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THE ASYMPTOTIC VALIDITY OF SEQUENTIAL STOPPING
RULES FOR STOCHASTIC SIMULATIONS

By PETER W. GLYNN! AND WARD WHITT

Stanford University and AT & T Bell Laboratories

We establish general conditions for the asymptotic validity of sequen-
tial stopping rules to achieve fixed-volume confidence sets for simulation
estimators of vector-valued parameters. The asymptotic validity occurs as
the prescribed volume of the confidence set approaches 0. There are two
requirements: a functional central limit theorem for the estimation process
and strong consistency (with-probability-1 convergence) for the variance or
“scaling matrix” estimator. Applications are given for: sample means of
iid. random variables and random vectors, nonlinear functions of such
sample means, jackknifing, Kiefer—Wolfowitz and Robbins—-Monro stochas-
tic approximation and both regenerative and nonregenerative steady-state
simulation.

1. Introduction. The runlength of a stochastic simulation is typically
determined by one of two methods. The first method is to assign the runlength
prior to performing the simulation. This is usually done by specifying either
the amount of simulation time to be generated or the amount of computer
time to be expended. The principal disadvantage of this approach is that the
posterior precision of the estimator may not be appropriate. Since the volume
of the confidence set (the width of a confidence interval in one dimension) is
unknown in advance, the volume may be too large to be of practical use
(meaning that the preassigned runlength was too small) or too small (meaning
that computational resources were wasted in refining the estimator beyond the
level of accuracy required). ‘

The second method is a sequential stopping procedure; that is, we let the
simulation run until the volume of a confidence set achieves a prescribed
value. This avoids the problems associated with preassigned runlengths, but
new difficulties are introduced because the runlength is now randomly deter-
mined. The first difficulty is that we no longer have direct control of the
amount of simulation time to be generated or the amount of computer time to
be expended. Consequently, the runlength may turn out to be much longer
than we want. On the other hand, it is possible that the runlength may turn
out to be inappropriately short. This creates certain statistical difficulties that
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can compromise the accuracy of such procedures. For example, it is known
that in many statistical settings, the point estimator and the variance estima-
tor are positively correlated. Since the volume of a confidence set is typically
determined by the variance estimator, this suggests that the confidence set
volume will tend to be small when the point estimator is small. Consequently,
the resulting sequential procedure will tend to terminate early in situations in
which the point estimator is too small, leading to possibly significant coverage
problems for the confidence sets. Nevertheless, sequential stopping rules are of
interest because of the possibility of automatically obtaining prescribed preci-
sion.

Various sequential stopping rules for simulation estimators have been
proposed and investigated empirically. Among these are sequential procedures
involving: batch means in Law and Carson (1979) and Law and Kelton (1982),
regenerative simulation in Fishman (1977) and Lavenberg and Sauer (1977)
and spectral methods in Heidelberger and Welch (1981a, b, 1983); see pages
81, 92, 97 and 103 of Bratley, Fox and Schrage (1987) for an overview.
Unfortunately, however, the empirical evidence is not entirely encouraging.
Evidently, care must be taken in the design and implementation of sequential
procedures to avoid inappropriate early termination. On the positive side, the
sequential procedures do tend to perform well when the run lengths are
relatively long, which is achieved in part by having a suitably small prescribed
volume for the confidence set.

The observed good performance with small prescribed confidence set vol-
umes is consistent with the classical asymptotic theory of sequential pro-
cedures for obtaining fixed-width confidence intervals for the mean of
independent and identically distributed (i.i.d.) real-valued random variables;
see Anscombe (1952, 1953), Chow and Robbins (1965), Starr (1966), Nadas
(1969), Chapter 7 of Siegmund (1985), Section 8.8 of Wetherill and Glazebrook
(1986) and Chapter 5 of Govindarajulu (1987). This asymptotic theory estab-
lishes that the sequential procedure is indeed asymptotically valid as the
prescribed width of the confidence interval approaches 0 (and the resulting run
length approaches ). This classical asymptotic theory provides a theoretical
basis for confidence in sequential procedures, but it is not directly relevant to
most simulation estimators, because the classical asymptotic theory is for i.i.d.
random variables. The classical theory does apply relatively directly to regener-
ative simulations, as was shown by Lavenberg and Sauer (1977), but there
evidently is not yet any asymptotic theory for nonregenerative steady-state
simulation estimators.

The purpose of this paper is to fill the gap. We provide general conditions
for the asymptotic validity of sequential stopping rules for a large class of
simulation estimators. The main conditions are that the estimation process
obey a functional central limit theorem (FCLT) and that there be a strongly
consistent estimator for the asymptotic variance of the estimator. (We also
treat d-dimensional parameters; then the asymptotic variance should be re-
placed by an asymptotic covariance matrix or, equivalently, by an associated
‘“scaling’”’ matrix; see Section 2.) Alternatively, for the variance estimator it
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suffices for it to satisfy a functional weak law of large numbers (FWLLN),
which is often obtained as a consequence of an FCLT. The strong consistency
(w.p.1 convergence) or the FWLLN for the variance estimator are important;
we provide a counterexample in Section 4 showing that asymptotic validity
need not hold with only weak consistency (ordinary one-dimensional in-prob-
ability convergence). Indeed, the conditions here are natural for the random-
time-change limit theorems upon which the proofs depend; see, for example,
Richter (1965), Section 17 of Billingsley (1968), Sections 3 and 5 of Whitt
(1980), Glynn and Whitt (1988), and Gut (1988).

The rest of this paper is organized as follows. Section 2 provides limit
theorems which guarantee that the coverage of a sequential procedure con-
verges to the desired level when the prescribed volume of the confidence set is
shrunk to 0. Section 3 contains applications of the limit theorems to various
estimation settings. We give conditions under which sequential stopping rules
are valid for a variety of estimation problems not previously considered:
estimation of a nonlinear function of means, nonregenerative steady-state
simulation and jackknife estimators. Section 4 contains the counterexample
when the variance estimator is only weakly consistent. Finally, Section 5
contains all proofs.

2. The framework and main limit theorems. Our goal is to estimate
a parameter a € R?. We assume that there exists an R%valued stochastic
process Y = {Y(¢): ¢t > 0} called the estimation process for which Y(¢) = a as
t > o, where = denotes convergence in distribution (which here coincides
with convergence in probability because « is deterministic). Actually, we shall
need to require that the estimation process satisfy a stronger hypothesis, in
particular, a functional central limit theorem (FCLT); in most applications, it
will effectively amount to assuming that the estimation process satisfies an
ordinary central limit theorem (CLT).

Let D(0,x) be the space of right-continuous R%valued functions with left
limits on the open interval (0, ©), endowed with the standard JJ; topology; see
Ethier and Kurtz (1986) or Whitt (1980). We work with D(0, ») rather than
DI[0, «) in order to avoid having to deal with possible singularities in Y at the
origin ¢ = 0; for example, in estimators such as Y(¢) = ¢t~ /! Z(s) ds. At contin-
uous limits, convergence in D(0, ) is equivalent to uniform convergence over
compact subintervals of (0, ©). We assume that Y has sample paths in D(0, «)
and consider the family of scaled processes

Z(t)=¢e"(Y(t/e) —a), t>0,
in D(0, x) for £ > 0. We assume that:

There exists a nonsingular d X d matrix T, a constant

(2.1) y >0 and an R%valued process Z'= {2(t): ¢t > 0} that is

T continuous at ¢ w.p.1 for all ¢ such that 2/ = I'? in
' D(0,x) as ¢ | 0, which we denote by

2(t) = e "(Y(¢/e) —a) = T2(t) in D(0,) as ¢ | 0.
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Typically the convergence in (2.1) occurs with y = 1/2 and the limit process
% takes the form %1(¢) = B(¢)/t, where B is standard Brownian motion
(which is composed of d independent one-dimensional Brownian motions, each
having zero drift and unit diffusion coefficient), but these are not required.
Note that assumption (2.1) guarantees that

Y(¢) —a=t7%,,(1) = 0-TZ(1) =0 ast—> o

that is, Y(¢) = a as ¢ —» x, so that Y(¢) is a weakly consistent estimator of «.

First, suppose that we preassign the amount of simulation time ¢ to be
generated by the computer. To obtain an approximate 100(1 — §)% confidence
set for @, we assume that there exists a bounded set A for which

(2.2) P{#(1) €A} =1-6 and P{2(1) €A} =0,

where A is the boundary of A. Then let C(¢) = Y(¢) — ¢ "’TA, where we use
the notation z + QA to denote the set {x € R%: 3y € A such that x = z + Qy}
for z € R? and d X d matrices @. The following proposition shows that C(¢)
achieves the nominal coverage level as the sample size ¢ is permitted to go
to o, )

/

ProposITION 1. Under (2.1) and (2.2), Pla € C(t)} > 1 -8 ast — .

Of course, in applications, I' is typically unknown so that it must be
estimated. Assume that there exists an estimator I'(¢) which is weakly consis-
tent; that is, I'(¢) = I' as t > ». Let C(¢) = Y(¢) — ¢t "T(®)A.

ProposITION 2. If T(¢t) = T as t > © under (2.1) and (2.2), then Pla €
C@)—>1—-6ast > x,

Thus the confidence set C(¢) yields a procedure which is both imple-
mentable and provides an asymptotically valid region.

REMARK 2.1. Propositions 1 and 2 actually require only the CLT version of
(2.1); that is, 2/(1) = 2(1) in R? as ¢ — 0; see the proofs in Section 5.

We turn now to a discussion of sequential stopping procedures. For a
generic (measurable) set B c RY, let m(B) denote the d-dimensional volume
(Lebesgue measure) of the set. Of course, when d = 1 and B is an interval,
m(B) is just the length of the interval. We first consider the case in which the
procedure terminates when the dth root of the volume of the confidence
region C(t) drops below a prescribed level &. [It is natural to use the dth root,
because m(xB)'/¢ = xm(B)'/? for a scalar x.] We call such a procedure an
* absolute-precision sequential stopping rule. For such a rule, the time T'(¢) at
which the simulation terminates execution is defined by

T(e) = inf{t > 0: m(C(£))"? < ¢}.
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Actually, this stopping rule needs to be modified, because T'(¢) can terminate
much too early if the estimator I'(#) is badly behaved for small ¢. To see this,
suppose that P(I'(1) = 0, m(C(¢)) =1, 0 <¢ < 1) = 1. In this case, T(¢) =
1 for £ <1, so C(T(e)) = Y(1) for £ <1. Hence, in this example, P(a €
C(T'(¢))) = P(a = Y(1)) for £ < 1. Hence convergence of the coverage probabil-
ity of the region C(T'(¢)) to the nominal level 1 — § does not occur when we let
€|0.

In order for the asymptotic theory associated with (2.1) to be relevant to the
sequential stopping problem, it is necessary that T'(¢) > « as £} 0. In other
words, small values of the precision constant & need to correspond to large
values of simulation time. We can force the termination time to behave in this
way if we inflate the volume m(C(¢)) slightly. Let a(#) be a strictly positive
function that decreases monotonically to 0 as ¢ — o and satisfies a(¢) = o(z 7).
Set

(2.3) Ty(e) = inf{t > 0: m(C(2))"? + a(t) <)
and
t(e) = inf{t > 0: a(¢) <&}.

Note that Ty(¢) > ¢t,(¢) = = as £]0. Thus the early termination associated
with T'(¢) is prevented by the stopping rule T,(¢). In practice, one might use
a priori analytical estimates of required simulation run lengths, as in Whitt
(1989, 1992), to determine the function a(¢); for example, a(¢) = 1 for ¢ < ¢,
and a(¢) = 2¢72” for t > ¢,; but we do not examine specific procedures here.
Throughout the rest of this paper, we assume that m(A) > 0 for A in (2.2).
The next two theorems provide our main asymptotic results about sequential
stopping rules for stochastic simulations. The first theorem shows that under
the relatively mild assumption (2.1), strong consistency of the estimator I'(¢)
suffices to guarantee that the absolute-precision stopping rule T (e) has a
variety of desirable asymptotic properties, including asymptotic validity.

THEOREM 1. Suppose that (2.1) and (2.2) hold. If T(t) > T w.p.1 as
t > o, thenast > oore— 0:

@ tIm(C@NV? + a(@®)] » m(TAY? w.p.1,
(i) eV 7Ty(e) > m(TA " w.p.1,
(iii) e 'm(C(T(eNV? > 1 w.p.1,
(iv) e Y (T (&) — a] = m(TA)~/9Tr2(1) in RY,
(v) P(a € C(T(¢))) — 1 — & (asymptotic validity).

Part (i) shows that w.p.1 both the dth root of the volume and the inflated
dth root of the volume of the confidence set at time ¢ are asymptotically equal
.to t7"m(TA)"/¢ to first order as t — . Part (ii) shows that w.p.1 the
termination time Ty(e) is asymptotically equal to d(e) = e V*m(TA"? to
first order as ¢ — 0. Note that d(¢) is precisely that deterministic time at
which m(C(d(£)))/% = &. Of course, the time d(¢) is not directly imple-
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mentable because T is presumed unknown. Part (iii) shows that w.p.1 the dth
root of the volume of the final realized confidence set, m(C(T(¢))), is asymp-
totically equal to the prescribed value ¢ to first order as ¢ — 0. Part @(iv)is a
random-time-change CLT that serves to establish the asymptotic validity in
(v). Thus the sequential stopping rule T'(¢) provides the same asymptotic
behavior as d(¢), despite the fact that T',(¢) needs to estimate T.

ReEMARk 2.2. The FCLT (2.1) instead of the ordinary CLT is needed to
establish the random-time-change CLT in part (iv) of Theorem 1; see, for
example, Example 4 of Glynn and Whitt (1988).

Our next result shows that we can replace the strong consistency of I'(¢) in
Theorem 1 with a functional weak law of large numbers (FWLLN). An
FWLLN is easily obtained as a corollary to an FCLT. Since an ordinary strong
law of large numbers (SLLN) is equivalent to an FSLLN [see Theorem 4 of
Glynn and Whitt (1988) or Lemma 3 of Glynn and Whitt (1992)], which in turn
implies an FWLLN, we also obtain the following results under the strong
consistency assumption of Theorem 1, too. Moreover, the = convergence in
(i)-(iii) can then be replaced with w.p.1. However, an FWLLN need not imply a
SLLN [see Example 2 of Glynn and Whitt (1988)], so that the condition of
Theorem 2 is actually more general. We obtain convergence statements with
t = 1 paralleling those of Theorem 1 by simply applying the continuous
mapping theorem with the projection map at ¢ = 1. In Section 4 we show that
we cannot simply assume an ordinary WLLN, that is, that I'(¢) is weakly

consistent. Let =, denote equality in distribution.

THEOREM 2. Suppose that (2.1) and (2.2) hold. If T(t/e) = T in D(0,x)
with range R% as ¢ — 0, then as € — 0:

G) e [m(C(t/e)V? + a(t/e)] = t""m(TA)? in D(0, ),
(i) eV "Ty(e/t) = t'/"m(TA) "¢ in D(0, «),
(i) e 'm(C(T(e/))/¢ =t~ in D(0, »),
Gv) e UY(T(e/t) — a] = TZ (Y "m(TA)/"?) =, m(TA)~Y4TZ (/") in
D(0, ),
() P(a € C(Ty(e)) » 1 — & (asymptotic validity).

Our next theorem considers a variant of the stopping rule 7'(¢) known as a
relative-precision sequential stopping rule. The basic idea here is that the
simulation should terminate when the dth root of the volume of the confi-
dence region is less than an eth fraction of the norm of the parameter «. Since
Y(#) is an estimator for «, this suggests replacing 7T'(¢) with

(2.4) Ty(e) = inf{t > 0: m(C(2))"/? + a(2) < elY(2)l}.

The next theorem shows that such relative-precision stopping rules have
analogous asymptotic behavior to that exhibited by absolute-precision stopping
rules. Note that Ty(¢) behaves asymptotically like T (lale), as one would
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expect. For the analog of Theorem 1, it is important that Y(¢) now be a
strongly consistent estimator of «. This is a reasonable condition, but it does
not follow from (2.1); see, for example, Example 2 of Glynn and Whitt (1988).

THEOREM 3. Suppose that (2.1) and (2.2) hold. If Y(¢t) > a and T(¢) —
I'w.p.last - x, where |a| > 0, then ast - © and ¢ - 0:

Q) " [mCEN? + a@®))/IY@®)| - lal 'm(TA? w.p.1,
(i) £V/7Ty(e) » m(TA"lal™ " w.p.1,
(iiD) £ 'm(C(Ty (e ? - |al w.p.1,
(iv) e HY(Ty(e) — a] = |lalm(TA)~VTZ(1) in Re,
(v) P(a € C(Ty(e))) — 1 — & (asymptotic validity).

The proof of Theorem 3 is a minor modification of the proof of Theorem 1,
and is therefore omitted. There is also an analog of Theorem 2 for the
relative-precision sequential stopping rules, but we do not state it. Nothing
beyond the assumptions of Theorem 2 is needed except |a| > 0.

3. Examples. In this section, we discuss the implications of Theorems 1
and 3 in a variety of different estimation settings. As we shall see, assumption
(2.1) is a mild hypothesis that is satisfied in virtually all practical contexts.
Given the presence of such an FCLT, the asymptotic validity of a sequential
stopping rule basically depends upon the availability of a strongly consistent
estimator for the scaling matrix I' that appears in (2.1). (Alternatively we
could have an FWLLN, as in Theorem 2.)

ExamPLE 1 (The sample mean of i.i.d. random variables). Suppose that a
can be represented as a« = EX for some real-valued r.v. X. For example, «
might correspond to the expected number of customers served in a queue over
the time interval [0, T']. Then a can be estimated by generating i.i.d. replicates
X, X,,... of the r.v. X; the resulting estimator for « is then the sample mean
X, =n 'L}, X,. The corresponding estimation process is Y(¢) = X|,, where
[¢] is the greatest integer less than ¢ and X, = 0. If EX? < », Donsker’s
theorem asserts that (2.1) holds with y = 1/2, T' = o, where ¢ = var X, and
2(t) = B(t)/t, where B(t) is standard (zero-drift, unit-diffusion-coefficient)
Brownian motion; see Section 16 of Billingsley (1968). Note that 21(1) =,
N (0, 1). The typical choice for the set A in this setting is the interval [ —2z(5),
2(8)], where 2(3) is chosen to satisfy P{N(0,1) < 2(8)} = 1 — /2. Of course, it
is well known that

1 n o, 1/2
r,= n—1i§1(x" X,) -0 w.plasn— o
Suppose that o2 — 0. Setting I'(t) = I;, we have the strong consistency
required by Theorems 1 and 3. Hence both the absolute- and relative-precision
stopping rules T'y(¢) and T(¢) are asymptotically valid for this example when
the precision constant & shrinks to 0. In this setting, Theorems 1 and 3
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reproduce the results of Chow and Robbins (1965), Starr (1966) and Nadas
(1969). Implementation considerations are discussed in Law, Kelton and Koenig
(1981).

ExamMPLE 2 (The sample mean of i.i.d. random vectors). Now we consider
the case in which @ can be represented as « = EX, where X is R%valued.
Assume that E|X|? < . As in Example 1, we can estimate a via the sample
mean X, =n" L7 , where X,’s are 11d copies of X. Setting Y(¢) = X,
we obta.m (2 1) from the d- d1mens1ona.l version of Donsker’s theorem [see, e.g.,
Glynn and Whitt (1987)], where %/(¢) = B(¢)/¢t, B is d-dimensional standard
Brownian motion (composed of d independent one-dimensional standard
Brownian motions) and I'T* is the covariance matrix C of X. We assume that
C is positive definite. Note that 2/(1) = B(1) =; N(0, 1). In this d-dimensional
setting, we can assume that A is the d-sphere {x: |x| < w(8)}, where w(§) is
chosen so that

P{N(0, 1) < w?(8)} = P2} < w*(8)} =1 -3,
with 272 being a chi-squared r.v. with d degrees of freedom. Let

17 - =
Cn = Z Xzth _XILXItL
nioa
(writing all d-vectors as column vectors). Then C, —» C a.s. as n - «. Let T,
be obtained by taking the Cholesky factorization of C,, so that T, is a lower
triangular matrix such that C, = I',T}; see pages 164 and 165 of Bratley, Fox
and Schrage (1987). It follows that I, » I' w.p.1 as n — o, since Cholesky
factors are continuous at positive definite matrices. Setting I'(¢) = I},, we
again have the strong consistency required by Theorems 1 and 3. Thus we
have proved that the absolute- and relative-precision stopping rules T',(¢) and
T,(¢) are asymptotically valid for sequential stopping of multiple performance
measure stochastic simulations.
In this setting, Theorems 1 and 3 reproduce results by Gleser (1965), Albert
(1966) and Srivastava (1967); see Section 5.5 of Govindarajulu (1987).

ExaMPLE 3 (Functions of sample means). Let X be an R%valued random
vector and let u = EX. Suppose that a can be represented as a = g(u) for
some (known) real-valued function g: R - R. An example of this occurs in
the ratio estimation setting, in which d = 2 and g(x,y) = x/y. Because the
steady state of a regenerative stochastic process can be expressed as a ratio of
two means, this estimation setting subsumes that of regenerative steady-state
simulation. Of course, this observation lies at the heart of the regenerative
- method of steady-state simulation; see, for example, Crane and Lemoine

(197 .

"In this nonlinear setting, we estimate a via Y(¢) = g(X ), where X; are
iid. random vectors as in Example 2. Suppose that E|X| < o and that g is
continuously differentiable in a neighborhood of x. In addition, we require
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that Vg(u) # 0 and that the covariance matrix C of X is positive definite.
Then Theorem 3 of Glynn and Whitt (1992) implies that (2.1) holds with
vy=1/2, 2(¢)=B@)/t and T =o as in Example 1, but with o=
(Vg(u)C Vg(u)'/2

Let C, be defined as in Example 2 and note that [Vg(Y(£))'C,,, Ve(Y(@)I'/?
— o w.p.1 as ¢t > «. Hence we have the strong consistency required for the
application of Theorems 1 and 3. As a consequence, we are assured that the
stopping rules T (e) and T,(e) are asymptotically valid in this estimation
setting. In particular, in the regenerative simulation setting, we recover the
asymptotic theory developed by Lavenberg and Sauer (1977).

ExaMPLE 4 (The jackknife). Consider the estimation problem of Example 3
in which our goal is to estimate a = g(u), where u can be expressed as
uw =EX and g is real-valued. One practical difficulty with the estimator
suggested in Example 3 is that it tends to be significantly affected by bias
problems induced by the presence of the nonlinearity in g. One way to address
the small-sample bias problem that this nonlinearity creates is to jackknife the
estimator. Specifically, let a(n) = g(X,) and, for 1 <i <n, let

Z ai(n) =g(}_{in)>
J#t
a;,(n) =na(n) — (n — 1)a;(n).

Then the estimator Y, = n~!'X?_,a,(n) is the jackknife estimator of a. Let
Y#) =Y, Itis shown in Glynn and Heidelberger (1989) that if EIX? <
and g is twice continuously differentiable in a neighborhood of u, then (2.1)
holds where o and Z(t) are as in Example 3. Since the form of the FCLT (2.1)
is the same as for Example 3, the jackknife has the same asymptotic efficiency
as the estimator of Example 3. However, as argued in Miller (1974), the
jackknife estimator typically possesses superior small-sample bias properties.

Two estimators for the scaling constant o = [Vg(u)'C Vg(u)I'/2 are possi-
ble. One approach is to use the estimator o(¢) = [Vg(Y(®))'C,,, Vg(Y(@)]'/?
suggested in Example 3. Theorem 4(i) of Glynn and He1delberger (1989) shows
that Y(¢) » @ w.p.1 as ¢ - «, under the conditions stated here. Since C,, - C
w.p.1, it follows that o(¢) - ¢ w.p.1 as ¢ > . Hence sequential stopping
procedures based on the jackknife point estimator and the ‘‘ variance’ estlma-
tor o2(¢) are asymptotically valid by Theorems 1 and 3, provided that o > 0.

An alternative estimator for the scaling constant o is given by the jackknife
variance estimator o;(¢):

X,
(3.1) n-1;

1 le] . 1/2
7(8) = | 7 £ (@dleh) - Y()°

4

Although it is known that o2(t) = 0% as ¢ -  under suitable regulanty
conditions [see, e.g., Miller (1964) (1974)], we need convergence w.p.1 in order
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to satisfy the hypothesis of Theorems 1 and 3. We therefore establish the
following result.

THEOREM 4. If g is continuously differentiable in a neighborhood of n and
E|X|? < «, then o2(t) > 0% = Vg(u)'C Vg(u) w.p.1ast — .

Thus the sequential stopping rules Ty(¢) and T,(¢) may be applied to
jackknife point estimators in conjunction with the jackknifed variance estima-
tor o 2(¢).

ExampLE 5 (A steady-state mean). Suppose that our goal is to estimate the
steady-state mean vector a of an R¢valued stochastic process X =
{X(®): t > 0}. We assume that X satisfies an FCLT, namely,

(3.2) e‘l/z(ft/eX(s) ds — ta) = TB(t) in D(0,%)as ¢ 0,
0 .

where B is a standard R%valued Brownian motion. It is easily shown that
(3.2) implies that

Y(t) =t [X(s)ds = a ast— o,
0

Hence (3.2) implies that the centering vector « appearing in (3.2) is indeed the
steady-state mean of X. Another easy consequence of (3.2) is that (2.1) holds
with y = 1/2 and 2(¢) = B(¢) /t.

It turns out that (3.2) is typically satisfied for most ‘‘real-world” steady-state
simulations. In particular, a great variety of different assumptions on the
structure of the process X give rise to FCLTs of the form (3.2). For example,
such FCLTs hold when X is regenerative and satisfies suitable moment
conditions [see Glynn and Whitt (1987)], or when X is a martingale process or
when X satisfies appropriate mixing conditions [see Chapter 7 of Ethier and
Kurtz (1986)], or when there is appropriate positive dependence in the X
process [specifically, when the X(¢)’s are associated; see Newman and Wright
(1981)].

The primary difficulty in applying Theorems 1-3 arises in the construction
of a process I'(¢) such that I'(¢) > T w.p.1 as ¢ =  or I'(¢/¢) —» T in D(0, )
as ¢ | 0. Since I'T? is the covariance matrix of the limiting Brownian motion,
this is equivalent to the construction of a strongly consistent estimator C(¢)
for the time-average covariance matrix C = I'T* of X. In general, this is
known to be a challenging problem.

Suppose that X is regenerative, with regeneration times 0 = 7y <7; <
75 < -+ . Suppose that E(J2X(s) — alds)? <= and that E(ry —7,) <.

Let N(t) = max{n > 0: 7, < t}. Then it is easily proved that
' 1 N@®
t

) ffi [X(s) - Y()][X(s) — Y(2)]'ds

i=1"Ti-1

C(t) =
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is strongly consistent for C, where C =IT? and I is the scaling matrix
appearing in (3.2). Thus when X is regenerative, the sequential stopping rules
T(e) and Ty(e) are asymptotically valid. Of course, when X is scalar, we
already established this result in Example 3.

For nonregenerative processes, less is known about the strong consistency
of estimators C(¢) for the steady-state covariance matrix. However, Glynn and
Iglehart (1988) and Damerdji (1989a, b) have recently used strong approxima-
tion techniques to establish strong consistency for a broad class of estimators
for C. Thus Theorems 1 and 3 prove that these estimators do indeed lead to
asymptotically valid sequential procedures.

Our theory for this example provides theoretical support complementing
previous work by Fishman (1977), Law and Carson (1979) and Law and Kelton
(1982) which develop specific empirically based sequential stopping rules for
steady-state simulations.

ExampLE 6 (Kiefer—-Wolfowitz stochastic approximation). This example is
interesting, in part, because it illustrates that the FCLT (2.1) can hold for the
estimator with a subcanonical convergence rate; in particular, here v = 1/3.
For other examples of noncanonical estimator convergence rates, see Fox and
Glynn (1989) and Sections 5 and 6 of Glynn and Whitt (1992). Suppose that we
are given a real-valued smooth function B(#), which can be represented as
B(8) = EZ(9). Assume that our goal is to compute the parameter a = 6*
minimizing B. If 6 is a scalar, we can apply the following Kiefer—Wolfowitz
stochastic approximation algorithm:

0ni1 =0, —c, X, 1,
where {c,: n > 0} is a sequence of (deterministic) nonnegative constants,
P(X,,, €Al6y, X,,...,0,,X,)
=P([Z(6p + hpi1) = Z(80 — hyi1)]/2h 0y € A),

Z6y+ h,,,) and Z(8, — h,,,) are generated independently of one another
and {h,: n > 1} is another sequence of deterministic constants. Suppose that
c,=cn"' and h, =hn"'3 ¢,h > 0. Let Y(¢) = 6,,,. Then Ruppert (1982)
shows that under suitable regularity conditions, (2.1) holds with y = 1/3,
I'=«k, 2(t)=t"°B(t?**'), B is a standard Brownian motion, b = c¢B"(6*),
n=>b-5/6,k2=—c%2%/(2n + 1X4h?) and o2 = 2var Z(6*).

The construction of a strongly consistent estimator for I' = « involves more
work. For some directions on how to obtain such an estimator, see page 189 of

Venter (1967).

ExampLE 7 (Robbins-Monro stochastic approximation). As in Example 6,
suppose that our goal is to estimate the minimizer 8* is a smooth function B:
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R — R. However, we assume here that we can represent the derivative g’ as an
expectation; that is, there exists a process Z(6) such that g'(8) = EZ(0). [In
Example 6 we assumed only that the function values B() could be represented
as expectations.] To calculate 6* in this setting, we can use the Robbins—Monro
stochastic approximation algorithm:

0n+1 = on - chn+1’
where {c,: n > 0} is a sequence of (deterministic) nonnegative constants and
P(X,,, €Alby, X,,...,0,,X,) =P(Z(6,) € A).

Suppose that our estimator is Y(¢) = 6, and ¢, = cn™! with ¢ > 0. Then
Ruppert (1982) has shown that under suitable regularity hypotheses, the
FCLT (2.1) holds with y =1/2, T =«, 2() =t P*+*bB@?P+Y), D =
cB(6*) — 1, k2 = c202(2D + 1), 02 = var Z(8*) and B is a standard Brown-
ian motion.

Construction of a strongly consistent estimator for I' = k follows from
results established by Venter (1967). When this estimator is used, the sequen-
tial stopping rule T',(¢) reduces to one studied by McLeish (1976). Our analysis
of the rule Ty(¢) seems to be new.

4. A Counterexample for weak consistency. We have developed a
framework to analyze the asymptotic behavior of sequential stopping rules.
Our analysis shows that a sequential stopping rule is asymptotically well
behaved if the estimation process satisfies an FCLT as in (2.1) and if there
exists a w.p.1 or FWLLN limit for the estimator for the scaling matrix T’
appearing in (2.1). The examples of Section 3 strongly suggest that (2.1) is
typically satisfied in applications, but strong consistency or FWLLN consis-
tency of the estimator of I' is often more difficult to verify. As a consequence,
it is natural to ask whether weak consistency [i.e., I'(¢) = T as ¢ — o] is
enough.

Unfortunately, weak consistency is not enough. The difficulty is in estab-
lishing the in-probability analog of Theorem 1(Gii). If £!/7T (¢) = m(TA)/ ¢,
then parts (iv) and (v) of Theorem 1 would hold by the argument of Theorem
17.1 of Billingsley (1968). In a proof of the in-probability analog of Theorem
1(ii), we cannot conclude that T'(e)*V(T(¢)) = m(TA)/¢ when T(¢) = « as
€10 and £"V(¢) = m(TA)/? as ¢t — «; see Richter (1965) and pages 10-15 of
Gut (1988) for counterexamples and discussion.

We now give a direct counterexample. Consider Example 1 and the process
I'(¢) defined there. Let N be a unit rate Poisson process independent of
{X;:i>1}andlet T, T,,... be the jump times of the process N. Suppose that

I'(t), te Y IT, T, +1/n),
= n=1

(4.1) F(t) = ©
W 0, te UI[T.,T, +1/n).

n=1
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Then
- 1
P(F(t) * I‘(t)) = P(t IS [TN(t),TN(t) + m])

1
<P(t—Tyy<e)+ P(N(t) < ;—)

for ¢ arbitrary. Letting ¢ — «, we find that limsup,_, P(['(¢) < T(#)) = 1 —
exp(—e¢) (recall that the equilibrium age distribution of N is exponential with
mean 1). Since ¢ was arbitrary, it follows that P(I'(¢) # I'(¢)) > 0 as ¢ - .
Then it is evident that I'(t) = o as t - =, since I['(¢) > o w.p.l as ¢t > o,
Hence I'(¢) is weakly consistent for .

Now, in the setting of Example 1 using I'(¢),

- . I'(?)
Ti(e) = 1nf{t > 0: z(S)(T + a(t)) < 5}.

Put a(t) =1/t. Then clearly z(‘o‘)gl"(s)/\/g +1/s) 2 2(8)/t and s <t, so
T(2(8)/t) > t. On the other hand, I'(Ty).,) = 0, so T(2(8)/t) < Tyyy+1- By
the SLLN, ¢™'Ty, ., = 1 w.p.l as ¢t > ». Hence T,(2(8)/t) ~t w.p.1 as
t » . Thus the stopping rule is asymptotically independent of the scaling
constant I'. As a consequence, formation of asymptotically valid confidence
intervals is impossible. In fact, even the asymptotic scaling of the rule is
incorrect. It is well known that for estimation problems of the type described
in Example 1, the amount of simulation time required to obtain an absolute
precision of order ¢ is of order &2, whereas the stopping rule T'(¢) based on
I'(#) in (4.1) yields a termination time of order £ 1.

5. Proofs.

Proor oF ProposITION 1. Since T is nonsingular,
P(a € C(t)) = P(T7"(Y(t) — a) € A),
but
T4 (Y(t) —a) =T712;,(1) = T7T2(1) = 2(1) ast - .
Since P(2/(1) € dA) = 0, it follows that
P(T™'%t"(Y(t) —a) €A) > P(Z(1) €A)=1-5ast > =

see Theorem 2.1 of Billingsley (1968). O ‘

 PROOF OF PROPOSITION 2. By (2.1) and Theorem 4.4 of Billingsley (1968),

[T(8),t"(Y(¢) —a)] = [T[,T2Z(1)] ast—> .

Then we can apply the continuous mapping theorem, Theorem 5.1 of Billings-
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ley (1968), to deduce that
T(8) 't (Y(t) —a) = T7IT2(1) = 2(1) ast— o.

To apply the continuous mapping theorem, note that matrix inversion is
continuous at all nonsingular limits. (To see this, note the determinant is a
continuous function of the matrix elements.) The rest of the proof is identical
to that of Proposition 1. O ‘

ProoF oF THEOREM 1. Let V(t) = m(C(¢))'/¢ + a(t). By the spatial invari-
ance and the scaling properties of Lebesgue measure m,

m(Y(t) -t 'T(¢) A)Y? = m(—t7"T(t) A)? = - 7m(T(t) A)"°.

Since A is a bounded set, I'(#)A is contained in a bounded set for all
sufficiently large ¢ w.p.1. It then follows from the bounded convergence
theorem that m(I'(¢)A)/¢ - m(TA)/¢ w.p.1 as t — ». Recalling that a(t) =
o(t~7), we conclude that

(5.1) t"V(t) » m(TA)/? >0 wp.last—

since m(A) > 0 and T is nonsingular. This establishes part (i). By definition of
T(e), V(T(e) — 1) > ¢ and there exists a random variable Z(¢) with 0 <
Z(g) < 1 such that V(Ty(e) + Z(¢)) < &. [Note that V(¢) is not necessarily
monotone.] By (5.1) and the fact that T,(¢) - ©» w.p.1 as ¢ |0,

limsupeTy(¢)” < limsupTy(e) " V(Ty(s) — 1) = m(TA)* w.p.1.
el0 el0

Similarly,
lim%nfeTl(e)y > lim%nfTI(e)yV(Tl(e) +Z(g)) = m(TA)? w.p.1.
el el
This proves part (ii).
For part (iii), note that m(C(T(e))'/¢ = T(e)""m(I'(T())A)'/¢ and re-

call that m(I'(¢)A) - m(TA) w.p.1 as ¢t > «, so that m(T'(T(¢))A) > m(TA)
w.p.1. as ¢ = 0. By part (i), 71T ()™ > m(TA)~/?. Hence

e7'm(C(Ty(¢)))" = e 'Ty(s) "m(T(Ty(e))A)"*
- m(TA)"V?m(TA)* = 1.

To obtain part (iv), let 8 = m(TA)'/¢ and set 7,(¢) = Ty(e)e/"B~1/7¢t, t > 0.
Since 7, = e as ¢ |0, where e(¢) = ¢, it follows from the FCLT (2.1) and a
standard random-time-change argument, page 144 of Billingsley (1968), that

(5.2) Y rgn(r(1)) = T2 (e(1)) = T2(1) ase L0,
where
(5.3) %1/73—1/7(78(1)) = BE_]‘(Y(Tl(E)) - a).
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To establish part (v), note that
P(a € C(Ty(¢)))
=P(Y(Ty(e)) —a € Ty(e) 'T(Ty(e))A)
(54) = P(ap™'eTy(e) T(Ty(s)) 'Be [ Y(Ty(e)) — a] € A;
det(T'(Ty(e)) + 0)
+P(Y(Ty(2)) — a € Ty(e) "T(Ty(¢))A; det(I'(Ty(¢))) = 0).

Since P(det(T'(T'(¢))) = 0) — 0 as ¢ — 0, the second term converges to 0. By a
convergence-together argument, Theorem 4.1 of Billingsley (1968), the first
term has the same limit as P(BT e~ {Y(T(¢)) — a] € A), which is P(2(1) €
A) =1 -6 by part (iv) because P(dA) = 0; see Theorem 2.1 of Billingsley
(1968) and (2.2). To establish the convergence together, note that
P(det(I'(T'(£))) # 0) » las e > 0and BT (e)’T(Ty(e) ™! —» B~ BT w.p.1
as e]0. O

Proor oF THEOREM 2. For part (i), modify the proof of part (i) of Theorem
1. First, apply the assumed convergence of I'(¢/¢) in D(0,x) as ¢ | 0 to obtain
m([(t/e)A)/% = m(TA)¢ in D(0, ) as ¢ | 0. For this purpose, use the w.p.1
convergence representation of convergence in probability; see, for example,
page 68 of Whitt (1980). (Consider a sequence {X,} of random elements of a
separable metric space. Then X, —, X if and only if every subsequence of
{X,} has a further subsequence converging w.p.1 to X.) Then, for any w.p.1
convergent subsequence of {I'(¢/¢): 0 < ¢ < 1} converging to I', note that the
intersection and union of I'(¢/¢)A over ¢ € [t,,t,] for 0 < ¢, < ¢, both ap-
proach I'A w.p.1 as ¢ — 0. [Since the limit is a continuous function, conver-
gence in D(0, «) is equivalent to uniform convergence on bounded intervals.]
Then apply the standard bounded convergence theorem with the w.p.1 conver-
gence to get m(I'(t/e)A)/? - m(T'A)Y/? for this subsequence, uniformly for
t € [t,,¢,]. This yields w.p.1 convergence in D(0, ). Finally, since the same
limit is obtained for every w.p.1 convergent subsequence, we have the desired
convergence in probability. Since £ ~”a(¢/¢) — 0 uniformly in ¢ for ¢ > ¢, > 0,
we obtain the following analog of (5.1):

(e/t) "V(t/e) = m(TA)? in D(0,) as e — 0,
which is equivalent to what is to be proved.

For part (ii) apply the continuous mapping theorem, Theorem 5.1 of
Billingsley (1968), with the inverse mapping; see Section 7 of Whitt (1980).
The inverse map there is x~X(¢) = inf{s > 0: x(s) > ¢}, ¢ > 0, but the results
also apply to first passage times of the form (2.3). Note that

eT(&7/t) = inf{s > 0:e7"V(s/e) < t™1}
= inf{s > 0: s™7m(TA)"? < t71} = t¥/7m(TA)V",

so that the same limit holds for £/7T(¢ /t).
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For part (iii), apply the continuous mapping theorem with the composition
map, using Theorem 3.1 of Whitt (1980), with parts (i) and (ii) above. In
particular, use

e~ 'm(C(t/e/7)) = tYm(TA)"? in D(0,x)

with part (i) to obtain part (iii). Similarly, use the continuous mapping
theorem with the composition map to obtain part (iv), now drawing on (2.1)
and part (ii). To obtain the equivalent forms of the limit, note that 2/, .(¢) =
c¢"%((ct), so that T21(¢) =; ¢’T%(ct) for any scalar c. Finally, to obtain part
(v), apply the continuous mapping theorem with the projection map at ¢ = 1 to
obtain the ordinary CLT in part (iv) of Theorem 1. Then apply the argument
for the proof of part (v) in Theorem 1. O

Proor oF THEOREM 4. It is shown in Glynn and Heidelberger (1989) that

max{|X;, - X,l: 1 <i <n} > 0 wp.l as n — . Hence, in expanding g(X;,)
in a Taylor series about X,, namely,

g(Xin) =g(Xn) + Vg(fin)t(zin _Xn)’

we may assert that max, _,_,l¢, — ul = 0 w.p.1 as n —» . Then

&(n) = ¥, = [na(n) = (n = Da(m)] =070 ¥ [na(n) = (= Day(n)]

=(n-1Dn?! Zn:laj(n) —(n—-1)a;(n)
j=

=(n-1)n! ﬁl [g(Xn) + Vg(fjn)t(xfn B X")]
iz
—(n - 1)[g(X,) + V&(&,)" (Xin - X,)]
=(n-1)n"! .f’lvg(fjn)t(xf" -X,)
iz

_(n - 1)Vg(§in)t(zin - )_(n)’

However,
n n
=2Xk_2Xk+Xn=Xn_ij
k=1 k=1
k#j
so that

(5'5) &i(n) - Yn = n_l Zn: Vg(fjn)t(}?n - Xj) - Vg(ftn)t(}?n —Xi)'
j=1

Jj=
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The first term on the right-hand side of (5.5) may be written as

n V(W)Y (X, - X,) + 0t Y (Ve() - Ve(w)')(X, - X))
j=1

j=1
- n-lél(Vg(fj,,) ~Ve(w) (X, - X;) = B,
Let M, = max, _;_,|Vg(¢;,) — Vg(w)l. Then
1B, <M,n"* Zn: (IX,,l + IXjI) >0 (lul +EIX]) =0 w.p.lasn — o

Jj=1

Thus

d(n) - Y, =Vg(n) (X, - X,) + [Va(&,) - Ve(w)]' (X, - X,) + B,.
Let B;, = Vg(fin) — Vg(u) and W,, = X; — X,,. Then

1
of(n) = Ve(n)'~ Z W, Wi Ve (n) + — Z B W WirBir

(5.6)
+ Brzz + 2Bn E an in T 2Vg(/"’) — E iizBin'

i=1

Also,

1. 1. _ o
LAY [IXiXi‘| + 1%, X{ + X, XY + 1%, X

(5.7)" i-1
> E[IXX! + lp X! + |Xp'l + |upfl]] wplasn— o

and
1

n
" Z [lX,-l + I)_(,,I] - EX| + |ul w.p.lasn — «.

1 r
(5.8) — ) IW,|
i

Since M, —» 0 w.p.1 as n — o, it follows that |B;,| = 0 uniformly in { w.p.1.
Hence it is evident from (5.7) and (5.8) that all the terms in (5.6) involving B;,
and B, converge to 0 w.p.1, but the first term on the right-hand side of (5.6)

clearly converges to o2 = Vg(u)'C Vg(u), completing the proof. O
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