), (24)

where D̂ν
1 , D̂ν

2 , D̂o
1 and D̂o

2 are independent zero-mean Gaussian processes, with

D̂ν
1(t) ≡

∫ t

0

Gν(t− s)dN̂(s), (25)

D̂ν
2(t) ≡

∫ t

0

∫ ∞

0

1(x≤ t− s)dK̂ν(Λ(s), x)
d
=t

∫ t

0

√
Gν(t− s)Gc

ν(t− s)dBs(Λ(s)), (26)

D̂o
1(t) =−X̂o

1 (t) being a zero-mean Gaussian process with covariance function

Cov
(
D̂o

1(t), D̂
o
1(t

′)
)

= Co
1 (t, t′) and D̂o

2(t)≡ X̂(0)− X̂o
2(t) =

∫ ∞

0

Hx(t)dX̂e(0, x). (27)

Corollary 3. (Limits for the remaining-service-time process) Under the assumptions of The-

orem 2, the limit X̂r(0, x) = X̂o(x) = X̂e,o
1 (x,∞) + X̂e,o

2 (x,∞) for all x≥ 0 and

X̂r(t, x) = X̂r,ν
1 (t, x) + X̂r,ν

2 (t, x) + X̂r,o
1 (t, x) + X̂r,o

2 (t, x), (28)

with X̂r,ν
1 , X̂r,ν

2 , X̂r,o
1 and X̂r,o

2 being independent zero-mean Gaussian processes and

X̂r,ν
1 (t, x) ≡

∫ t

0

Gc
ν(t+x− s)dN̂(s), (29)

X̂r,ν
2 (t, x) ≡

∫ t

0

∫ ∞

0

1(u+ s > t+x)dK̂ν(Λ(s), u), (30)

X̂r,o
1 (t, x) ≡ X̂o

1 (t+x) = X̂e,o
1 (t+x,∞) and X̂r,o

2 (t, x)≡ X̂o
2 (t+x) = X̂e,o

2 (t+x,∞). (31)

Remark 6. (The stochastic integrals) The integrals in Theorem 2 should be interpreted just
as in [31], as explained in Remark 3.2 there. In particular, the deterministic integrals in (17) and
(22) are all Stieltjes integrals, while the integrals in (16), (21), (26) and (30) are all stochastic
integrals, just as in [31]. As in Theorem 3.2 and Remark 3.3 of [31], the continuity assumption on
the cdf Gν in Assumption 2 is used to get the representation in terms of the Kiefer process.

Of special note are the stochastic integrals with respect to N̂ in (15), (20), (25) and (29), and
with respect to X̂e(0, ·) in (18), (23) and (27). As explained in Remark 3.2 of [31], these all should
be interpreted as the form after the representation of integration by parts, as given on p. 336 of
[4]. That is justified because the pre-limit processes of the integrator process have sample paths of
bounded variation. For example, the alternative representation for (18) is given there; see §4.3.

Remark 7. (Four independent stochastic effects) The expression for the limit process X̂e in
(14) as the sum of the four independent processes X̂e,ν

1 , X̂e,ν
2 , X̂e,o

1 and X̂e,o
2 shows that the four

sources of variability in the model contribute to the total variability independently. The process X̂e,ν
1

captures the variability in the arrival process after time 0; the process X̂e,ν
2 captures the variability

in the service times after time 0; the process X̂e,o
1 captures the variability in the remaining service

times at time 0 given that the initial age process is around nXe(0, ·); and the process X̂e,o
2 captures

the variability of the ages of initial customers at time 0.
If we make an additional assumption for N̂ , we can exhibit covariance and variance formulas.

Corollary 4. (Variance and covariance formulas for the ICP) If N̂ (t) = caBa(Λ(t)) and

Σe,o
2 (t)≡ V ar(X̂e(0, t)), then the covariances of X̂e the covariances are

Ce((t1, y1), (t2, y2)) ≡ Cov(X̂e(t1, y1), X̂
e(t2, y2)) = Ce,ν((t1, y1), (t2, y2)) +Ce,o((t1, y1), (t2, y2)),
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where

Ce,ν((t1, y1), (t2, y2))≡
∫ t1∧t2

(t1−y1)+∨(t2−y2)+

[
(c2

a − 1)Gc
ν(t1 − s)Gc

ν(t2 − s) +Gc
ν((t1 ∨ t2)− s)

]
λ(s)ds,

Ce,o((t1, y1), (t2, y2))≡
∫ (y1−t1)+∧(y2−t2)+

0

Hu(t1 ∧ t2)H
c
u(t1 ∨ t2)dXe(0, u)

+

∫ (y1−t1)+∧(y2−t2)+

0

Hc
u(t1)H

c
u(t2)dΣe,o

2 (u).

so that the variances are

σ2
e(t, y)≡Var(X̂e(t, y)) = σ2

e,ν(t, y) +σ2
e,o(t, y),

where σ2
e,ν(t, y) = σ2

ν(((t− y)+, t),

σ2
ν(u, v)≡

∫ v

u

[
(c2

a − 1)Gc
ν(v− s)2 +Gc

ν(v− s)
]
λ(s)ds

and σ2
e,o(t, y) =

∫ (y−t)+

0

Hu(t)Hc
u(t)dXe

0(u) +

∫ (y−t)+

0

Hc
x(t)

2 dΣe,o
2 (x).

Corollary 5. (Variance for X̂(t) and D̂(t)) Under the assumptions of Corollary 4, the vari-

ances of the one-parameter processes X̂(t) and D̂(t) are

σ2
X̂

(t)≡Var(X̂(t)) = σ2
X̂,ν

(t) +σ2
X̂,o

(t), (32)

where σ2
X̂,ν

(t)≡ σ2
e,ν(t,∞) = σ2

ν(0, t) =

∫ t

0

[
(c2

a − 1)Gc
ν(t− s)2 +Gc

ν(t− s)
]
λ(s)ds (33)

and σ2
X̂,o

(t) = σ2
e,o(t,∞) =

∫ ∞

0

Hu(t)Hc
u(t)dXe

0(u) +

∫ ∞

0

Hc
x(t)

2 dΣe,o
2 (x), (34)

σ2
D̂
(t)≡Var(D̂(t)) = σ2

D̂,ν
(t) +σ2

D̂,o
(t), (35)

where σ2
D̂,ν

(t) =

∫ t

0

[
(c2

a − 1)G2
ν(t− s) +Gν(t− s)

]
λ(s)ds

and σ2
D̂,o

(t) =

∫ ∞

0

Hu(t)Hc
u(t)dXe

0(u) +

∫ ∞

0

Hx(t)
2 dΣe,o

2 (x),

Remark 8. (Additivity of the variance formulas) The first term of the variance formula of X̂(t)
(D̂(t)) σ2

X̂,ν
(t) (σ2

D̂,ν
(t)) provides the variance when the system is initially empty (which coincides

with the variance formula in [31]). The second term σ2
X̂,o

(t) (σ2
D̂,o

(t)) represents the variance of the
content that has been in the system since time 0.

4. Proof of Theorem 2. We start with the FCLT for all processes related to new arrivals
from [31], obtaining

(N̂n, N̄n, K̂n, K̄n, R̂n, X̂e,ν
n , X̂r,ν

n , D̂ν
n)⇒ (N̂ , N̄ , K̂, K̄, R̂, X̂e,ν , X̂r,ν , D̂ν), (36)

in D
3 ×D

5
D
. By Assumption 1, it remains to show the convergence

(X̂n(0, ·), X̄n(0, ·), X̂e,o
n , X̂r,o

n , D̂o
n)⇒ (X̂(0, ·), X̄(0, ·), X̂e,o, X̂r,o, D̂o). (37)

in D
3 × D

2
D
. We will then have the joint convergence of (36) and (37) in D

7 × D
8
D
. (The joint

convergence of X̂n and D̂n follows from continuous mapping theorem for addition at continuous
limits.) In §4.1 we show that the main two-parameter process X̂e,o

n can be decomposed into two other
two-parameter processes X̂e,o

n,1(t, y) and X̂e,o
n,2(t, y), that can be treated separately by conditioning

on the ages at time 0. We establish convergence for those two processes in §§4.2–4.3; In §4.4 we
prove the convergence of other processes.
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4.1. Decomposition of X̂e,o
n . To prove (37), we use a convenient representation of X̂e,o

n (t, y).
Let η̂n,i(t)≡ 1{ηi(τn,i) > t}−Hc

τn,i
(t). From (3), (7) and (12), we can write

X̂e,o
n (t, y) =

√
n



 1

n

Xe
n(0,(y−t)+)∑

i=1

1{ηi(τn,i) > t}−
∫ (y−t)+

0

b(0, x)Hc
x(t)dx





=
1√
n

Xe
n(0,(y−t)+)∑

i=1

(
1{ηi(τn,i) > t}−Hc

τni
(t)
)

+
√

n

(∫ (y−t)+

0

Hc
x(t)dX̄e

n(0, x)−
∫ (y−t)+

0

b(0, x)Hc
x(t)dx

)

=
1√
n

Xe
n(0,(y−t)+)∑

i=1

η̂n,i(t) +

∫ (y−t)+

0

Hc
x(t)dX̂e

n(0, x)≡ X̂e,o
n,1(t, y) + X̂e,o

n,2(t, y), (38)

where the second equality holds by adding and subtracting Hτn,i
(t) in the sum. Even though X̂e,o

n,1

and X̂e,o
n,2 in (38) are not independent, because they both involve the age sequence {τn,j : j ≥ 1}

or equivalently the counting process Xe
n(0, ·), they are conditionally independent given X̄e

n(0, ·).
Hence, in order to treat the two terms separately we condition upon the age sequence and then
uncondition. In doing so, we apply the assumed convergence in Assumption 1 together with the
following lemma, which expresses the argument used in the proof of Theorem 7.6 of [30]. The spaces
are different here, but the argument is the same.

Lemma 1. Let {Yn : n ≥ 1} and Y be processes with sample paths in DD, and let {Zn : n ≥ 1}
and Z be processes with sample paths in D. Let Y Zn

n (Y Z) denote Yn (Y ) conditioned on Zn (Z).
If Zn ⇒Z in D and

Y Zn
n ⇒ Y Z in DD whenever Zn →Z in D as n→∞ w.p.1, (39)

then Yn ⇒ Y in DD as n→∞.

We apply Lemma 1 with the initial age process X̂e
n(0, ·) playing the role of Zn. The required

convergence in distribution holds by Assumption 1. We will then condition on the ages and assume
that

X̂e
n(0, ·)→ X̂e(0, ·) in D w.p.1. (40)

It remains to establish the limit (39), assuming (40).
Given that we condition with respect to the ages and then uncondition, in order to establish

the joint convergence
(
X̂e,o

n,1, X̂
e,o
n,2, X̂

e
n(0, ·), X̄e

n(0, ·)
)
⇒
(
X̂e,o

1 , X̂e,o
2 , X̂e

0 ,X
e
0

)
in D

2
D
× D

2, it suffices

to prove
(
X̂e,o

n,1, X̄
e
n(0, ·)

)
⇒
(
X̂e,o

1 ,Xe
0

)
in DD × D and

(
X̂e,o

n,2, X̂
e
n(0, ·), X̄e

n(0, ·)
)
⇒
(
X̂e,o

2 , X̂e
0 ,X

e
0

)

in DD ×D
2; i.e., it suffices to treat the two terms separately. Aside from the conditioning, we would

be using Theorems 11.4.4 and 11.4.5 in [41], which justify joint convergence. We next separately
prove the convergence of two terms in (38).

4.2. Convergence of the First Term in (38). In addition to the conditioning discussed
above, we use the compactness approach to prove (39) in order to establish convergence of the first
term in (38); i.e., we prove convergence of the fidis in DD in two steps and then we prove tightness in
the third step. In Step 1 (§4.2.1), we establish convergence of the four-parameter covariance func-
tions of X̂e,o

n,1, referred to as Kn(t, y, t′, y′), to those of X̂e,o
1 , defined as K(t, y, t′, y′) in (17) in Theorem

2. In Step 2 (§4.2.2), using the convergence of the covariance functions, we establish the convergence
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of the fidis of X̂e,o
n,1 in DD, which is equivalent to the joint convergence of

(
X̂e,o

n,1(t1, ·), . . . , X̂e,o
n,1(tk, ·)

)

in D
k, for all k ≥ 1 and 0 < t1 < · · · < tk. We do this in two sub-steps: First, we show the con-

vergence of the fidis of the vector
(
X̂e,o

n,1(t1, ·), . . . , X̂e,o
n,1(tk, ·)

)
in the second argument, namely, the

joint convergence of the bigger vector
(
X̂e,o

n,1(ti, yj),1≤ i≤ k,1≤ j ≤m
)

in R
k×m, for all m≥ 1 and

0 < y1 < · · ·< ym. Second, we establish the tightness of
(
X̂e,o

n,1(t1, ·), . . . , X̂e,o
n,1(tk, ·)

)
in D

k. In Step 3

(§4.2.3) we prove that X̂e,o
n,1 is tight in DD.

4.2.1. Step 1: Convergence of covariance functions. As indicated above, we start by
conditioning on the ages. Let E

τ denote the conditional expectation operator, conditional on the
ages or upon the process X̄e

n(0, ·). Upon conditioning, the first term in (38) is a non-random sum
of the independent mean-zero random variables η̂n,i(t) defined at the beginning of §4.1. Hence,

E
τ
[
X̂e,o

n,1(t, y)X̂e,o
n,1(t

′, y′)
]
=

1

n

Xe
n(0,(y−t)+∧(y′−t′)+)∑

i=1

E
τ
[
η̂n,i(t)η̂n,i(t

′)
]

=
1

n

Xe
n(0,(y−t)+∧(y′−t′)+)∑

i=1

Hτn,i
(t)Hc

τn,i
(t′) =

∫ (y−t)+∧(y′−t′)+

0

Hu(t)Hc
u(t

′) dX̄e
n(0, u). (41)

Assuming (40), which corresponds to convergence of finite measures, from (41) we have

E
τ
[
X̂e,o

n,1(t, y)X̂e,o
n,1(t

′, y′)
]
→
∫ (y−t)+∧(y′−t′)+

0

Hu(t)Hc
u(t

′) dX0(u)≡K(ti, yj, ti′ , yj′). (42)

because the integrand is a continuous and bounded real-valued function (see (2.1) of §3.2 in [41]).
That completes this part of the proof, but we also continue to directly show convergence of the

covariance functions. Since the random variables in (42) are bounded by X̄n(0)≤X↑ <∞ (applying
Assumption 3), we also have convergence of the means associated with the convergence in (42),
yielding convergence of the covariance functions after unconditioning, i.e.,

Kn(t, y, t′, y′) ≡ E

[
E

τ
[
X̂e,o

n,1(t, y)X̂e,o
n,1(t

′, y′)
]]

= E

[∫ (y−t)+∧(y′−t′)+

0

Hu(t)Hc
u(t

′) dX̄e
n(0, u)

]

→
∫ (y−t)+∧(y′−t′)+

0

Hu(t)Hc
u(t

′) dX0(u)≡K(t, y, t′, y′). (43)

As an immediate consequence of (43), we have an expression for the variance functions and their
convergence,

σ2
n(t, y)≡Kn(t, y, t, y) = E

[∫ (y−t)+

0

Hu(t)Hc
u(t) dX̄e

n(0, u)

]
→
∫ (y−t)+

0

Hu(t)Hc
u(t) dX0(u)≡ σ2(t, y).

(44)

4.2.2. Step 2: Convergence of the fidis in DD. We again apply Lemma 1 and start assum-
ing (40). Hence, for each n, we condition upon the ages.

Step 2a: Joint convergence in R
k×m. Fix m ≥ 1 and 0 < y1 < · · · < ym. The convergence of

the fidis of the vector
(
X̂e,o

n,1(t1, ·), . . . , X̂e,o
n,1(tk, ·)

)
in the second argument is equivalent to the joint

convergence of the bigger vector
(
X̂e,o

n,1(ti, yj),1≤ i≤ k,1≤ j ≤m
)

in R
k×m. By the Cramér-Wold
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device (see Theorem 4.3.3 of [41]), this is equivalent to showing that, for all {ai,j} ∈R, i = 1, . . . , k
and j = 1, . . . ,m, as n→∞,

k∑

i=1

m∑

j=1

ai,jX̂
e,o
n,1(ti, yj)⇒

k∑

i=1

m∑

j=1

ai,jX̂
e,o
1 (ti, yj)

d
=N (0,Σ) in R, (45)

where the variance of the limit is

Σ≡
k∑

i=1

m∑

j=1

k∑

i′=1

m∑

j′=1

ai,jai′,j′K(ti, yj, ti′ , yj′). (46)

To establish (45), we define the random variables

X̃n,l,i ≡
1√
n

η̂n,l(ti) and Ỹn,l ≡
k∑

i=1

m∑

j=1

ai,jX̃n,l,i 1(l≤Xn(0, (yj − ti)
+)).

Since Ỹn,j, j ≥ 1, are independent random variables, conditioned on Xe
n(0, ·), we can rewrite the

left-hand side of (45) as

S̃n ≡
k∑

i=1

m∑

j=1

ai,jX̂
e,o
n,1(ti, yj) =

k∑

i=1

m∑

j=1

ai,j

Xe
n(0,(yj−ti)

+)∑

l=1

X̃n,l,i =

Xe
n(0,M)∑

l=1

Ỹn,l,

where M ≡ max{(yj − ti)
+ : 1 ≤ i ≤ k,1 ≤ j ≤ m}. By the final expression above, S̃n is a sum of

independent r.v.’s. Of course, the summands Ỹn,l and the index Xe
n(0,M) both depend on n, but

they do so in a regular way because, to apply Lemma 1, we are assuming that (40) holds. For
example, this means that n−1Xe

n(0,M)→Xe(0,M)≤X↑ <∞.
Hence, we can now apply CLT for a double sequence (triangular array) of non-identically dis-

tributed independent random variables, e.g., Theorem 7.2.4 of [13]. The variance of S̃n is

s̃2
n ≡Var(S̃n)) =

k∑

i=1

m∑

j=1

k∑

i′=1

m∑

j′=1

ai,jai′,j′Kn(ti, yj, ti′ , yj′)

→
k∑

i=1

m∑

j=1

k∑

i′=1

m∑

j′=1

ai,jai′,j′K(ti, yj, ti′ , yj′)≡Σ, (47)

as n→∞ where Σ is defined in (46) and the convergence follows from (43). It remains to verify the
Lindeberg conditions (see (2.1)-(2.2) on p.330 of [13]) or the Lyapounov condition (see (2.20) on
p.339 of [13]). However, since {X̃n,l,i} take values in the interval [−1/

√
n,1/

√
n] and the variance

s̃n converges to Σ in (47) as n →∞, the Lindeberg condition is satisfied. Therefore, by Theorem
7.2.4 of [13], if (40) holds, then

S̃n/s̃n ⇒N (0,1) as n→∞, (48)

which together with (47), imply the desired convergence in (45) under the condition (40). Lemma
1 then provides the unconditional convergence.

Step 2b: Tightness in D
k. We now establish the tightness of the vector (X̂e,o

n,1(t1, ·), . . . , X̂e,o
n,1(tk, ·))

in D
k, again assuming (40). This tightness is equivalent to the tightness of each component X̂e,o

n,1(ti, ·)
in D, for all 1≤ i≤ k, by Theorem 11.6.7. of [41].
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We prove tightness of the components by proving a stronger result. Paralleling §7 of [23], we
show that

X̂e,o
n,1(t, y)≡ 1√

n

nX̄e
n(0,y−t)∑

i=1

η̂n,i(t)⇒B(σ2
t (y)) in D as n→∞ for each fixed t, (49)

where B is a standard BM. To prove this, we observe that, under the conditioning on the ages,
the process {X̂e,o

n,1(t, y) : y ≥ 0} with fixed t is a martingale with respect to its natural filtration
augmented by the age sequence {τn,i} since the function y 7→ X̄e

n(0, y − t) is strictly increasing for
each n ≥ 1. Then we can apply the martingale FCLT in Theorem 7.1.4 of [7], exploiting the fact
that the summands are independent [−1,1]-valued zero-mean random variables. The first variance
function in (44) with t fixed is the quadratic variation of {X̂e,o

n,1(t, y) : y ≥ 0} and converges to the
second variance formula in (44). Hence the function σ2

t (y) in (49) for each fixed t. Note that the
weak convergence of the components implies their tightness.

4.2.3. Step 3: Proof of C-tightness of {X̂e,o
n,1} in DD. To complete the proof of the con-

vergence of the first term of (38) under condition (40), we next show that the sequence {X̂e,o
n,1} is

C-tight in DD. To do so, we verify the usual two conditions: (i) stochastic boundedness and (ii)
asymptotically negligible oscillations, as in Theorem 6.2 of [31]. The specific conditions we establish
are (50) and (61) below.

Verifying condition (i): Stochastic Boundedness. Let P
τ and E

τ be the conditional prob-
ability and expectation given the ages {τn,i}. It suffices to show, under condition (40), that for all
ǫ > 0, there exists c > 0 such that

P
τ(‖X̂e,o

n,1‖T,y↑ > c)≤ ǫ for all n≥ 1, (50)

where ‖X̂e,o
n,1‖T,y↑ = sup(t,y)∈[0,T ]×[0,y↑] |X̂e,o

n,1(t, y)|.
To bound the probability in (50), we apply Chernoff’s inequality (e.g., see Lemma 3.1.1. of [13]),

obtaining, for r > 0,

P
τ(‖X̂e,o

n,1‖T,y↑ > c)≤ e−rc
E

τ
[
e

r‖X̂e,o
n,1‖T,y↑

]
, (51)

To bound the right side of (51), we follow the symmetrization argument used in the proof of
inequality 3 on p.820 of [37] (which in turn follows Lemma 1.1 of [28]). Let the sequence {η∗

i (τn,i)}
be an independent copy of {ηi(τn,i)} conditional on {τn,i} and let ξi be i.i.d. random variables,
independent of {ηi(τn,i)}, with P (ξi = 1) = P (ξi =−1) = 1/2. Also let X̂∗,e,o

n,1 be X̂e,o
n,1 with {ηi(τn,i)}

replaced by {η∗
i (τn,i)}. Let E

τ
ηE

τ
η∗E

τ
ξ denote the expectation with respect to {ξi} conditioned on

{τn,i}, {ηi} and {η∗
i }; let E

τ
ηE

τ
η∗ denote the expectation with respect to {η∗

n,i} conditioned on {τn,i}
and {ηi}; and so on.

The next two lemmas will be used in the proof.

Lemma 2. Let X and X∗ be two i.i.d. elements in space DD. Suppose a function φ is convex

and nondecreasing with domain [0,∞). Then

E
[
φ(‖X −E[X]‖T,y↑)

]
≤ E

[
φ(‖X −X∗‖T,y↑)

]
. (52)

We omit the proof because it is similar to that of Lemma (A.14.15) in [37], but we do give the
proof in the appendix.

Lemma 3. Let ζi and wi be real-valued numbers with wi ≥ 0 for 1≤ i≤N and let {w(i),1≤ i≤
N} be the order statistics of {wi,1≤ i≤N} with w(i) ≤w(i+1) for 1≤ i≤N − 1. For T > 0,

∣∣∣∣∣

N∑

i=1

ζi1(w(N−i+1) > t)

∣∣∣∣∣≤ max
1≤j≤N

∣∣∣∣∣

j∑

i=1

ζi

∣∣∣∣∣ , 0≤ t≤ T. (53)
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Proof. We partition the interval [0, T ] into disjoint intervals with end points 0≡w(0) ≤w(1)∧T ≤
· · · ≤w(N) ∧T ≤w(N+1) ≡ T . We have

∣∣∣∣∣

N∑

i=1

ζi 1(w(N−i+1) > t)

∣∣∣∣∣=

∣∣∣∣∣

N∑

j=1

(
j∑

i=1

ζi

)

1(w(N−j) ∧T ≤ t < w(N−j+1) ∧T )

∣∣∣∣∣

≤
N∑

j=1

∣∣∣∣∣

j∑

i=1

ζi

∣∣∣∣∣1(w(N−j) ∧T ≤ t < w(N−j+1) ∧T )≤ max
1≤j≤N

∣∣∣∣∣

j∑

i=1

ζi

∣∣∣∣∣ .

We now continue to bound the right side of (51). For that purpose, define

Γn,i(t, y)≡ 1√
n

Xe
n(0,(y−t)+)∑

i=1

ξi ·1(ηi(τn,i) > t) and Γ∗
n,i(t, y)≡ 1√

n

Xe
n(0,(y−t)+)∑

i=1

ξi ·1(η∗
i (τn,i) > t). (54)

Let N∗
n(y, t) ≡ Xe

n(0, (y − t)+) and {η̄n,(i),1 ≤ i ≤ N∗
n(y, t)} be the order statistics of {ηi(τn,i),1 ≤

i≤N∗
n(y, t)} so that η̄n,(N∗

n(y,t)−i+1) is the ith largest one.
With that preparation, we can write (explanation given afterwards)

E
τ
[
exp

(
r ‖X̂e,o

n,1‖T,y↑

)]
≤ E

τ
[
exp

(
r ‖X̂e,o

n,1 − X̂∗,e,o
n,1 ‖T,y↑

)]

= E
τ



exp



r

∥∥∥∥∥∥
n−1/2

N∗
n(y,t)∑

i=1

(1(ηi(τn,i) > t)−1(η∗
i (τn,i) > t))

∥∥∥∥∥∥
T,y↑









= E
τ



exp



r

∥∥∥∥∥∥
n−1/2

N∗
n(y,t)∑

i=1

ξi · (1(ηi(τn,i) > t)−1(η∗
i (τn,i) > t))

∥∥∥∥∥∥
T,y↑









≤ E
τ
[
exp

(
r ‖Γn,i(t, y)‖T,y↑ + r

∥∥Γ∗
n,i(t, y)

∥∥
T,y↑

)]

= E
τ
ηE

τ
η∗E

τ
ξ

[
exp

(
r ‖Γn,i(t, y)‖T,y↑ + r

∥∥Γ∗
n,i(t, y)

∥∥
T,y↑

)]

≤ E
τ
η

[
E

τ
ξ exp

(
2r ‖Γn,i(t, y)‖

T,y↑

)]1/2

·Eτ
η∗

[
E

τ
ξ exp

(
2r
∥∥Γ∗

n,i(t, y)
∥∥

T,y↑

)]1/2

= E
τ
ηE

τ
ξ

[
exp

(
2r ‖Γn,i(t, y)‖T,y↑

)]

= E
τ
ηE

τ
ξ



exp



2r

∥∥∥∥∥∥
n−1/2

N∗
n(y,t)∑

i=1

ξi ·1(η̄n,(N∗
n(y,t)−i+1) > t)

∥∥∥∥∥∥
T,y↑









≤ E
τ
ξ

[
exp

(
2r sup

(t,y)∈[0,T ]×[0,y↑]

{
max

1≤j≤N∗
n(y,t)

∣∣∣∣∣n
−1/2

j∑

i=1

ξi

∣∣∣∣∣

})]

≤ E
τ
ξ

[
exp

(
2r max

1≤j≤Xn(0)

∣∣∣∣∣n
−1/2

j∑

i=1

ξi

∣∣∣∣∣

)]
, (55)

where the first inequality holds by Lemma 2; the first equality holds because the centering terms

cancel out; the second equality holds because ξi · (1(ηi(τn,i) > t)−1(η∗
i (τn,i) > t))

d
= 1(ηi(τn,i) > t)−

1(η∗
i (τn,i) > t); the second inequality follows by (54) and the triangle inequality; the third equality

holds by conditioning on the η and η∗; the third inequality holds by applying the Cauchy-Schwarz
inequality on the expectation E

τ
ξ ; the fourth equality holds because {ηi(τn,i)} and {η∗

i (τn,i)} are two
i.i.d. copies; the fifth equality holds because the two sequences {ξi} and {ηi(τn,i)} are independent;
the fourth inequality holds by Lemma 3; and the last inequality holds because t and y appear only
in the upper limit of the inner maximum N∗

n(y, t), which itself is bounded above by Xn(0).
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To bound (55), we apply integration by parts as on p. 150 of [8] to write the moment generating
function of a non-negative random variable Y as

E
[
eθY
]
= 1 +

∫ ∞

0

θeθx
P (Y ≥ x) dx. (56)

Therefore we next provide an upper bound on the tail probability using Lévy’s inequality .(e.g.,
Theorem 3.7.1 on p.138 of [13] (also Theorem 3 in the appendix); in particular

P
τ

(
max

1≤j≤Xn(0)

∣∣∣∣∣
1√
n

j∑

i=1

ξi

∣∣∣∣∣≥ x

)
≤ 2P

τ

(∣∣∣∣∣
1√
n

Xn(0)∑

i=1

ξi

∣∣∣∣∣≥ x

)
≤ 4e

− x2

2X̄n(0) , (57)

where the second inequality follows from Hoeffding’s inequality (e.g., Theorem 3.1.3 on p.120 of
[13]; also Theorem 4 in the appendix).

Combining (55)–(57) with θ = 2r and Y ≡ max
1≤j≤Xn(0)

∣∣∣1/
√

n
∑j

i=1 ξi

∣∣∣ yields that

E
τ
[
exp

(
r‖X̂e,o

n,1‖T,y↑

)]
≤ 1 +4

∫ ∞

0

2re2rxe
− x2

2X̄n(0) dx

= 1 +8r
√

2πX̄n(0)e2r2X̄n(0)

∫ ∞

0

(
2πX̄n(0)

)−1/2
e
−

(x−2rX̄n(0))2

2X̄n(0) dx

= 1 +8r
√

2πX̄n(0)e2r2X̄n(0)Φ

(
2r
√

X̄n(0)

)
≤ 1 +8r

√
2πX̄n(0)e2r2X̄n(0), (58)

where Φ is the cdf of the standard normal distribution. Here we assume without loss of generality
that X̄n(0) > 0 because (55) becomes 0 if X̄n(0) = 0.

Now recall that we are assuming (40), so that we have X̄n(0)→X(0) w.p.1 as n→∞. Moreover,
this convergence implies that there exists a constant K such that

X̄n(0)≤ 2X(0) +K ≡X↑ for all n≥ 1, (59)

where X↑ depends on the particular age sequence associated with our conditioning.
Letting r = 1/

√
X̄n(0) in (58) and applying (51), we have

P
τ(‖X̂e,o

n,1‖T,y↑ > c)≤
(
1 +8

√
2πe2

)
E

τ

[
exp

(
− c√

X̄n(0)

)]
≤
(
1 +8

√
2πe2

)
exp

(
− c√

X↑

)
,

which converges to 0 as c→∞.
Verifying condition (ii): asymptotically negligible oscillations. We show that the oscil-

lations are asymptotically negligible, again assuming (40). For that purpose, consider an arbitrary
sequence of uniformly bounded stopping times {κn} with respect to the natural filtration Fn ≡
{Fn(t), t∈ [0,∞)}∨N where

Fn(t, y) ≡ σ{1(ηi(τn,i) > x) : 1≤ i≤Xe
n(0, y), x≥ t,0≤ s≤ y}∨ σ{Xe

n(0, (y−x)+), x≥ t,0≤ s≤ y},
Fn(t) ≡

∨

y≥0

Fn(t, y), (60)

and N being all the null sets. We will show that, for any δ > 0 and ǫ > 0, and for any such sequence
of stopping times {κn},

lim
δ↓0

limsup
n→∞

sup
κn

E
τ

[(
sup
y≥0

∣∣∣X̂e,o
n,1(κn + δ, y)− X̂e,o

n,1(κn, y)
∣∣∣
)2
]

= 0, (61)
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which is a sufficient condition for condition (ii) in Theorem 6.2 of [31].
To establish (61), we condition on the sequence {κn} as well as the sequence {τn,i}. As in Step

2b, conditional on the sequences {κn} and {τn,i}, the process {X̂e
n,1(t, y) : y ≥ 0} with t fixed is

an adapted martingale with respect to F̃t
n ≡∨y≥0F t

n(y)∨ {κn} ∨ {τn,i}, where F t
n(y) denotes the

σ-algebra Fn(t, y) in (60) with t being fixed. Consequently, with the conditioning, the process
(X̂e,o

n,1(κn + δ, y) − X̂e,o
n,1(κn, y), y ≥ 0) is an F̃κn+δ

n -adapted martingale. Let E
τ,κ denote that the

expectation is computed by conditioning on {τn,i} and {κn}, let Varτ,κ be the conditional variance.
Then, by Doob’s maximal inequality,

E
τ,κ

(
sup
y≥0

∣∣∣X̂e,o
n,1(κn + δ, y)− X̂e,o

n,1(κn, y)
∣∣∣
)2

≤ 4 sup
y≥0

E
τ,κ
(
X̂e,o

n,1(κn + δ, y)− X̂e,o
n,1(κn, y)

)2

=
4

n
sup
y≥0

Varτ,κ




Xe

n(0,(y−κn−δ)+)∑

i=1

1(ηi(τn,i) > κn + δ)−
Xe

n(0,(y−κn)+)∑

i=1

1(ηi(τn,i) > κn)





≤ 4

n
sup
y≥0

Varτ,κ




Xe

n(0,(y−κn)+)∑

i=1

1(κn < ηi(τn,i)≤ κn + δ)





=
4

n
sup
y≥0

Xe
n(0,(y−κn)+)∑

i=1

Hδ
τn,i

(κn)(1−Hδ
τn,i

(κn))

= 4

∫ ∞

0

Hδ
u(κn)(1−Hδ

u(κn)) dX̄e
n(0, u)

≤ 4

∫ y↑

0

Hδ
u(M) dX̄e

n(0, u)≤
∫ y↑

0

4g↑
0δ

Gc(M + y↑)
dX̄e

n(0, u)

=
4g↑δ

Gc(M + y↑)
X̄n(0)≤ 4g↑δ

Gc(M + y↑)
X↑ → 0, (62)

as δ → 0. In the steps above, Hδ
u(t) ≡ Hu(t + δ)−Hu(t), M = supn≥1 |κn| and X↑ is the bound in

(59). The first equality holds since the sums are zero-mean random variables conditioned on {τn,i},
{κn} for all t ≥ 0, y ≥ 0, whereas the second equality holds due to (conditional) independence.
Starting from the third equality, {τn,i} and {κn} are necessarily treated as deterministic sequences.
The last inequality uses Assumptions 2 and 3. Therefore, the condition in (61) is satisfied.

4.3. Convergence of the Second Term in (38). In this section, we establish convergence
of the second term in (38), i.e., X̂e,o

n,2 ⇒ X̂e,o
2 , again conditioning on the ages and assuming that (40)

holds, so that we can apply Lemma 1. Since X̂e
n(0, ·) is of bounded variation, the second term in

(38) can be expressed as a Stieltjes integral. Therefore, we can use the integration by parts formula
given on p.336 of [4] to obtain an equivalent representation

X̂e,o
n,2(t, y)≡−

∫ (y−t)+

0

Hc
u(t)dX̂e

n(0, u) = Hc
(y−t)+(t)X̂e

n(0, (y− t)+)−
∫ (y−t)+

0

X̂e
n(0, u−)dHc

u(t). (63)

Since we are conditioning on the ages, everything in (63) is deterministic. Hence, we will show
that the convergence follows by continuity (convergence preservation of mappings). The mapping is
a measurable mapping that is continuous almost surely with respect to continuous limits. Measur-
ability in this setting holds because the Borel σ-field induced by the usual topology on DD coincides
with the usual Kolmogorov σ-field generated by the coordinate projections; see §11.5.3 of [41] and
references cited there. (Hence standard measurability arguments can be used.) If we uncondition,
then we would be applying the continuous mapping theorem in Theorem 3.4.3 of [41].
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The next two lemmas allow us to establish the desired convergence. We first show that the
function Hc

x(t) has finite variation in x over a bounded interval, by virtue of the Assumption 2 on
the service-time cdf G.

Lemma 4. (Finite total variation in x for Hc
x(t) in bounded intervals)

In an interval [0, T ∗],
∫ T∗

0
|dHc

x(t)|<∞, for t≥ 0.

Proof. Taking the derivative of Hc
x(t) with respect to x yields

∫ T∗

0

|dHc
x(t)| =

∫ T∗

0

|g(t+x)Gc(x)− g(x)Gc(t+x)|
(Gc(x))

2 dx

<

(
g↑

Gc(T ∗)
+

g↑

(Gc(T ∗))
2

)
T ∗ ≡K(T ∗) <∞. (64)

We next establish continuity in the uniform metric over compact subsets of the domain. Let
du(x1, x2)≡ supt∈[0,T ] |x1(t)−x2(t)| for x1, x2 ∈D and

du(y1, y2)≡ sup
(t,u)∈[0,T ]×[0,∞)

|y1(t, u)− y2(t, u)| for y1, y2 ∈DD.

Lemma 5. The mapping φ : (D, du)→ (DD, du) defined by

φ(x)(t, y) = H(y−t)+(t)x((y− t)+)−
∫ (y−t)+

0

x(s−)dHs(t) (65)

for 0≤ t≤ y is continuous in DD.

Proof. Let {xn} be a sequence such that du(xn, x)≡‖xn −x‖y0
→ 0 as n→∞. Then

∣∣φ(xn)(t, y)−φ(x)(t, y)
∣∣≤Hc

(y−t)+(t)
∣∣xn((y− t)+)−x((y− t)+)

∣∣+

∣∣∣∣∣

∫ (y−t)+

0

(xn(s−)−x(s−))dHc
s(t)

∣∣∣∣∣

≤Hc
(y−t)+(t)‖xn −x‖y0

+ ‖xn −x‖y0

∫ (y−t)+

0

|dHc
s(t)| ≤ (1 +K(y0))‖xn −x‖y0

,

where the finite constant K(y0) is defined in (64). Therefore, as n→∞,

du(φ(xn), φ(x))≡ sup
(t,y)∈[0,T ]×[0,∞)

|φ(xn)(t, y)−φ(x)(t, y)|→ 0. (66)

Finally, we observe that Lemma 5 establishes the desired result, because (i) it suffices to consider
continuous limits x by virtue of the continuity assumption included in Assumption 1 and (ii)
convergence in D reduces to uniform convergence over bounded intervals when the limit function
is continuous.

4.4. Proof of Convergence of Other Processes. The proof of convergence of the other
processes is elementary. First, we can apply flow conservation and continuous mapping theorem to
treat the departure process. In particular, as n→∞,

D̂n(t) = N̂n(t) + X̂n(0)− X̂n(t)⇒ N̂(t) + X̂(0)− X̂(t),

which coincides with (24).
To treat the remaining-service-time processes X̂r

n(0, x) and X̂r
n(t, x), note that Xr

n(0, x) =
Xo

n(x) = Xo
n(x,∞) which is the number of initially existing customers that are still in service at
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time x. Hence, as n→∞, X̂r
n(0, x) = X̂o

n(x)⇒ X̂o(x) in D, which is proved earlier in this section.
Next, just as for the ICP X̂e

n(t, x), we split X̂r
n(t, x) into two independent terms associated with

new content and old content,

X̂r
n(t, x) = X̂r,ν

n (t, x) + X̂r,o
n (t, x),

where the convergence of X̂r,ν
n (t, x) is proved in [31] and the convergence of the second term holds

because
X̂r,o

n (t, x) = X̂r
n(0, t+x) = X̂o

n(t+x)⇒ X̂o(t+x), as n→∞, in D.

4.5. Proof of Alternative Representations in (21) and (26). We only prove (21)
because (26) is similar. We obtain the right-hand representation in (21) using the fact that
{Û(t, y0)/

√
y0(1− y0); t ≥ 0} is a standard BM motion for a fixed 0 < y0 < 1 (§A of the appendix

of [31]). We have

∫ t

0

∫ ∞

0

1(x > t− s)dK̂ν(Λ(s), x) =

∫ t

0

∫ ∞

0

1(x > t− s)dÛ(Λ(s),Gν(x))

d
=t

∫ t

0

∫ ∞

0

1(x > t− s)d
(
B̃s(Λ(s))

√
Gν(x)(1−Gν(x))

)

=

∫ t

0

(√
Gν(∞)Gc

ν(∞)−
√

Gν(t− s)Gc
ν(t− s)

)
dB̃s(Λ(s)),

which coincides with the right-hand expression in (21). To show that the two expressions in (21) are
indeed equal in distribution for each t, it suffices to show that they have the same variances because
both processes are zero-mean Gaussian processes. Because the Kiefer process Û(Λ(s),Gν(x)) =
Ŵ (Λ(s),Gν(x))−Gν(x)Ŵ (Λ(s),1) where Ŵ is a standard Brownian sheet [31], the variance of the
first expression in (21) is

E

[(∫ t

0

∫ ∞

0

1(x > t− s)d
(
Ŵ (Λ(s),Gν(x))−Gν(x)Ŵ (Λ(s),1)

))2
]

= E

[(∫ t

0

∫ ∞

0

1(x > t− s)dŴ (Λ(s),Gν(x))−
∫ t

0

Gc
ν(t− s)dŴ (Λ(s),1)

)2
]

=

∫ t

0

∫ ∞

0

1(x > t− s)dΛ(s)dGν(x) +

∫ t

0

Gc
ν(t− s)2 dΛ(s)− 2

∫ t

0

∫ ∞

0

Gc
ν(t− s)1(x > t− s)dΛ(s)dGν(x)

=

∫ t

0

Gc
ν(t− s)Gν(t− s)dΛ(s),

which simply coincides with the variance of the second expression in (21).

5. The Gt/GIo,GIν/∞ Model Starting in the Past We now show that Theorem 2 applies
to the Gt/GIo,GIν/∞ model starting at some time in the past, provided we impose an extra
condition. We assume that the system starts at time −t0 < 0, satisfying the assumptions in §2 with
service-time cdf G. We let the service-time cdf change to Gν after time 0. It suffices to show that
Assumption 1 holds at time 0, which requires an additional independent-increments assumption on
the arrival process to obtain the assumed independence of the processes. In particular, we assume
that the limit process in the assumed FCLT for the arrival process is a time-transformed BM.

Corollary 6. (FCLT for the Gt/GIo,GIν/∞ model starting in the past) Consider the

sequence of Gt/GIo,GIν/∞ models starting at time −t0 < 0 with all the assumptions in §2 at time

−t0. Let the service-time cdf change from G to Gν at time 0. If in addition N̂(t) = caBa(Λ(t)),
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where Λ(t)≡
∫ t

−t0
λ(s)ds, t >−t0, then Assumption 1 also holds at time 0, so that Theorem 2 holds

for t≥ 0, with

Xe(0, y) =

∫ y

0

Gc(s)λ(−s)ds ·1(0≤ y ≤ t0) +

∫ y−t0

0

Hc
x(t0 + y)dXe(−t0, x) ·1(y > t0), (67)

X̂e(0, y) = X̂e
a(0, y) ·1(0≤ y ≤ t0) +

(
X̂e

b,1(0, y) + X̂e
b,2(0, y)

)
·1(y > t0), (68)

where, with Ba, Bs and B denoting three independent standard BM’s, K̂o(Λ(s), x)≡ Ûo(Λ(s),G(x))
and Ûo denoting a Kiefer process that is independent with Ba,

X̂e
a(0, y) = cλ

∫ 0

−y

Gc(−s)dBa(Λ(s)) +

∫ 0

−y

∫ ∞

0

1(x >−s)dK̂o(Λ(s), x)

d
=y cλ

∫ 0

−y

Gc(−s)dBa(Λ(s))−
∫ 0

−y

√
G(−s)Gc(−s)dBs(Λ(s))

d
=y

∫ 0

−y

√
(c2

λ − 1)Gc(−s2) +Gc(−s)λ(s)dB(s), for 0≤ y ≤ t0, (69)

X̂e
b,1(0, y) is a zero-mean Gaussian process with covariance

Cov
(
X̂e

b,1(0, y1), X̂
e
b,1(0, y2)

)
=

∫ y1∧y2−t0

0

Hu(t0)H
c
u(t0)dXe(−t0, u), for y1, y2 > t0,

and X̂e
b,2(0, y) =

∫ y−t0

0

Hc
x(t0)dX̂e(−t0, u), for y > t0.

If the system starts empty at time −t0, then the variance formula for the FCLT limit of the number

in service X̂(t) for t≥−t0 is

σ2
X̂

(t) =

∫ 0

−t0

[
(c2

λ − 1)Gc(t− s)2 +Gc(t− s)
]
λ(s)ds +

∫ t

0

[
(c2

λ − 1)Gc
ν(t− s)2 +Gc

ν(t− s)
]
λ(s)ds.

If in addition G = Gν, we have

σ2
X̂

(t) = σ2
ν(−t0, t) =

∫ t

−t0

[
(c2

λ − 1)Gc
ν(t− s)2 +Gc

ν(t− s)
]
λ(s)ds. (70)

Remark 9. (Verifying consistency with [31]) Corollary 6 provides an important consistency
check by allowing us to compare with the previous results in [31]. In particular, we see that we get
strong verification through (70).

We illustrate Corollary 6 with the following example.
Example 1. (Simulation comparison) We consider an Mt/LN(1,4)/∞ model over the time

interval [−t0, T ] = [−5,20], having a nonhomogeneous Poisson arrival process (Mt) with the sinu-
soidal arrival rate function

λn(t) = n (a+ b sin(ct+φ)) , t0 ≤ t≤ T, (71)

with a = c = 1, b = 0.6 and φ = 0. This example has a lognormal (LN) service distribution with
mean 1/µ = 1 and c2

s = 4. We set n = 100.
We let the system start empty at time −t0 and use the arrivals in the negative time interval

[−t0,0] to generate the initial number of customers in service and the age process at time 0.
We expect our FWLLN and FCLT limits to provide effective engineering approximations for the
mean and variance of the performance functions. For instance, Theorems 1 and 2 imply that
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Figure 1. Example 1: Simulation comparisons of the mean and variance for the number of customers in service in
an Mt/LN(1,4)/∞ model starting empty at a finite negative time −t0 = −5, with the sinusoidal arrival rate (71)
having parameters a = c = 1, b = 0.6, φ = 0 and n = 100.

Xn(t)≈ nX(t)+
√

nX̂(t) when n is large. Therefore, we expect E[Xn(t)]≈ nX(t) and Var(Xn(t))≈
nVar(X̂(t)). We next provide simulation comparison results. Each simulation experiment in this
paper is based on performing 2000 independent replications of the system.

Figure 1 shows close approximations of the fluid and variance formulas provided by Theorem 1
and Corollaries 5 and 6. In particular, the arrival rate after time 0 is shown in the top plot. Then
the expected number in system of the old customers and the new customers are shown together
with the total expected number in the second plot; while the variances of the number in system
of the old customers and the new customers are shown together with the total variances in the
third plot. In both cases, we see the additivity. As expected, the old content dissipates by about
time t = 6. The bottom plot shows the variance of the initial age process at time 0, with age
0≤ y ≤ t0 = 5 (because no customer has an age greater than t0). As expected the right endpoint in
the bottom plot coincides with the left endpoint in the third plot.

6. Steady-State Approximations An important application of the results in this paper is
generating useful approximations for the steady-state behavior of general stationary G/GI/∞ IS
models. Since we can apply Little’s law to conclude that the steady-state mean number in system
is ρ≡ λE[S], where S is a service time, we assume that E[S] <∞ in this section.

Finding general conditions for the existence of such steady-state distributions is complicated,
even for the special case of the number in system with renewal (GI) arrival processes, as can be
seen from Remark 2 of [40]. However, assuming that steady state for the process {X̂e,ν

n (t, ·) : t≥ 0}
in DD for system n is well defined, it is natural to approximate by the steady-state stationary
process associated with the limit process {X̂e,ν(t, ·) : t≥ 0} in DD, which is itself an element of D.
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As observed by Glynn and Whitt [10], pp.193–195, the steady-state behavior of the limit process
is relatively easy to analyze. For example, they observed, for service-time distributions with finite
support in an interval [0, y∗], that the number in system is in steady state after time y∗. We establish
a generalization of that result, which holds because the driving processes Ba(s) and K̂(s, ·) have
stationary increments in s.

Corollary 7. (Stationary version of the limiting IS age process) If N̂(·) = ca

√
λBa(·) and the

system starts empty at time −t0 ≤ 0, then the limit processes (as n →∞) of the new input in the

G/GI/∞ model can be represented as

(X̂e,ν
1 (t, y), X̂e,ν

2 (t, y)) =

(√
λc2

a

∫ t

(t−y)+
Gc(t− s)dBa(s),

∫ t

(t−y)+

∫ ∞

t−s

dK̂(λs,x)

)
, (72)

(X̂r,ν
1 (t, y), X̂r,ν

2 (t, y)) =

(√
λc2

a

∫ t

−t0

Gc(t+ y− s)dBa(s),

∫ t

−t0

∫ ∞

t+y−s

dK̂(λs,x)

)
. (73)

(a) If Gc(y∗) = 0, then the distribution of (X̂e,ν
1 (t, ·), X̂e,ν

2 (t, ·)) as a process in D
2 is independent

of t for t + t0 ≥ y∗ and thus reaches steady state at time y∗ if t0 = 0 (or is in steady state at time

0 if t0 ≥ y∗);

(b) As −t0 ↓ −∞, corresponding to the system starting empty in the distant past, the processes

in (72) and (73) converge w.p.1 to the associated stationary processes (as functions of t)

(X̂e,ν
1 (t, y), X̂e,ν

2 (t, y)) =

(√
λc2

a

∫ t

t−y

Gc(t− s)dBa(s),

∫ t

t−y

∫ ∞

t−s

dK̂(λs,x)

)
, (74)

(X̂r,ν
1 (t, y), X̂r,ν

2 (t, y)) =

(√
λc2

a

∫ t

−∞

Gc(t+ y− s)dBa(s),

∫ t

−∞

∫ ∞

t+y−s

dK̂(λs,x)

)
, (75)

whose marginal distribution as a function of y (as a process in D) can be seen by setting t = 0,
yielding the steady-state processes

(X̂e,s
1 (y), X̂e,s

2 (y))≡
(√

λc2
a

∫ 0

−y

Gc(−s)dBa(s),

∫ 0

−y

∫ ∞

−s

dK̂(λs,x)

)
, y ≥ 0, (76)

(X̂r,s
1 (y), X̂r,s

2 (y))≡
(√

λc2
a

∫ 0

−∞

Gc(y− s)dBa(s),

∫ 0

−∞

∫ ∞

y−s

dK̂(λs,u)

)
, y ≥ 0, (77)

with covariance formulas given by

Cov(X̂e,s
1 (y1), X̂

e,s
1 (y2)) = λc2

a

∫ y1∧y2

0

Gc(s)2 ds, Cov(X̂e,s
2 (y1), X̂

e,s
2 (y2)) = λ

∫ y1∧y2

0

Gc(s)G(s)ds,

Cov(X̂e,s
1 (y1), X̂

e,s
1 (y2)) = λc2

a

∫ ∞

0

Gc(y1 + s)Gc(y2 + s)ds,

Cov(X̂e,s
2 (y1), X̂

e,s
2 (y2)) = λ

∫ ∞

0

(Gc((y1 ∨ y2) + s)−Gc(y1 + s)Gc(y2 + s))ds. (78)

Proof We have already established (72) and (73). The other representations hold because
both Ba(s) and K̂(λs, ·) have stationary increments in s. The limit as −t0 ↓ −∞ is relatively easy
because the processes Ba(s) and K̂(λs, ·) do not change over the interval [−t0, t] if we expand
the interval on the left and consider the process over (−∞, t]. The new contribution over the
interval (−∞,−t0] decreases as −t0 ↓ −∞. This can be quantified through the variance of the
zero-mean Gaussian random variable, which is asymptotically negligible. It thus remains to derive
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the covariance formulas in (78). We only prove the first two because the proofs of the others are
similar. First, by the isometry of Brownian integrals,

Cov(X̂e,s
1 (y1), X̂

e,s∗
1 (y2)) = λ

∫ 0

−y1∧y2

Gc(−s)2 ds = λ

∫ y1∧y2

0

Gc(s)2 ds. (79)

Next, exploiting the representation of the Kiefer process in terms of the Brownian sheet, i.e.,
K(x, y) = W (x, y)− yW (x,1) (see the appendix of [31]), we have

Cov(X̂e,s
2 (y1), X̂

e,s
2 (y2))

= E

[∫ 0

−y1

∫ ∞

−s

d (W (λs,G(x))−G(x)W (λs,1))×
∫ 0

−y2

∫ ∞

−s

d (W (λs,G(x))−G(x)W (λs,1))

]

= λ

∫ 0

−y1∧y2

Gc(−s)ds +λ

∫ 0

−y1∧y2

Gc(−s)2ds− 2λ

∫ 0

−y1∧y2

Gc(−s)2ds, (80)

which coincides with the second covariance formula in (78).
Corollary 7 adds to the insight about the stationary model provided by Corollaries 3.1, 4.1

and 4.2 of [31]. As indicated in Corollary 4.1 of [31], we see that the approximating stationary
distribution depends on the arrival process beyond its constant arrival rate λ and the assumed
FCLT only through the asymptotic variability parameter c2

a. Thus this distribution is the same
as for the M/GI/∞ model if and only if c2

a = 1. It is thus instructive to also consider what can
be established for the M/GI/∞ model directly by exploiting its special structure. So now we
consider the M/GI/∞ model. It is well known that the steady-state number of customers Xn(0)≡
Xe

n(0,∞) is a Poisson random variable with E[Xn(0)] = V ar(Xn(0)) = nλE[S] = nλ
∫∞

0
Gc(u)du

and, conditioned on that number, the ages (and the residual service times) are i.i.d. with the
stationary-excess cdf Ge(t)≡ (1/E[S])

∫ t

0
Gc(u)du, t≥ 0 and ccdf Gc

e(t)≡ 1−Ge(t); e.g., see [6, 11].
Thus we have the following corollary.

Corollary 8. (FCLT for the M/GI/∞ model in steady state) Consider a sequence of

M/GI/∞ models in steady state at time 0, with service-time cdf G and constant arrival rate nλ.

Then Assumption 1 holds with the FWLLN and FCLT limits for the initial age processes (and all

t≥ 0) given by

Xe,s(0, y) = ρGe(y) =

∫ y

0

a(y)dy =

∫ y

0

λGc(u)du and X̂e,s(0, y)
d
= X̂e,s∗

1 (y) + X̂e,s∗
2 (y), (81)

where ρ≡ λE[S] = Xe(0,∞) = X(0), and X̂e,s∗
1 and X̂e,s∗

1 are independent processes with

X̂e,s∗
1 (y)≡ Û∗(ρ,Ge(y))

d
=
√

ρB∗
s(Ge(y)) and X̂e,s∗

2 (y)≡Ge(y)X̂(0)
d
=
√

ρGe(y)Z0, (82)

where Û∗ is a standard Kiefer process associated with old customers, B∗
s is a standard Brownian

bridge, Z0 is a standard Gaussian random variable, independent of Û∗. The steady-state version

of the remaining-service-time process

Xr,s(0, y) = ρGc
e(y) =

∫ ∞

y

λGc(u)du and X̂r,s(0, y)
d
= X̂r,s∗

1 (y) + X̂r,s∗
2 (y), t≥ 0, (83)

where X̂r,s∗
1 and X̂r,s∗

2 are independent zero-mean Gaussian processes, with

Cov
(
X̂r,s∗

1 (x1), X̂
r,s∗
1 (x2)

)
=

∫ ∞

0

Hu(x1 ∧x2)H
c
u(x1 ∨x2)dXe,s(0, u),

and X̂r,s∗
2 (x)

d
=
√

ρ

∫ ∞

0

Hc
u(x)dB∗

o(Ge(u)) +
√

ρGc
e(y)Z0. (84)



Author: The Initial Content Process

24 Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

The variance of X̂e,s∗(y) is

Var(X̂e,s∗(y)) =

∫ y

0

λGc(u)du, y ≥ 0. (85)

As a consequence, the variance of the total content, as the sum of variances of the new content

(that is (33)) and old content (that is (34)), is

σ2
X̂

= σ2
X̂,ν

+σ2
X̂,o

= λ

∫ t

0

Gc(u)du+λ

∫ ∞

0

Hc
u(t)Gc(u)du = λ

∫ ∞

0

Gc(u)du = ρ. (86)

Proof Let A1,A2, . . . be the ages (e.g., elapsed time in service) of the customers in service at
time 0. To prove the FWLLN in (81), we have

X̄e(0, y) =
1

n

nX̄n(0)∑

i=1

1(Ai ≤ y)⇒X(0)Ge(y) = ρGe(y) in D, as n→∞,

where the convergence holds because the age Ai follows the equilibrium distribution Ge (see The-
orem 1 of [6]). To prove the FCLT in (81), we have

X̂e(0, y) =
1√
n




nX̄n(0)∑

i=1

1(Ai ≤ y)−nX(0)Ge(y)





=
1√
n

nX̄n(0)∑

i=1

(1(Ai ≤ y)−Ge(y))+ X̂n(0)Ge(y) = K̂n

(
X̄n(0),Ge(y)

)
+ X̂n(0)Ge(y) (87)

⇒ Û∗ (X(0),Ge(y))+ X̂(0)Ge(y)
d
=
√

X(0)B∗
s (Ge(y))+

√
X(0)Ge(y)Z0 in D,

as n → ∞, where the second equality holds by adding and subtracting Ge(y) in the sum, and
the convergence holds by (i) the marginal convergence of each of the two terms in (87) (due to
the Gaussian CLT limit for a Poisson random variable) and by (ii) Lemma 1 and the conditional
independence of these two terms conditioning on Xn(0) (with arguments similar to §4.1). The
variance formulas (85) and (86) immediately follow from (83) and (34) with Gν = G. The proof
of the FWLLN limit in (83) follows from (81) and Theorem 1, and the proof of (84) follows from
(83), Theorem 2 and Corollary 3.

Corollary 9. (Two equivalent decompositions) For the M/GI/∞ model (with c2
a = 1), the

two representations (76) and (81) ((77) and (83)) are equivalent independent decompositions, i.e.,

X̂e,s∗
1 + X̂e,s∗

2

d
= X̂e,s

1 + X̂e,s
2 and X̂r,s∗

1 + X̂r,s∗
2

d
= X̂r,s

1 + X̂r,s
2 . (88)

Proof We only prove the first equality in (88) since the second equality follows similarly.
Because all four terms in the first equality of (88) are zero-mean Gaussian processes, with X̂e,s∗

1

independent of X̂e,s∗
2 and X̂e,s

1 independent of X̂e,s
2 , it suffices to show that

2∑

k=1

Cov(X̂e,s∗
k (y1), X̂

e,s∗
k (y2)) =

2∑

k=1

Cov(X̂e,s
k (y1), X̂

e,s
k (y2)), (89)

By (82), we have

Cov(X̂e,s∗
1 (y1), X̂

e,s∗
1 (y2)) = ρ [Ge(y1)∧Ge(y2)−Ge(y1)Ge(y2)] ,

Cov(X̂e,s∗
2 (y1), X̂

e,s∗
2 (y2)) = ρGe(y1)Ge(y2).



Author: The Initial Content Process

Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 25

so that the left-hand side of (89) is ρGe(y1)∧Ge(y2) = λ
∫ y1∧y2

0
Gc(u)du, which coincides with the

right-hand side of (89), according to (78) with ca = 1.
The corollaries above show that the evolution of new and old content after some time is somewhat

complicated for this basic M/GI/∞ model, even though the steady-state distribution at one time
is remarkably simple. We now illustrate with an example.

Example 2. (Simulation comparison for an M/GI/∞ in steady state) We consider an
M/H2(1,4)/∞ model in [0, T ], having a Poisson arrival process with constant arrival rate λn = nλ
for λ = 1, an H2 service distribution with balanced means,i.e., a mixture of two exponential r.v.’s
with rates µ1 and µ2 with probability p. We set µ1 = 2pµ, µ2 = 2(1−p)µ, µ = 1 and p = 0.5(1−

√
0.6)

so that the mean 1/µ = 1 and c2
s = 4. We set n = 100.

Since the model is in steady state at time 0, we use a Poisson distribution with mean nλ/µ to
generate the number of customers at time 0. To generate the elapsed times in service (e.g., ages)
and the residual service times for these customers, we use the equilibrium version of the service
distribution, which again follows an H2 distribution, but with altered parameters, specifically with

p∗ = pµ2/(pµ2+(1−p)µ1), µ∗
1 = µ1 and µ∗

2 = µ. See Theorem 1 of [6]. See Figure 2 for the simulation
comparison, which is an analog of Figure 1.
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Figure 2. Example 2: Simulation comparisons of the mean and variance for the number of new and old customers
in service of an M/H2(1,4)/∞ model in steady state, with a constant arrival rate nλ = 100.

7. A Challenging Test Case In order to more fully substantiate the theoretical results, we
consider a Gt/GI/∞ IS model with non-Markov arrival process, non-exponential service-time dis-
tribution and unconventional initial conditions. We let the (artificial) initial conditions be generated
by a time changed renewal process, and exploit
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Corollary 10. (Initial customers generated from a renewal process with a time change) In

the nth Gt/GI/∞ system, if the initial age process Xe
n(0, y)≡N∗(nX∗(0, y)) where N∗ is a rate-1

renewal process with interrenewal SCV c̄2
0 and the deterministic function

X∗(y)≡
∫ y

0

b∗(y)dy <∞, (90)

then Assumption 2 is satisfied with X(0, y) = X∗(y) and X̂(0, y) = c̄0B0(X
∗(y)), for y ≥ 0, where

B0 is a standard BM. In addition, the variance of the ICP (that is (34)), is

σ2
X̂,o

(t) =

∫ ∞

0

Hu(t)Hc
u(t)dX∗(u) + c̄2

0

∫ ∞

0

Hc
u(t)2 dX∗(u) =

∫ ∞

0

[(
c̄2
0 − 1

)
Hc

u(t) + 1
]
Hc

u(t)b∗(u)du.

Example 3. (Simulation comparison for an example of Corollary 10) In addition to the initial
conditions specified above, we let the new input come from an Ht

2(1,4)/LN(1,4)/∞ model in [0, T ],
having a Gt arrival process Nn(t)≡N (e)(nΛ(t)), where N (e) is a rate-1 equilibrium renewal process
having an H2 interrenewal distribution with balanced means and c2

λ = 4, while Λ(t) ≡
∫ t

0
λ(u)du,

where λ(t) is the sinusoidal arrival rate with in (71) having parameters a = c = 1, b = 0.6, φ = 0
and n = 100. This example has an LN service distribution with mean 1/µ = 1 and c2

s = 4. For the
initial conditions, let N∗ be a rate-1 Poisson process (so that c̄2

0 = 1) in Corollary 10 and consider
two density functions in (90)

b∗1(u) = u1(0≤u≤d) +(2d−u)1(d≤u≤2d) and b∗2(u) =
1

3
u2 1(0≤u≤2d), (91)

with d = 1.5, as shown in Figure 3.

    

 

0 0   

 

  

 

Figure 3. Two choices of the initial-condition density b∗(u) in (90).

Comparisons with simulations are shown in Figure 4. The first three plots in Figure 4 are analogs
of those in Figure 1. In the fourth and fifth plots we give simulation comparisons for the variances of
the two-parameter process X̂e(t, y). We provide the simulations for the case of b∗2 in the appendix.

8. Conclusion Our main result is an FCLT for the initial content process (ICP), which spec-
ifies the elapsed service times of all customers in the system at time t who were also initially in the
system at time 0, having arrived sometime earlier. The ICP in system n is the process Xe,o

n (t, y) in
DD, defined in (3). The key assumptions are (i) that the service times come from a sequence of i.i.d.
random variables independent of the arrival process and (ii) an FCLT holds for the initial ICP at
time 0 in D, which includes having the total number at time 0 grow proportional to n. The limit
process for the scaled ICP is X̂e,o(t, y) ≡ X̂e,o

1 (t, y) + X̂e,o
2 (t, y), where X̂e,o

1 (t, y) and X̂e,o
2 (t, y) are

independent zero-mean Gaussian processes specified in (17) and (18). The proof of the FCLT in §4
exploits results in [37] for empirical processes of independent non-identically-distributed random
variables.

In Theorem 2, our FCLT for the ICP is expressed in the more general context of an Gt/GI/∞
infinite-server queueing model, which includes new input as well as the ICP. In this context, the
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Figure 4. Example 3 with b∗1 in (91): Simulation comparisons of the mean and variance for the number of customers
in service of an Ht

2(1,4)/LN(1,4)/∞ model, with the sinusoidal arrival rate (71) having parameters a = c = 1, b = 0.6,
φ = 0 and n = 100 and general initial conditions.

key assumption is Assumption 1, which requies a joint FCLT for the arrival process and the ICP
at time 0, where the limit processes are independent zero-mean Gaussian processes. The limit for
the ICP alone is obtained by having a null arrival process. The additional results for the new input
are obtained from [31]. Corollary 6 shows that Theorem 2 implies a corresponding FCLT for the
key processes in the more general Gt/GIo,GIν/∞ model starting at time −t0 < 0, which has one
service-time cdf G before time 0 and then another service-time cdf Gν after time 0. The limit holds
if Assumption 1 holds at time −t0, provided that the limit process is a time-transformed Brownian
motion, which is the common case for applications.

As a further consequence, in Corollary 7 we characterize the steady-state new and old content
in the stationary G/GI/∞ model. Using the explicit structure of the M/GI/∞ model, we obtain
an alternative characterization of the steady-state new and old content in Corollary 8. We then
show that the two different representations are equivalent in Corollary 9. In §5-§7 we also report
results of simulation experiments that verify the accuracy of the formulas and show that they can
be useful engineering approximations.
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Appendix

A. Overview This appendix has extra materials to supplement the main paper. In §B we
review useful results used in the proofs. In §C we give proofs omitted in the main paper. In §D we
provide additional simulation results.

B. Useful Inequalities In this section we review two useful inequalities. Both are used to
prove (57) in §4.

Theorem 3 (Lévy’s inequality (symmetric case), Theorem 3.7.1 of Gut[13]). Let X1,

X2, . . . ,Xn be independent real-valued symmetric random variables (satisfying −Xi
d
= Xi for all

1≤ i≤ n) and let Sn =
∑n

k=1 Xk, n≥ 1 be the partial sums. Then, for any x > 0,

P

(
max
1≤k≤n

|Sk|> x

)
≤ 2P(|Sn|> x). (92)

Theorem 4 (Hoeffding’s inequality, Theorem 3.1.3 of Gut[13]). Let X1,X2, . . . ,Xn be

independent real-valued random variables such that P(ak ≤Xk ≤ bk) = 1 for ak, bk ∈R, k = 1, . . . , n,

and let Sn =
∑n

k=1 Xk, n≥ 1, denote the partial sums. Then

P(|Sn −E[Sn]|> x)≤ 2 exp

(
− 2x2

∑n

k=1(bk − ak)2

)
. (93)

C. Additional Proofs We now provide proofs of Corollaries 4 and 6, and Lemma 2, which
were omitted in the main paper.

Proof of Corollary 4. This follows from parts (ii) and (iii) of Theorem 2. We present the proof
of the four-parameter covariance formulas in (i); the variance formulas in (i) and (ii) easily follow.

First, the covariances of X̂ν
1 and X̂o

2 are

Cov(X̂e,ν
1 (t1, y1), X̂

e,ν
1 (t2, y2)) = E

[∫ t1

(t1−y1)+
Gc

ν(t1 − s)dN̂(s)×
∫ t2

(t2−y2)+
Gc

ν(t2 − s)dN̂(s)

]

= c2
λ

∫ t1∧t2

(t1−y1)+∨(t2−y2)+
Gc

ν(t1 − s)Gc
ν(t1 − s)dΛ(s),

and

Cov(X̂e,o
2 (t1, y1), X̂

e,o
2 (t2, y2)) = E

[∫ (y1−t1)+

0

Hc
x(t1)dX̂0(x)×

∫ (y2−t2)+

0

Hc
x(t2)dX̂0(x)

]

=

∫ (y1−t1)+∧(y2−t2)+

0

Hc
x(t1)H

c
x(t2)dΣe,o

2 (x).

Second, the covariance of X̂ν
2

Cov(X̂e,ν
2 (t1, y1), X̂

e,ν
2 (t2, y2))

= E

[(∫ t1

(t1−y1)+

∫ ∞

0

1(x+s>t1) d
(
Ŵ (Λ(s),Gν(x))−Gν(x)Ŵ (Λ(s),1)

))

×
(∫ t2

(t2−y2)+

∫ ∞

0

1(x+s>t2) d
(
Ŵ (Λ(s),Gν(x))−Gν(x)Ŵ (Λ(s),1)

))]

= E

[∫ t1

(t1−y1)+

∫ ∞

0

1(x+s>t1) dŴ (Λ(s),Gν(x))×
∫ t2

(t2−y2)+

∫ ∞

0

1(x+s>t2) dŴ (Λ(s),Gν(x))

]
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+E

[∫ t1

(t1−y1)+
Gc

ν(t1 − s)dŴ (Λ(s),1)×
∫ t2

(t2−y2)+
Gc

ν(t2 − s)dŴ (Λ(s),1)

]

−E

[∫ t1

(t1−y1)+

∫ ∞

0

1(x+s>t1) dŴ (Λ(s),Gν(x))×
∫ t2

(t2−y2)+
Gc

ν(t2 − s)dŴ (Λ(s),1)

]

−E

[∫ t1

(t1−y1)+
Gc

ν(t1 − s)dŴ (Λ(s),1)×
∫ t2

(t2−y2)+

∫ ∞

0

1(x+s>t2) dŴ (Λ(s),Gν(x))

]

=

∫ t1∧t2

(t1−y1)+∨(t2−y2)+
Gc

ν(t1 ∨ t2 − s)dΛ(s) +

∫ t1∧t2

(t1−y1)+∨(t2−y2)+
Gc

ν(t1 − s)Gc
ν(t2 − s)dΛ(s)

−2

∫ t1∧t2

(t1−y1)+∨(t2−y2)+
Gc

ν(t1 − s)Gc
ν(t2 − s)dΛ(s)

=

∫ t1∧t2

(t1−y1)+∨(t2−y2)+
Gc

ν(t1 ∨ t2 − s)Gν(t1 ∧ t2 − s)dΛ(s).

Proof of Corollary 6. First, (67) and (68) easily follow Theorems 3.1 and 3.2 of [31] by
considering the performance of a system at the end of interval [0, t0] (that is, at time t0) with the
system being initially empty (at time 0). Then, it suffices to apply a time shift, that is, shifting
the interval to the left by t0 so that the interval becomes [−t0,0].

When the system starts empty at −t0, following (68) and Theorem 4.2 of [31], the variance
function of X̂e(0, y) is

Var(X̂e(0, y)) =

∫ y

0

[
(c2

λ − 1)Gc(s)2 +Gc(s)
]
λ(−s)ds, for 0≤ y ≤ t0. (94)

Now plugging (67) and (94) into (34) yields that

σ2
X̂,o

(t) =

∫ t0

0

Hu(t)Hc
u(t)G

c(u)λ(−u)du+

∫ t0

0

(Hc
u(t))

2 [
(c2

λ − 1)Gc(u)2 +Gc(u)
]
λ(−u)du

=

∫ t0

0

Hu(t)Gc(t+u)λ(−u)du+

∫ t0

0

Hc
u(t)Gc(t+u)

[
(c2

λ − 1)Gc(u) + 1
]
λ(−u)du

=

∫ t0

0

Gc(t+u)
[
(c2

λ − 1)Gc(t+u) + 1
]
λ(−u)du

=

∫ 0

−t0

Gc(t− s)
[
(c2

λ − 1)Gc(t− s) + 1
]
λ(s)ds,

where the last equality holds by a change of variable. Summing the above equation with σ2
X̂,ν

(t) in

(33) yields (70).
Proof of Lemma 2. We mimic the proof of (A.14.15) in [37]. First for a deterministic g ∈ DD,

we have

E‖g −X‖T,y↑ ≥E|g(t, y)−X(t, y)| ≥ |g(t, y)−E[X(t, y)]|, for t∈ [0, T ], y ∈ [0, y↑],

where the second inequality holds by Jensen’s inequality. Hence, we have

E‖g−X‖T,y↑ ≥ sup
(t,y)∈[0,T ]×[0,y↑]

|g(t, y)−E[X(t, y)]|= ‖g−E[X]‖T,y↑ . (95)

By conditioning on X, we have

E

[
φ
(
‖X −X∗‖T,y↑

)]
= EX

[
EX∗

[
φ
(
‖X −X∗‖T,y↑

)∣∣X
]]

≥EX

[
φ
(
EX∗

[
‖X −X∗‖T,y↑

∣∣X
])]

≥EX

[
φ
(
‖X −E [X∗]‖T,y↑

)]
= E

[
φ
(
‖X −E [X]‖T,y↑

)]
,

where the first inequality holds by Jensen’s inequality and the second inequality holds by (95).
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D. An Additional Example
Example 4. (Simulation comparison for another example of Corollary 10) We now supplement

Example 3 by considering that same Ht
2(1,4)/LN(1,4)/∞ model with all parameters specified in

Example 3, but with b∗ = b∗2 specified in (91). Comparisons with simulations are shown in Figure
5.
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Figure 5. Example 4 with b∗2 in (91): Simulation comparisons of the mean and variance for the number of customers
in service of an Ht

2(1,4)/LN(1,4)/∞ model, with the sinusoidal arrival rate (71) having parameters a = c = 1, b = 0.6,
φ = 0 and n = 100 and general initial conditions.
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