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Abstract We establish a central-limit-theorem (CLT) version of the periodic Little’s law (PLL) in dis-

crete time, which complements the sample-path and stationary versions of the PLL we recently established,

motivated by data analysis of a hospital emergency department. Our new CLT version of the PLL extends

previous CLT versions of LL. As with the LL, the CLT version of the PLL is useful for statistical applications.

Keywords Little’s law · L = λW · periodic queues · central limit theorem · emergency departments · weak

convergence in (ℓ1)
d

1 Introduction

Little’s law (L = λW ) states that, under weak conditions, the long-run average number of customers in a

system (L) is equal to the long-run average arrival rate (λ) multiplied by the long-run customer-average

sojourn time in the system (W ). Little’s law (LL) provides an important consistency check, like double-entry

bookkeeping. Such consistency checks are often regarded as trivial, because they are quite intuitive, but it

has been suggested that the 1494 book by Luca Pacioli [24], which contains the first codified account of

double-entry bookkeeping, might be the most influential work in the history of capitalism; see [14] and [17].

It evidently took Philip M. Morse to realize that it would be good to have a proof of LL; see the endnote by

John Little in [21].
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After the seminal paper by Little in [19], LL has been further studied, notably by Stidham [25], and is

frequently used as a fundamental tool in queuing theory; see [7,20,26,27] for general review. In [9,10,29],

Glynn and Whitt established a functional central limit theorem (FCLT) version of LL by exploiting the

continuous mapping theorem, and as a corollary, a CLT version of LL, by applying a projection. In [11], they

derived a CLT version directly, without exploiting FCLT’s. The CLT version of LL provides the convergence

rate in the sample-path version of LL and has important statistical applications, as discussed in [12,16].

In [31], we established a sample-path periodic Little’s law (PLL) in discrete time, extending the sample-

path version of LL, and a stationary PLL, extending the time-varying Little’s law (TVLL) in [3,8], which

refines the LL in another direction. In doing so, we were motivated by our statistical analysis of patient

arrival and departure data from the emergency department (ED) of an Israeli hospital, using 25 weeks of

data from the data repository associated with the study by Armony et al. [2]. Based on our data analysis

in [30], we concluded that stochastic models of that ED should be periodic with the week serving as the

relevant period.

In the present paper we establish a CLT version of the PLL in discrete time. With the periodic structure,

it is natural to think about the relation between the direct estimator of the occupancy level, obtained by

directly averaging over periods, and the indirect estimator based on the arrival process and length of stay

(LoS) via the PLL. The main story of this paper is that, given a joint CLT for the CLT-scaled arrival

process and LoS, the CLT-scaled indirect estimator also converges, but we need more conditions to ensure

the CLT-scaled direct estimator having the same limit. We give both a simple practical version, assuming

bounded arrivals and LoS distributions, and a more general version without the boundedness restriction,

but involving more complex mathematics. We also provide reasonable sufficient conditions such that the two

estimators are asymptotically equivalent.

For the PLL in [31], just as for the TVLL in [3,8], the relation requires considering the entire LoS

distribution function instead of just the mean LoS. The proof of the main theorem here is still by the

continuous mapping theorem, but the analysis here for the general case with unbounded distributions is

nonstandard. In particular, in order to directly exploit the continuous mapping theorem, we use the Banach

space ℓ1, which includes all the absolutely summable sequences. While the Banach space ℓ1 is standard within

functional analysis, it is not standard within probability theory. Neverthelesss, there is substantial literature

for us to draw upon; e.g., [1,18,22]. We specialize the general weak convergence theory to this specific space

ℓ1 and give a sufficient condition for weak convergence in this space. We also specialize the CLT for i.i.d.

random elements in general Banach spaces to ℓ1, which may be useful to find new conditions for the CLT

version of PLL as well as in other contexts.
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This paper as organized as follows: In §2 we review the sample-path PLL from [31]. In §3 we state the

new CLT versions of the PLL and then we discuss the statistical applications. In §4 we establish sufficient

conditions for the general CLT version of the PLL. In §5, we discuss the weak convergence theory for random

elements of (ℓ1)
d. Finally, in §6 we provide the longer proofs.

2 Review of the Periodic Little’s Law

In this section we review the sample-path PLL from [31]. We use the notation introduced there. We consider

discrete time points indexed by the nonnegative integers k. Since multiple events can happen at each time,

we need to carefully specify the order of events. We assume that all arrivals at each time occur before any

departures. Moreover, we count the number of customers in the system (patients in the ED) at each time

after the arrivals but before the departures. Thus, each arrival can spend time j in the system for any j ≥ 0.

We discuss other orders of events in §2.7 of [31].

We start with a single sequence, X ≡ {Xi,j : i ≥ 0; j ≥ 0}, with Xi,j denoting the number of arrivals

at time i that leave the system at time i + j. We also could have customers at the beginning, but without

loss of generality, we can view them as a part of the arrivals at time 0. We derive all the other quantities in

terms of this sequence. In particular, with ≡ denoting equality by definition, let:

Yi,j ≡
∞∑
s=j

Xi,s, the number of arrivals at time i with LoS greater or equal to j, j ≥ 0,

Ai ≡ Yi,0 =

∞∑
s=0

Xi,s, the total number of arrivals at time i,

Qi ≡
i∑

j=0

Yi−j,j =
i∑

j=0

Ai−j
Yi−j,j

Ai−j
, j ≥ 0, the number in system at time i, and

Di ≡
i∑

j=0

Xi−j,j = Qi −Qi+1 +Ai+1, the number of departures at time i, i ≥ 0.

In the third line we understand 0/0 ≡ 0, so that we properly treat times with 0 arrivals.
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We do not directly make any periodic assumptions, but with the periodicity in mind, we consider the

following averages over n periods:

λ̄k(n) ≡
1

n

n∑
m=1

Ak+(m−1)d, δ̄k(n) ≡
1

n

n∑
m=1

Dk+(m−1)d,

Q̄k(n) ≡
1

n

n∑
m=1

Qk+(m−1)d =
1

n

n∑
m=1

k+(m−1)d∑
j=0

Yk+(m−1)d−j,j

 ,

Ȳk,j(n) ≡
1

n

n∑
m=1

Yk+(m−1)d,j , j ≥ 0,

F̄ c
k,j(n) ≡

Ȳk,j(n)

λ̄k(n)
=

∑n
m=1 Yk+(m−1)d,j∑n
m=1Ak+(m−1)d

, j ≥ 0, and

W̄k(n) ≡
∞∑
j=0

F̄ c
k,j(n), all for 0 ≤ k ≤ d− 1, (1)

where d is a positive integer. (Note that our conventions about the order of events implies that an arrival

can depart in the same period, in which case the time spent in the system is counted as 1. That explains

why the final sum above starts at 0 instead of at 1.)

Clearly, λ̄k(n) and δ̄k(n) are the average arrival and departure rates, respectively, at time k within a

period, averaged over n periods; we think of it applying to all the time periods (m−1)d+k for 0 ≤ k ≤ d−1

and m ≥ 1. Similarly, Q̄k(n) is the average number of customers in the system at time k, within a period,

averaged over n periods; while Ȳk,j(n) is the average number of customers that arrive at time k that have

a LoS greater or equal to j. Thus, F̄ c
k,j(n) is the empirical complementary cumulative distribution function

(ccdf), which is the natural estimator of the LoS ccdf of an arrival in time period k. Finally, W̄k(n) is the

sample mean LoS of customers that arrive at time k within a period, averaged over n periods. We write n

as a parameter to indicate that the estimator is computed by averaging over n periodic cycles. We will let

n→ ∞.

We make the following three assumptions, which parallel or extend the assumptions used in the ordinary

Little’s law. We assume that

(A1) λ̄k(n) → λk, w.p.1 as n→ ∞, 0 ≤ k ≤ d− 1,

(A2) F̄ c
k,j(n) → F c

k,j , w.p.1 as n→ ∞, 0 ≤ k ≤ d− 1, j ≥ 0, and

(A3) W̄k(n) →Wk ≡
∞∑
j=0

F c
k,j w.p.1 as n→ ∞, 0 ≤ k ≤ d− 1, (2)

where the limits are deterministic and finite.
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Paralleling the assumptions in the LL [25], assumptions (A1) and (A3) state that the average arrival

rates and LoS converge, but for each k because of the extension to the periodic case. Assumption (A2) has

no counterpart in the LL; it requires that the empirical ccdfs converge. Lemma 1 in [31] shows that if the

three assumptions in (2) hold, then the limits hold for all k ≥ 0, with the limit functions being periodic with

period d. We extend these periodic functions to the entire real line, including the negative time indices.

To focus on the indirect estimator, we also add another estimator. It has a more complex form to account

for the fact that in practice we only have data going forward in time. In particular, let

L̄k(n) ≡
k∑

i=0

λ̄i(n)

∞∑
l=0

F̄ c
i,k−i+ld(n) +

d−1∑
i=k+1

λ̄i(n)

∞∑
l=1

F̄ c
i,k−i+ld(n), 0 ≤ k ≤ d− 1, (3)

where λ̄i(n) and F̄
c
i,j(n) are defined in (1).

The following combines Theorems 1 and 2 and Corollary 2 of [31].

Theorem 2.1 (sample-path PLL from [31]) If the three assumptions (A1), (A2) and (A3) in (2) hold, then

(Q̄k(n), δ̄k(n), L̄k(n)) defined in (1) and (3) converges w.p.1 in R3 as n → ∞ to a limit that we denote by

(Lk, δk, Lk). Moreover,

Lk =
∞∑
j=0

λk−jF
c
k−j,j <∞ and

δk =

∞∑
j=0

λk−jfk−j,j ≡
∞∑
j=0

λk−j(F
c
k−j,j − F c

k−j,j+1) (4)

for 0 ≤ k ≤ d − 1, where λk and F c
k,j are the periodic limits in (A1) and (A2) extended to all integers,

negative as well as positive, while fk,j ≡ F c
k,j − F c

k,j+1 is the LoS probability mass function.

The fact that the first and third terms of the limit (Lk, δk, Lk) coincide in Theorem 2.1 implies that,

without extra conditions, the direct and indirect estimators are consistent. In this paper, we develop the

CLT version, showing that the stochastic limit of the CLT-scaled versions are the same random variable

under stronger conditions. As in [9], this can be understood by recognizing that there is an important link

between associated cumulative processes, which lies behind the relation between the averages in LL; see §2.6

of [31].

3 Central-Limit-Theorem Version of the PLL

We now establish the CLT versions of the PLL, paralleling the CLT versions in [9,10,11,29]. We look for

the relationship between the CLT-scaled arrival rates, LoS distributions and occupancy level in the periodic
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setting, so we now require stronger assumptions than for the sample-path PLL in Theorem 2.1, but we

obtain a rate of convergence for the sample-path PLL. We will show that linking the indirect estimator of

occupancy level with the arrival rates and LoS distributions is straightforward by the continuous mapping

theorem, however, stronger conditions are needed such that the CLT-scaled direct estimator converges to

the same limit.

One simple and practical case, where we assume that both the number of arrivals at each time and the

LoS of each arrival are bounded and the limits are Gaussian, is provided first in §3.2. It applies to the ED

in [30] and evidently to most practical cases. Then two more complicated sufficient conditions are stated in

§4. The CLT versions of PLL also have statistical applications, as in [12,16], which we discuss in §3.4.

3.1 More Notation and Definitions

In this section we assume the LoSs are bounded by J , i.e. Xi,j = 0 for j ≥ J and all i. All the vectors are

understood to be column vectors.

For 0 ≤ k ≤ d− 1, let

F̄ c
k (n) ≡ (F̄ c

k,0(n), F̄
c
k,1(n), · · · , F̄ c

k,J−1(n)) ∈ RJ ,

F c
k ≡ (F c

k,0, F
c
k,1, · · · , F c

k,J−1) ∈ RJ . (5)

Let the law-of-large-numbers-scaled (LLN-scaled) averages be

λ̄̄λ̄λ(n) ≡ (λ̄0(n), λ̄1(n), · · · , λ̄d−1(n)) ∈ Rd,

δ̄̄δ̄δ(n) ≡ (δ̄0(n), δ̄1(n), · · · , δ̄d−1(n)) ∈ Rd,

F̄ cF̄ cF̄ c(n) ≡ (F̄ c
0 (n)

T , F̄ c
1 (n)

T , · · · , F̄ c
d−1(n)

T ) ∈ Rd×J ,

W̄̄W̄W (n) ≡ (W̄0(n), W̄1(n), · · · , W̄d−1(n)) ∈ Rd,

Q̄̄Q̄Q(n) ≡ (Q̄0(n), Q̄1(n), · · · , Q̄d−1(n)) ∈ Rd,

L̄̄L̄L(n) ≡ (L̄0(n), L̄1(n), · · · , L̄d−1(n)) ∈ Rd, (6)
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and the CLT-scaled averages be

λ̂̂λ̂λ(n) ≡
√
n(λ̄̄λ̄λ(n)− λλλ) ∈ Rd,

δ̂̂δ̂δ(n) ≡
√
n(δ̄̄δ̄δ(n)− δδδ) ∈ Rd,

F̂ cF̂ cF̂ c(n) ≡
√
n(F̄ cF̄ cF̄ c(n)−F cF cF c) ∈ Rd×J ,

Ŵ̂ŴW (n) ≡
√
n(W̄̄W̄W (n)−WWW ) ∈ Rd,

Q̂̂Q̂Q(n) ≡
√
n(Q̄̄Q̄Q(n)−LLL) ∈ Rd,

L̂̂L̂L(n) ≡
√
n(L̄̄L̄L(n)−LLL) ∈ Rd, (7)

where the deterministic centering constants are

λλλ ≡ (λ0, λ1, · · · , λd−1) ∈ Rd,

δδδ ≡ (δ0, δ1, · · · , δd−1) ∈ Rd,

F cF cF c ≡ ((F c
0 )

T , (F c
1 )

T , · · · , (F c
d−1)

T ) ∈ Rd×J ,

WWW ≡ (W0,W1, · · · ,Wd−1) ∈ Rd,

LLL ≡ (L0, L1, · · · , Ld−1) ∈ Rd. (8)

Again, all the above constant vectors and matrices in (8) can be extended as periodic functions with period

d, but for convenience, throughout this paper, we use the modulo function, [x] = x mod d, to treat k beyond

0 ≤ k ≤ d− 1.

3.2 A Practical Version for Applications

We now state our first CLT version of the PLL. Because it is a special case of the more general one later,

the proof is not given separately. The statement is proved after we introduce Theorem 3.2, Proposition 3.1

and the two corollaries right after them. Let ⇒ denote convergence in distribution.

Theorem 3.1 (practical CLT version of the PLL) If the following conditions hold:

(E1) (λ̂̂λ̂λ(n), F̂ cF̂ cF̂ c(n)) ⇒ (ΛΛΛ,ΓΓΓ ) in Rd × Rd×J as n→ ∞,

(E2) the number of arrivals in a single discrete time period is bounded, and

(E3) Wk =
J−1∑
j=0

F c
k,j and Lk =

J−1∑
j=0

λ[k−j]F
c
[k−j],j for 0 ≤ k ≤ d− 1, (9)
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for (λ̂̂λ̂λ(n), F̂ cF̂ cF̂ c(n)) in (7) and (Wk, Lk) in (8), where the limit (ΛΛΛ,ΓΓΓ ) in (E1) is a zero-mean Gaussian random

vector, then

(
λ̂̂λ̂λ(n), δ̂̂δ̂δ(n), F̂ cF̂ cF̂ c(n), Q̂̂Q̂Q(n), L̂̂L̂L(n), Ŵ̂ŴW (n)

)
⇒ (ΛΛΛ,∆∆∆,ΓΓΓ ,ΥΥΥ ,ΥΥΥ ,ΩΩΩ) in R2d × Rd×J × R3d, (10)

where ΩΩΩ = (Ω0, Ω1, · · · , Ωd−1), ΥΥΥ = (Υ0, Υ1, · · · , Υd−1) and ∆∆∆ = (∆0,∆1, · · · ,∆d−1) are given by

Ωk =

J−1∑
j=0

Γk,j , Υk =

J−1∑
j=0

λ[k−j]Γ[k−j],j +

J−1∑
j=0

Λ[k−j]F
c
[k−j],j and

∆k = Υ[k] − Υ[k+1] + Λ[k+1] for 0 ≤ k ≤ d− 1, (11)

and (ΛΛΛ,∆∆∆,ΓΓΓ ,ΥΥΥ ,ΥΥΥ ,ΩΩΩ) is also jointly zero-mean Gaussian distributed.

Theorem 3.1 implies that, given the joint convergence of the CLT-scaled arrival and LoS processes

(λ̂̂λ̂λ(n), F̂ cF̂ cF̂ c(n)) in (E1), with the associated regularity conditions, we get the associated convergence for the

CLT-scaled direct estimate of occupancy Q̂̂Q̂Q(n) as well as the indirect estimate L̂̂L̂L(n), jointly with the other

processes. We get the consistency requirement in (E3) from the PLL in Theorem 2.1.

3.3 The General Version

In this section we introduce the more general CLT version of the PLL, where we allow both the number of

arrivals and the LoS distributions to be unbounded. Thus it involves countably-infinite-dimensional spaces.

We show that the connection among the CLT-scaled indirect estimator of occupancy level L̂̂L̂L(n), the arrival

rates λ̂̂λ̂λ(n) and the LoS distributions F̂ cF̂ cF̂ c(n) can be established using the continuous mapping theorem. More

conditions are needed to ensure that the CLT-scaled direct estimator Q̂̂Q̂Q(n) has the same limit as L̂̂L̂L(n).

Let Rd be the d-dimensional real space with usual topology; let R∞ be the space of sequences x =

(x0, x1, · · · ) of real numbers with the topology determined by the convergence of all finite-dimensional pro-

jections (which is induced by the metric in Example 1.2 of [5]); let ℓ1 ⊆ R∞ be the subspace of R∞ which

contains sequences with finite absolute sums; and let ℓ∞ ⊆ R∞ be the subspace of R∞ which contains

sequences with bounded values, i.e.

ℓ1 ≡ {xxx = (x0, x1, · · · ) ∈ R∞ : ||xxx||1 ≡
∞∑
i=0

|xi| <∞},

ℓ∞ ≡ {xxx = (x0, x1, · · · ) ∈ R∞ : ||xxx||∞ ≡ sup
i

|xi| <∞} (12)
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We equip ℓ1 and ℓ∞ with the norms || · ||1 and || · ||∞ as above, under which both are Banach spaces. (We

remark that ℓ1 ⊆ ℓ∞ and the dual space of ℓ1 is ℓ∞.) Then we can define (ℓ1)
d as the d-fold product space of ℓ1

with the norm equal to the maximum of the ℓ1-norms of each component, i.e. if yyy ≡ (yyy0, yyy1, · · · , yyyd−1) ∈ (ℓ1)
d,

where yyyi ≡ (yi,0, yi,1, · · · ) ∈ ℓ1, then ||yyy||1,d = maxi=0,··· ,d−1{||yyyi||1}, and we use the topology induced by

this norm; see §5 for more discussion of this space.

All the quantities related to LoS distributions are now in those infinite dimensional spaces. To be specific,

F̄ c
k (n) ≡ (F̄ c

k,0(n), F̄
c
k,1(n), F̄

c
k,2(n), · · · ) ∈ ℓ1, 0 ≤ k ≤ d− 1,

F c
k ≡ (F c

k,0, F
c
k,1, F

c
k,2, · · · ) ∈ R∞, 0 ≤ k ≤ d− 1,

F̄ cF̄ cF̄ c(n) ≡ (F̄ c
0 (n), F̄

c
1 (n), · · · , F̄ c

d−1(n)) ∈ (ℓ1)
d,

F̂ cF̂ cF̂ c(n) ≡
√
n(F̄ cF̄ cF̄ c(n)−F cF cF c) ∈ (R∞)d. (13)

Other quantities are still the same as we defined in (7) and (8).

We also define the LLN-scaled and CLT-scaled difference between the direct and indirect occupancy

estimators as

R̄̄R̄R(n) ≡ L̄̄L̄L(n)− Q̄̄Q̄Q(n) ∈ Rd,

R̂̂R̂R(n) ≡ L̂̂L̂L(n)− Q̂̂Q̂Q(n) ∈ Rd. (14)

Just as in [9], the continuous mapping theorem plays a key role in the proof of the theorem. Hence, we

start by introducing the key mappings and show that they are continuous.

For 0 ≤ k ≤ d− 1, let xxx ∈ Rd and yyy ∈ (ℓ1)
d and define hk : Rd × (ℓ1)

d → R as

hk(xxx,yyy) =
∞∑
j=0

x[k−j]y[k−j],j , (15)

where, again, [k] = k mod d is the modulo function. As a critical condition, in the following lemma we show

two functions that will be used as mapping functions are continuous. The proof can be found in §6.1.

Lemma 3.1 For a given constant zzz ∈ (ℓ1)
d, let fzzz : Rd ×Rd × (ℓ1)

d → Rd and g : (ℓ1)
d → Rd be defined by

fzzz(xxx
(1),xxx(2), yyy) ≡ (fzzz,0(xxx

(1),xxx(2), yyy), fzzz,1(xxx
(1),xxx(2), yyy), · · · , fzzz,d−1(xxx

(1),xxx(2), yyy)),

g(yyy) ≡ (

∞∑
j=0

y0,j ,

∞∑
j=0

y1,j , · · · ,
∞∑
j=0

yd−1,j), (16)
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where fzzz,k : Rd × Rd × (ℓ1)
d → R is defined as

fzzz,k(xxx
(1),xxx(2), yyy) ≡ hk(xxx

(1), yyy) + hk(xxx
(2), zzz), 0 ≤ k ≤ d− 1,

with hk defined in (15). The functions fzzz(xxx
(1),xxx(2), yyy) and g(yyy) in (16) are continuous.

The following is a counterexample to show the two functions above are not continuous if we replace ℓ1

by R∞. Let 000 = (0, 0, · · · , 0) be the zero vector in proper spaces depending on the context.

Example 3.1 (discontinuity of f and g when yyy ∈ (R∞)d) It suffices to see that g0(yyy0) ≡
∑∞

j=0 y0,j from

R∞ → R is not continuous in general. Let y
(i)
0,j ≡ I{i=j} for all i, j ≥ 0, so that yyy

(i)
0 ≡ (y

(i)
0,0, y

(i)
0,1, · · · )

are all 0 except the ith component. Under the metric of R∞ as in Example 1.2 of [5], i.e. ρ(xxx(1),xxx(2)) =∑∞
i=1 min(1, |x(1)i − x

(2)
i |)/2i, where xxx(j) = (x1, x2, · · · ), j = 1, 2, yyy

(i)
0 → 000 as i→ ∞, however lim

i→∞
g0(yyy

(i)
0 ) =

1 ̸= 0 = g0(000).

We now state our general CLT version of the PLL with indirect estimator of the occupancy level. The

proof appears in §6.1.

Theorem 3.2 (CLT version of the PLL with indirect estimator) If the following conditions hold:

(C1) (λ̂̂λ̂λ(n), F̂ cF̂ cF̂ c(n)) ⇒ (ΛΛΛ,ΓΓΓ ) in Rd × (ℓ1)
d as n→ ∞,

(C2) WWW = g(F cF cF c) and LLL = fF cF cF c(000,λλλ,000), (17)

for (λ̂̂λ̂λ(n), F̂ cF̂ cF̂ c(n)) in (7) and (λλλ,F cF cF c,WWW,LLL) in (8), using Lemma 3.1, then

((
λ̄̄λ̄λ(n), F̄ cF̄ cF̄ c(n), L̄̄L̄L(n), W̄̄W̄W (n)

)
,
(
λ̂̂λ̂λ(n), F̂ cF̂ cF̂ c(n), L̂̂L̂L(n), Ŵ̂ŴW (n)

))
⇒

((
λλλ,F cF cF c,LLL,WWW

)
,
(
ΛΛΛ,ΓΓΓ ,ΥΥΥ ,ΩΩΩ

))
in (Rd × (ℓ1)

d × R2d)× (Rd × (ℓ1)
d × R2d), (18)

where ΩΩΩ = g(ΓΓΓ ) and ΥΥΥ = fF cF cF c(λλλ,ΛΛΛ,ΓΓΓ ); in particular,

Ωk =

∞∑
j=0

Γk,j , Υk =

∞∑
j=0

λ[k−j]Γ[k−j],j +

∞∑
j=0

Λ[k−j]F
c
[k−j],j . (19)

Note that condition (C1) requires that the random elements actually belong to the specified space. Also

the limit for the first five elements in (18) yield a weak LLN, consistent with the PLL.

Just as in the ordinary Little’s law and the PLL, it is interesting to consider when can we add the direct

estimator of occupancy level Q̂̂Q̂Q(n) into the the joint convergence. Clearly, if we can show that R̂̂R̂R(n) defined

in (14) goes to 000 in distribution, then Q̂̂Q̂Q(n) converges to the same limit as L̂̂L̂L(n) in distribution as n→ ∞ and
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can be added into the joint convergence in (18) by applying Theorem 3.1 of [5]. For clarity, we summarize

that observation in the following proposition.

Proposition 3.1 If, in addition to condition (C1) and (C2), we have R̂̂R̂R(n) ⇒ 000, then

((
λ̄̄λ̄λ(n), δ̄̄δ̄δ(n), F̄ cF̄ cF̄ c(n), Q̄̄Q̄Q(n), L̄̄L̄L(n), W̄̄W̄W (n)

)
,
(
λ̂̂λ̂λ(n), δ̂̂δ̂δ(n), F̂ cF̂ cF̂ c(n), Q̂̂Q̂Q(n), L̂̂L̂L(n), Ŵ̂ŴW (n), R̂̂R̂R(n)

))
⇒

((
λλλ,δδδ,F cF cF c,LLL,LLL,WWW

)
,
(
ΛΛΛ,∆∆∆,ΓΓΓ ,ΥΥΥ ,ΥΥΥ ,ΩΩΩ,000

))
in (R2d × (ℓ1)

d × R3d)× (R2d × (ℓ1)
d × R4d), (20)

where δδδ is in (8), ∆∆∆ = (∆0,∆1, · · · ,∆d−1) is given by

∆k = Υ[k] − Υ[k+1] + Λ[k+1] for 0 ≤ k ≤ d− 1, (21)

and all the other variables have the same meaning as in Theorem 3.2.

The proof is given together with Lemma 3.1 and Theorem 3.2 in §6.1.

The following two corollaries show that boundedness is a simple yet practical condition such that R̂̂R̂R(n) ⇒

000, so that Theorem 3.1 is covered by Theorem 3.2 and Proposition 3.1 as a special case. The proofs are in

§6.2 and §6.3 respectively.

Corollary 3.1 (Gaussian limits) If, in addition to the conditions of Theorem 3.2, (ΛΛΛ,ΓΓΓ ) has a zero-mean

Gaussian distribution with covariance and cross-covariance Cov(ΛΛΛ,ΛΛΛ) = ΣΛ, Cov(Γk, Γl) = ΣΓ :k,l and

Cov(ΛΛΛ, Γk) = ΣΛ,Γ :k, 0 ≤ k, l ≤ d− 1, then, (ΩΩΩ,ΥΥΥ ) also has a zero-mean Gaussian distribution with

Cov(ΩΩΩ,ΩΩΩ)k,l =
∞∑
i=1

∞∑
j=1

ΣΓ :k,l
i,j ,

Cov(ΥΥΥ ,ΥΥΥ )k,l =

∞∑
i=0

∞∑
j=0

λ[k−i]λ[l−j]Σ
Γ :[k−i],[l−j]
i+1,j+1 +

∞∑
i=0

∞∑
j=0

λ[k−i]F
c
[l−j],jΣ

Λ,Γ :[k−j]
[l−j]+1,i+1

+
∞∑
i=0

∞∑
j=0

F c
[k−i],iλ[l−j]Σ

Λ,Γ :[l−j]
[k−i]+1,j+1 +

∞∑
i=0

∞∑
j=0

F c
[k−i],iF

c
[l−j],jΣ

Λ
[k−i]+1,[l−j]+1,

Cov(ΩΩΩ,ΥΥΥ )k,l =
∞∑
i=1

∞∑
j=0

λ[l−j]Σ
Γ :k,[l−j]
i,j+1 +

∞∑
i=1

∞∑
j=0

F c
[l−j],jΣ

Λ,Γ :k
[l−j]+1,i. (22)

Corollary 3.2 (bounded LoS) Suppose that the number of arrivals in a discrete time period and the LoS are

bounded (by J). Then condition (C1) reduces to convergence in Rd× (RJ )d for some finite J . If, in addition,

conditions (C1) and (C2) hold, then R̂̂R̂R(n) ⇒ 000, so that the joint convergence (20) in Proposition 3.1 holds.

If we don’t want to strengthen the conditions with boundedness, two other reasonable sufficient conditions

are given in §4 such that R̂̂R̂R(n) ⇒ 000 and a full version of CLT-PLL can be achieved with both CLS-scaled
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direct and indirect estimator of occupancy level in the jointly convergence as in Proposition 3.1. But before

we go to that, we make a remark that connect the CLT-PLL to the ordinary CLT version of LL which is

studied in [11]. We also give potential statistical applications of our theorems.

Remark 3.1 (connection to the ordinary CLT version of LL in [11]) When d = 1, Theorem 3.2 reduces to an

ordinary CLT version of LL, which can be compared to the earlier one in [11]. Specifically, when d = 1, we

have ΥΥΥ = fF cF cF c(λλλ,ΛΛΛ,ΓΓΓ ) = λΩλΩλΩ +WΛWΛWΛ. All the discussion in [11] is in continuous time, but it is not difficult

to translate everything into discrete time. To avoid notation conflicts and make things clear, we add tildes

on all the variables in [11]. Λ is the limit of the time-averaged arrival rate, so it corresponds to the second

term of (1.2) in [11], i.e. ΛΛΛ = −λ̃3/2Ũ . ΩΩΩ is the limit of customer-averaged LoS, so in the notation of [11],

assuming Theorem 1 of [11] holds, we should write

t̃1/2(

∑Ñ(t̃)
k=1 W̃k

Ñ(t̃)
− w̃) =

t̃

Ñ(t̃)
t̃−1/2(

Ñ(t̃)∑
k=1

W̃k − Ñ(t̃)w̃)

=
t̃

Ñ(t̃)
t̃−1/2(

Ñ(t̃)∑
k=1

W̃k − λ̃t̃w̃ + λ̃t̃w̃ − Ñ(t̃)w̃)

=
t̃

Ñ(t̃)

(
t̃−1/2(

Ñ(t̃)∑
k=1

W̃k − λ̃t̃w̃)− t̃−1/2w̃(Ñ(t̃)− λ̃t̃)
)

⇒ λ̃−1(λ̃1/2(W̃ − w̃Ũ) + w̃λ̃3/2Ũ) = ΩΩΩ,

so that λ̃1/2W̃ = λ̃ΩΩΩ + λ̃1/2w̃Ũ − w̃λ̃3/2Ũ . Finally, ΥΥΥ as the limit of L̂̂L̂L(n) corresponds to the sixth term in

(1.2) of [11], and if we further have R̂̂R̂R(n) ⇒ 000, then ΥΥΥ as the limit of Q̂̂Q̂Q(n) is the time-averaged occupancy

level of the system which corresponds to the eighth term in (1.2) of [11]. Both the sixth and the eighth term

have the common limit

λ̃1/2(W̃ − w̃Ũ) = λ̃ΩΩΩ + λ̃1/2w̃Ũ − w̃λ̃3/2Ũ − λ̃1/2w̃Ũ

= λ̃ΩΩΩ − w̃λ̃3/2Ũ = λ̃ΩΩΩ + w̃ΛΛΛ.

Note that λ̃ and w̃ being the arrival rate and mean LoS correspond to λλλ andWWW , respectively, in our notation,

so the terms in the two theorems match perfectly.

In the notation of [11], our Theorem 3.2 in the case d = 1 actually states that if

t̃−1/2
(
Ñ(t̃)− λ̃t̃,

Ñ(t̃)∑
k=1

W̃k − Ñ(t̃)w̃
)
⇒ (ΛΛΛ,ΩΩΩ),
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and Theorem 2(f) of [11] (which is exactly (C1)) holds, then we have the joint convergence of the second,

sixth and eighth terms in (1.2) of [11].

Unlike Theorem 1 of [11], Theorem 3.2 and Proposition 3.1 do not require stationarity. That is explained

by the extra convergence R̂̂R̂R(n) ⇒ 000, which corresponds to Theorem 2(f) of [11]. That extra convergence in

[11] is implied by the stationarity. Inspired by that observation, we will obtain a similar (stronger) sufficient

condition for R̂̂R̂R(n) ⇒ 000 involving stationarity in Theorem 4.2.

3.4 Statistical Applications

The CLT versions of the PLL have statistical applications. First, Theorem 3.2 supports using the indirect

estimator of the occupancy level via the PLL. Moreover, confidence areas for the occupancy-level estimators

can be constructed. In particular, if Theorem 3.1 or Corollary 3.1 holds, then we know that we can have

confidence ellipsoids for LLL. To be specific, L̂LL(n) ⇒ ΥΥΥ ∼ N(000, ΣΥ ) in Rd where ΣΥ , the covariance matrix of

ΥΥΥ , is determined by (22). Then when n is large n(LLL−L̄̄L̄L(n))T (ΣΥ )−1(LLL−L̄̄L̄L(n)) has approximately a standard

normal distribution. Let qα be such that P (|N(0, 1)| ≤ qα) = 1− α, where 0 ≤ α < 1, then

{xxx ∈ Rd : n(xxx− L̄̄L̄L(n))T (ΣΥ )−1(xxx− L̄̄L̄L(n)) ≤ qα}, (23)

which is an ellipsoid centered at L̄̄L̄L(n), is a confidence ellipsoid for LLL with approximate confidence level 1−α.

By (19) and (22), the more negatively related ΛΛΛ and ΓΓΓ are, the more asymptotically efficient the indirect

estimator of the number of customer in the system becomes. However, unlike the case for the ordinary LL

discussed in [12], there are many covariance terms in (22) even if we only consider the variance of ΥΥΥ k for a

given k, so it is not straightforward to compare the asymptotic efficiency of the estimator when we change

the other two elements in the PLL.

Socondly, Theorem 3.1 as well as the two more sufficient conditions we will introduce soon in §4 tell us

when will the indirect estimator L̄̄L̄L(n) and the natural direct estimator Q̄̄Q̄Q(n) for the number of customers in

the system have the same asymptotic efficiency, i.e. L̂̂L̂L(n) and Q̂̂Q̂Q(n) converge to the same random variable.

Then the confidence area analysis above in (23) also holds for Q̄̄Q̄Q(n).

To apply (23), we need to estimate ΣΥ . The expression is complicated, but we will soon establish a

useful sufficient condition. In particular, under the conditions of Theorem 4.1, we can estimate ΣΥ by (25)

using λ̄k(n) to estimate λk, (n − 1)−1
∑n

m=1(AAAm − λ̄̄λ̄λ(n))(AAAm − λ̄̄λ̄λ(n))T to estimate ΣΛ and the empirical

distributions to estimate Fk,j and F c
k,j .
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4 Sufficient Conditions for the CLT Version of the PLL

In this section we provide convenient sufficient conditions for the two conditions in 3.2 and R̂̂R̂R(n) ⇒ 000 to be

satisfied, so that we have Proposition 3.1 and the joint convergence in (20).

The first sufficient condition is independence. To state it, for n = 0, 1, 2, · · · , let AAAn be the vector of

arrivals at the d times within period n, i.e.,

AAAn = (A0+nd, A1+nd, · · · , Ad−1+nd) ∈ Rd. (24)

For vectors, let > mean strict order for all components.

Theorem 4.1 (independent case) If the following conditions hold:

(I1) {AAAn}, n = 0, 1, 2, · · · , are i.i.d. with EAAA0 = λλλ > 0 and Var(AAA0) = ΣΛ,

(I2) the LoS are mutually independent and independent of the arrival process, having a cdf that depends only

on the discrete time period k, and

(I3) the LoS distribution satisfies F c
k,j ∼ O(j−(3+δ)) for all k and some δ > 0,

then conditions (C1), (C2) and R̂̂R̂R(n) ⇒ 000 are satisfied, so that the joint convergence in (20) holds. Further,

(ΛΛΛ,ΓΓΓ ) has a zero-mean Gaussian distribution in Rd× (ℓ1)
d with ΛΛΛ ∼ N(000, ΣΛ), Cov(Γk,j , Γk,s) = λkFk,jF

c
k,s

for 0 ≤ k ≤ d − 1 and 0 ≤ j ≤ s, and ΛΛΛ,ΓΓΓ 0,ΓΓΓ 1, · · · ,ΓΓΓ d−1 are independent. As a special case of Corollary

3.1, (ΩΩΩ,ΥΥΥ ) also has a zero-mean Gaussian distribution with, for 1 ≤ k ≤ l ≤ d− 1,

Cov(ΩΩΩ,ΩΩΩ)k,l =


λk

∑∞
i=0

∑∞
j=0 Fk,min{i,j}F

c
k,max{i,j}, for k = l,

0, for k ̸= l,

Cov(ΥΥΥ ,ΥΥΥ )k,l =

k∑
s=0

λ3s(

∞∑
m=0

∞∑
n=0

Fs,min{k−s+md,l−s+nd}F
c
s,max{k−s+md,l−s+nd})

+

l∑
s=k+1

λ3s(

∞∑
m=1

∞∑
n=0

Fs,min{k−s+md,l−s+nd}F
c
s,max{k−s+md,l−s+nd})

+
d−1∑

s=l+1

λ3s(
∞∑

m=1

∞∑
n=1

Fs,min{k−s+md,l−s+nd}F
c
s,max{k−s+md,l−s+nd})

+
d−1∑
i=0

d−1∑
j=0

ck,ick,jΣ
Λ
i,j ,

Cov(ΩΩΩ,ΥΥΥ )k,l =
∞∑
i=1

∞∑
m=0

λ2kFk,min{i,l−k+md}F
c
k,max{i,l−k+md}. (25)
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where

ck,j =


∑∞

m=0 F
c
j,k−j+md for 0 ≤ j ≤ k,∑∞

m=1 F
c
j,k−j+md for k + 1 ≤ j ≤ d− 1.

The proofs can be found in §6.4.

Remark 4.1 (necessity of condition (I3)) In condition (I3) we assume a 3 + δ rate of decay of the tail

distribution of the LoS, which is stronger than an ordinary CLT requires. However, this is needed in the

proof as can be seen in (63). More generally, it remains to determine if condition (I3) is necessary, i.e., if it

can be replaced by a 2 + δ rate of decay.

It is significant that Theorem 4.1 can be applied to the MT /GIt/∞ queueing model we built for the

ED patient flow analysis in [30], which had mutually independent Gaussian daily totals for the arrivals,

but dependence among the hourly arrivals within each day. However, we conjecture that more data would

show dependence among the daily totals as well. Moreover, we want to treat queueing models that are not

infinite-server models. For infinite-server models, each LoS (sojourn time) coincides with the service time,

but that is not the case for other service systems. Hence, we next show that Theorem 3.2 and Proposition

3.1 can be applied to more general queueing models by replacing the iid conditions with stationarity plus

appropriate mixing, as in Chapter 4 of [5].

We start with the framework used in §3 of [31], where we consider the composite arrival+service input

process stochastic process YYY ≡ {YYY n : n ∈ N} with

YYY n ≡ {Ynd+k,j : 0 ≤ k ≤ d− 1; j ≥ 0}. (26)

For simplicity, we assume the LoS distributions are bounded, i.e. Yk,j = 0, j ≥ J , for some constant J > 0,

then each YYY n becomes a finite dimensional vector, and we can regard YYY n as a d× J random matrix

YnYnYn =



Ynd+0,0 Ynd+0,1 · · · Ynd+0,J−1

Ynd+1,0 Ynd+1,1 · · · Ynd+1,J−1

...
...

...
...

Ynd+d−1,0 Ynd+d−1,1 · · · Ynd+d−1,J−1


∈ Rd×J . (27)

We will start by assuming {YYY n : n ∈ N} is a stationary process. By adding a suitable mixing condition, we

can show that it satisfies a multivariate CLT, then we exploit the relationship between {YYY n : n ∈ N} and

(λ̂̂λ̂λ(n), F̂ cF̂ cF̂ c(n)) and show that (C1) and (C2) hold. Finally, we show that R̂̂R̂R(n) ⇒ 000 so that Theorem 3.2 and

Proposition 3.1 hold.
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Before we state the theorem, we make a few definitions. For convenience, we directly use {YYY n, n ∈ N} in

(26) as the example. We say the process {YYY n, n ∈ N} is strictly stationary if

(YYY 0,YYY 1, · · · ,YYY m)
d
= (YYY 0+n,YYY 1+n, · · · ,YYY m+n), for all m ≥ 0 and n ≥ 0, (28)

where
d
= means equal in distribution. For m ≤ n, let Fn

m ≡ σ(YYY m,YYY m+1, · · · ,YYY n) be the sigma-algebra

generated by the family of random variables, where we allow n = ∞. And we say {YYY n, n ∈ N} is strongly

mixing (or α-mixing) if α(n) → 0, where

α(n) ≡ sup
m∈N,A∈Fm

0 ,B∈F∞
m+n

|P (A ∩B)− P (A)P (B)|, (29)

is called the strong mixing coefficient, following Theorem 18.5.3 of [15] and Theorem 0 of [6].

Now we have the following theorem, whose proof is provided in §6.5.

Theorem 4.2 (stationary+bounded case) If the following conditions hold:

(S1) the composite process {YYY n, n ∈ N} in (26) is strictly stationary and strongly mixing,

(S2) EAAA0 = λλλ > 0 and there exists some δ > 0, such that E||AAA0||2+δ
∞ <∞ and

∑∞
n=1 α(n)

δ/(2+δ) <∞, and

(S3) The LoS distributions are bounded (by J),

for YYY n in (26) and AAA0 in (24), then condtions (C1), (C2) and R̂̂R̂R(n) ⇒ 000 are satisfied, so that we have the

joint convergence in (20). Furthermore, (ΛΛΛ,ΓΓΓ ) has a zero-mean Gaussian distribution in Rd× (RJ)d, so that

Corollary 3.1 is also satisfied.

We remark that there is a large literature on the CLT under weak dependence so that many generalizations

of Theorem 4.2 are possible. For example, in Chapter 4 of [5] CLTs under mixing conditions in §19 are reduced

to CLTs for martingale-difference sequences in §18.

Finally, other than the two conditions we discussed in this section, there could be many other sufficient

conditions such that Proposition 3.1 holds.

5 Weak Convergence of Random Elements of (ℓ1)
d(ℓ1)
d(ℓ1)
d

In this section we provide background on the weak convergence of random elements of (ℓ1)
d(ℓ1)
d(ℓ1)
d. We used this

space so that we could apply the continuous mapping theorem to prove Theorem 3.2. In particular, condition

(C1) in Theorem 3.2 requires the convergence F̂ cF̂ cF̂ c(n) ⇒ ΓΓΓ in the space (ℓ1)
d.

Within functional analysis, (ℓ1)
d is quite standard, as it is just a finite product space associated with

the well known Banach space ℓ1. However, neither ℓ1 nor (ℓ1)
d are standard in weak convergence theory,
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especially in applications on queueing systems. In fact, we know of no previous use in queueing theory. Of

course, we have the well-established general and powerful weak convergence theory in general metric spaces,

such as [5], but we would like to specialize the general theory to the space (ℓ1)
d. In addition, there is a

substantial literature on Banach spaces and weak convergence in Banach spaces, [1,18,22]. We will draw on

this developed theory.

We will give a practical criterion for checking weak convergence in the space (ℓ1)
d. The criterion is not

used directly in our main theorem, but we hope it helps readers better understand the meaning of weak

convergence in (ℓ1)
d and could be useful in future research. We will also discuss the established CLT for

Banach-space random variables and specialize it to the space ℓ1, which, by giving this special case, helps to

understand when we can have such convergence as in (C1) and Gaussian limits as in Corollary 3.1.

5.1 A Criterion for Weak Convergence in (ℓ1)
d(ℓ1)
d(ℓ1)
d

The ℓ1 space is a well-defined separable Banach space. Throughout this paper, we always use B∗ to represent

the dual space of the Banach space B. As a special case of a general metric space, the weak convergence of

probability distributions on it is well defined, just as in general metric spaces; see [5]. For more on random

variables in Banach spaces and convergence of those random variables, see [1] and [18]. Here we briefly state

some definitions and results about Banach spaces and probability measures defined on them, which can be

found in [22,18]. Then we exploit the general results in the special case of (ℓ1)
d space.

The (ℓ1)
d space is the product (or in some literature called direct sum and denoted as ℓ1 ⊕ ℓ1 ⊕ · · · ⊕ ℓ1)

of ℓ1 spaces. We refer to [22] for general Banach spaces. Since ℓ1 is a separable Banach space, (ℓ1)
d is also

a separable Banach space with the norm || · ||1,d we defined earlier in §3.1. The dual of a product of Banach

spaces is the product of the corresponding duals. Because (ℓ1)
∗ = ℓ∞, thus the dual of (ℓ1)

d is (ℓ∞)d.

We want to have a good sufficient condition for weak convergence in (ℓ1)
d. For that purpose, let UUU (n) ≡

(UUU
(n)
0 , . . . ,UUU

(n)
d−1) ∈ (ℓ1)

d, where UUU
(n)
k ≡ (UUU

(n)
k,j : j ≥ 0) ∈ ℓ1, and similarly for a prospective limit UUU . A result

from [18] states that {UUU (n)} converges weakly to UUU as soon as h(UUU (n)) converges weakly (as a sequence of

real valued random variables) to h(UUU) for every h in a weakly dense subset of ((ℓ1)
d)∗ = (ℓ∞)d, and {UUU (n)}

is tight, i.e. for each ϵ > 0, there exists a compact set K ⊆ (ℓ1)
d such that P (UUU (n) ∈ K) ≥ 1 − ϵ for all n.

Now we transform the above conditions to more explicit ones in the case of (ℓ1)
d space.

For n ≥ 1, denote

On ≡ {(yyy ∈ (R∞)d : yk,j = 0, 0 ≤ k ≤ d− 1, j ≥ n− 1},

then O = ∪∞
n=1On is the subset of (ℓ∞)d with only finite many non-zero components.
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Lemma 5.1 The subset O of (ℓ∞)d containing elements with only finitely many non-zero components is a

weakly dense subset of (ℓ∞)d.

Proof It suffices to show that for any yyy ∈ (ℓ∞)d, there exists a sequence {yyy(i)} ⊆ O which weakly converges

to yyy. Let

y
(i)
k,j =


yk,j , if j < i,

0, otherwise,

(30)

for all 0 ≤ k ≤ d− 1 and i ≥ 1. Then yyy(i) ∈ O. Now we show that it weakly converges to yyy.

Note that ((ℓ∞)d)∗ = (ℓ∞,s)
d, where ℓ∞,s ≡ {xxx = (x0, x1, · · · ) ∈ R∞ :

∑∞
i=0 xi < ∞} is the set of all

summable (but not necessarily absolutely summable) sequences. For any xxx ∈ ((ℓ∞)d)∗ = (ℓ∞,s)
d,

xxx(yyy(i)) =

d−1∑
k=0

∞∑
j=0

xk,jy
(i)
k,j =

d−1∑
k=0

i−1∑
j=0

xk,jyk,j →
d−1∑
k=0

∞∑
j=0

xk,jyk,j = xxx(yyy) as i→ ∞, (31)

which indicates yyy(i) weakly converges to yyy, hence O is weakly dense in (ℓ∞)d. ⊓⊔

Next, we describe the compact sets in (ℓ1)
d space.

Lemma 5.2 (compact sets in (ℓ1)
d space.) A set K ⊆ (ℓ1)

d is compact if and only if K is bounded and

closed and for each ϵ > 0, there exists Jϵ such that for all yyy ∈ K,
∑d−1

k=0

∑∞
j=Jϵ

|yk,j | < ϵ.

Proof If K ⊆ (ℓ1)
d is compact, then K must be closed and bounded. Further, it is well known that a subset

in metric space is compact if and only if it is complete and totally bounded (see for example Theorem 45.1

of [23]). Totally bounded means that, for any ϵ > 0 given, we can find a finite set of {yyy(i)}Ni=1 ⊆ K such

that K is covered by the N ϵ-balls centered at those points. Because the set is finite, we can find Jϵ large

enough such that
∑d−1

k=0

∑∞
j=Jϵ

|y(i)k,j | < ϵ for all yyy(i) ∈ K. Then for any yyy ∈ K, we can find yyy(i) such that

||yyy − yyy(i)||1,d < ϵ, so

d−1∑
k=0

∞∑
j=Jϵ

|yk,j | ≤
d−1∑
k=0

∞∑
j=Jϵ

|yk,j − y
(i)
k,j |+

d−1∑
k=0

∞∑
j=Jϵ

|y(i)k,j | ≤
d−1∑
k=0

∞∑
j=0

|yk,j − y
(i)
k,j |+

d−1∑
k=0

∞∑
j=Jϵ

|y(i)k,j |

≤ d||yyy − yyy(i)||1,d +
d−1∑
k=0

∞∑
j=Jϵ

|y(i)k,j | ≤ dϵ+ ϵ. (32)

Conversely, assume K ⊆ (ℓ1)
d is bounded and closed and for each ϵ > 0, there exists Jϵ such that for

all yyy ∈ K,
∑d−1

k=0

∑∞
j=Jϵ

|yk,j | < ϵ. Since (ℓ1)
d is a Banach space and K is closed, K is a complete subset.

Assume K is bounded by C/d, i.e. ||yyy||1,d ≤ C/d for all yyy ∈ K. For any ϵ > 0 fixed, let Jϵ be as above. Let

K0 ≡ {xxx ∈ (RJϵ)d : ||xxx||1 ≤ C}, which is bounded, thus totally bounded since it has finite dimension. So
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there exists a finite set {xxx(i)}Ni=1 ⊆ (RJϵ)d such that the ϵ-balls centered at those points cover K0. Assume

{yyy(i)}Ni=1 ⊆ (ℓ1)
d are the corresponding points of {xxx(i)}Ni=1 when we naturally embed (RJϵ)d to (ℓ1)

d, i.e.

y
(i)
k,j = x

(i)
k,j for j ≤ Jϵ and 0 otherwise. For any yyy ∈ K, let xxx be the natural projection of yyy on (RJϵ)d. Notice

that ||xxx||1 ≤ d||yyy||1,d ≤ C, which means xxx ∈ K0, so there is xxx(i) such that ||xxx− xxx(i)||1 ≤ ϵ. Then,

||yyy − yyy(i)||1,d ≤
d−1∑
k=0

Jϵ−1∑
j=0

|yk,j − y
(i)
k,j |+

d−1∑
k=0

∞∑
j=Jϵ

|yk,j − y
(i)
k,j | ≤ ||xxx− xxx(i)||1 +

d−1∑
k=0

∞∑
j=Jϵ

|yk,j |

≤ ϵ+ ϵ, (33)

which implies that K is covered by the finite number of ϵ-balls in (ℓ1)
d centered at {yyy(i)}Ni=1. So K is totally

bounded, thus compact. ⊓⊔

Now we can give an easy-to-check sufficient condition for weak convergence of random elements in (ℓ1)
d,

which can be used to establish (C1) when applying Theorem 3.2. For any m,C > 0, let

Km,C ≡ {xxx ∈ (ℓ1)
d : ||x||1,d ≤ C,

d−1∑
k=0

∞∑
j=mn

|xk,j | < n−1 for all n ≥ 1} (34)

which is obviously a compact set by Lemma 5.2.

Theorem 5.1 (criterion for convergence of random elements of (ℓ1)
d) Convergence in distribution UUU (n) ⇒

UUU in (ℓ1)
d as n→ ∞ holds if

(i) For all ϵ > 0, there exists m, C and corresponding Km,C , such that

P (UUU (n) ∈ Km,C) > 1− ϵ (35)

and

(ii) for all J , 0 ≤ J <∞,

(UUU
(n)
k,j : 0 ≤ k ≤ d− 1; 0 ≤ j ≤ J) ⇒ (UUUk,j : 0 ≤ k ≤ d− 1; 0 ≤ j ≤ J) in RdJ . (36)

Condition (ii) holds if and only if (iii) for all J , 0 ≤ J < ∞, and for all sets of real number {ak,j : 1 ≤

k ≤ d− 1, 0 ≤ j ≤ J}
d−1∑
k=0

J∑
J=0

ak,jUUU
(n)
k,j ⇒

d−1∑
k=0

J∑
j=0

ak,jUUUk,j . (37)

Proof Condition (i) ensures that {UUU (n)} is tight. Condition (ii) is equivalent to condition (iii) by the familiar

Cramer-Wold device; see p. 382 of [4]. And condition (iii) mean yyy(UUU (n)) → yyy(UUU) in distribution for all yyy ∈ O,
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which by Lemma 5.1 is a weakly dense set in ((ℓ1)
d)∗. So that condition (i) with condition (iii) ensures

UUU (n) ⇒ UUU in (ℓ1)
d. ⊓⊔

5.2 Central Limit Theorem for i.i.d. ℓ1ℓ1ℓ1-Valued Random Variables

In this section we specialize the CLT in general Banach spaces for i.i.d. random elements to ℓ1. First, we

emphasize that, even for i.i.d. random elements, the classical CLT does not hold in all Banach spaces, but

only for some “good” Banach spaces. Fortunately, ℓ1 is such a “good” Banach space. To make this clear, we

do a quick review; more related theory can be found in [1] and [18].

We first introduce two concepts: cotype of a Banach space and pre-Gaussian random variables. A separable

Banach space B with norm || · || is said to be of cotype q if there is a constant Cq such that for all finite

sequences xi ∈ B,

(
∑
i

||xi||q)1/q ≤ Cq||
∑
i

ϵixi||, (38)

where {ϵi} is a Rademacher sequance, i.e., i.i.d. random variables with P (ϵi = 1) = P (ϵi = −1) = 1/2. It is

known that ℓ1 is of cotype 2; see page 274 in Section 9.2 of [18].

We say that a random variable UUU in a Banach space B has a Gaussian distribution if, for every h in

the dual space B∗, h(UUU) has a one-dimensional Gaussian distribution. A random variable UUU in B, with

Eh(UUU) = 0 and Eh2(UUU) <∞ for every h in B∗ (i.e. weakly centered and square integrable), is pre-Gaussian

if its covariance is also the covariance of a Gaussian Borel probability measure on B. A weakly centered and

square integrable random variable UUU = (U0, U1, · · · ) in ℓ1 is pre-Gaussian if and only if

∞∑
k=0

(E|Uk|2)1/2 <∞; (39)

see page 261 of [18].

Theorem 5.2 (CLT for Banach-space random variables from [18] Theorem 10.7) If UUU is pre-Gaussian with

values in a separable cotype-2 Banach space, then UUU satisfies the CLT, i.e., n−1/2
∑n

i=1UUU
(i) where UUU (i) are

i.i.d. copies of UUU , converges in distribution, where the limit is Gaussian.

We remark that the limit distribution must have a Gaussian distribution because if UUU satisfies the CLT

in B, then h(UUU) satisfies the ordinary CLT with a Gaussian limit for h ∈ B∗. If we include (39), then we get

the following corollary.

Corollary 5.1 (CLT for ℓ1-value random variables) If UUU = (U0, U1, · · · ) ∈ ℓ1 is pre-Gaussian, then UUU

satisfies the CLT. The limit has a Gaussian distribution with the same covariance structure as UUU .
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We now discuss how this background theory is relevant here. We will be considering a discrete random

variable Y taking values in the non-negative integers. Let F c
j ≡ P (Y ≥ j) for k = 0, 1, · · · be the ccdf of Y

and Fj ≡ 1− F c
j . Let Y

(i) be i.i.d. random variables each distributed as Y and let

U
(i)
j ≡ I{Y (i)≥j} − F c

j .

Then UUU (i) are i.i.d. random variables in ℓ1 distributed as UUU with Eh(UUU) = 0 for all h ∈ ℓ∞ (i.e., for all

h ∈ (ℓ1)
∗). We want UUU to be pre-Gaussian, so we require that (39) holds, i.e.,

∞∑
k=0

(E(I{Y (1)≥j} − F c
j )

2)1/2 =
∞∑
k=0

(FjF
c
j )

1/2 <∞. (40)

Hence, a sufficient condition for (40) is

F c
j ∼ O(j−(2+ϵ)) for some ϵ > 0, (41)

which is actually implied by condition (I3) in Theorem 4.1. Condition (41) is also sufficient for Eh(UUU) = 0

and Eh2(UUU) <∞ for every h in ℓ∞. Hence, UUU is pre-Gaussian.

6 Proofs

We now provide the postponed proofs of Lemma 3.1, Theorem 3.2, Proposition 3.1, Corollary 3.1, Corollary

3.2, Theorem 4.1 and Theorem 4.2.

6.1 Proof of Lemma 3.1, Theorem 3.2 and Proposition 3.1

Proof of Lemma 3.1. To prove fzzz(xxx
(1),xxx(2), yyy) is continuous from Rd×Rd×(ℓ1)

d to Rd, it suffices to show that

fzzz,k(xxx
(1),xxx(2), yyy) is continuous from Rd×Rd× (ℓ1)

d to R, where xxx(i) = (x
(i)
0 , x

(i)
1 , · · · , x(i)d−1) ∈ Rd for i = 1, 2,

and yyy = (yyy0, yyy1, · · · , yyyd−1) ∈ (ℓ1)
d are variables and zzz = (zzz0, zzz1, · · · , zzzd−1) ∈ (ℓ1)

d is a constant. Further, it

suffices to show that hk(xxx,yyy) is continuous from Rd × (ℓ1)
d to R, where xxx = (x0, x1, · · · , xd−1) ∈ Rd. For

convenience, we use the maximum norm in Rd, i.e. ||xxx||∞ ≡ max
0≤k≤d−1

|xk|, which is an equivalent norm to the

usual Euclidean distance, and for the space Rd × Rd × (ℓ1)
d and Rd × (ℓ1)

d, we use the metric induced by

the norm ||(xxx(1),xxx(2), yyy)||Rd×Rd×(ℓ1)d ≡ ||xxx(1)||∞ + ||xxx(2)||∞ + ||yyy||1,d and ||(xxx,yyy)||Rd×(ℓ1)d ≡ ||xxx||∞ + ||yyy||1,d

respectively. Because the notation of infinity norm is the same in Rd and ℓ∞, it should not cause confusion.
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First we observe that hk can be written as a inner product of two projection functions:

hk(xxx,yyy) =ΠΠΠ1
k(xxx) ·ΠΠΠ2

k(yyy), (42)

where

ΠΠΠ1
k(xxx) ≡ (xk, xk−1, · · · , x0, xd−1, xd−2, · · · , x0, xd−1, xd−2, · · · ) and

ΠΠΠ2
k(yyy) ≡ (yk,0, yk−1,1, · · · , y0,k, yd−1,k+1, yd−2,k+1, · · · , y0,k+d, yd−1,k+d+1, · · · ). (43)

Note that ||ΠΠΠ1
k(xxx)||∞ = ||xxx||∞ < ∞, and ||ΠΠΠ2

k(yyy)||1 ≤
∑d−1

k=0 ||yyyk||1 < ∞. So obviously ΠΠΠ1
k(xxx) is continuous

from (Rd, || · ||∞) to (ℓ∞, || · ||∞) and ΠΠΠ2
k(yyy) is continuous from ((ℓ1)

d, || · ||1,d) to (ℓ1, || · ||1). We also have

that ΠΠΠ1
k(xxx) −ΠΠΠ1

k(x̃̃x̃x) = ΠΠΠ1
k(xxx − x̃̃x̃x) and Π2

kΠ
2
kΠ
2
k(yyy) −ΠΠΠ2

k(ỹ̃ỹy) = ΠΠΠ2
k(yyy − ỹ̃ỹy) for xxx, x̃̃x̃x ∈ Rd and yyy, ỹ̃ỹy ∈ (ℓ1)

d. For any

δ > 0 and (xxx,yyy) fixed, choose (x̃̃x̃x, ỹ̃ỹy) such that

||(xxx,yyy)− (x̃̃x̃x, ỹ̃ỹy)||Rd×(ℓ1)d = ||xxx− x̃̃x̃x||∞ +
d−1∑
k=0

||yyyk − ỹ̃ỹyk||1 < δ,

then

|hk(xxx,yyy)− hk(x̃̃x̃x, ỹ̃ỹy)| = |ΠΠΠ1
k(xxx) ···ΠΠΠ2

k(yyy)−ΠΠΠ1
k(x̃̃x̃x) ···ΠΠΠ2

k(ỹ̃ỹy)|

≤ |ΠΠΠ1
k(xxx) ···ΠΠΠ2

k(yyy)−ΠΠΠ1
k(xxx) ···ΠΠΠ2

k(ỹ̃ỹy)|+ |ΠΠΠ1
k(xxx) ···ΠΠΠ2

k(ỹ̃ỹy)−ΠΠΠ1
k(x̃̃x̃x) ···ΠΠΠ2

k(ỹ̃ỹy)|

≤ ||ΠΠΠ1
k(xxx)||∞||ΠΠΠ2

k(yyy − ỹ̃ỹy)||1 + ||ΠΠΠ1
k(xxx− x̃̃x̃x)||∞||ΠΠΠ2

k(ỹ̃ỹy)||1

≤ ||xxx||∞δ + δ
d−1∑
k=0

||ỹ̃ỹyk||1 ≤ ||xxx||∞δ + δ
d−1∑
k=0

(||yyyk||1 + ||yyyk − ỹ̃ỹyk||1)

≤ ||xxx||∞δ + δ
d−1∑
k=0

||yyyk||1 + δ2 → 0 as δ → 0. (44)

Given that each function fzzz,k is continuous from (Rd × Rd × (ℓ1)
d, || · ||Rd×Rd×(ℓ1)d) to (R, | · |), we can

conclude that fzzz is continuous from (Rd ×Rd × (ℓ1)
d, || · ||Rd×Rd×(ℓ1)d) to (Rd, || · ||∞). Finally, note that we

can write g(yyy) = f000(eee,000, yyy), where eee = (1, 1, · · · , 1) ∈ Rd, so that g is also continuous from ((ℓ1)
d, || · ||1,d) to

(Rd, || · ||∞) and the lemma is proved.

Proof of Theorem 3.2. Condition (C1) implies that F̂ cF̂ cF̂ c(n) ∈ (ℓ1)
d as well as F cF cF c ∈ (ℓ1)

d, which indicates that

the limiting distributions all have finite means. Moreover, (C1) implies that

(λ̄̄λ̄λ(n), F̄ cF̄ cF̄ c(n)) ⇒ (λλλ,F cF cF c) in Rd × (ℓ1)
d. (45)
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Note that W̄̄W̄W (n) = g(F̄ cF̄ cF̄ c(n)) and WWW = g(F cF cF c), so by continuous mapping theorem,

(λ̄̄λ̄λ(n), W̄̄W̄W (n), F̄ cF̄ cF̄ c(n)) ⇒ (λλλ,WWW,F cF cF c) in R2d × (ℓ1)
d. (46)

By the definition of L̄̄L̄L(n) in (6) and (3), L̄̄L̄L(n) is a function of (λ̄̄λ̄λ(n), F̄ cF̄ cF̄ c(n)), i.e. L̄̄L̄L(n) = f000(λ̄̄λ̄λ(n),000, F̄
cF̄ cF̄ c(n))

where f is defined in (16). By Lemma 3.1, f is a continuous function, hence

(λ̄̄λ̄λ(n), W̄̄W̄W (n), L̄̄L̄L(n), F̄ cF̄ cF̄ c(n)) ⇒ (λλλ,WWW,LLL,F cF cF c) in R3d × (ℓ1)
d. (47)

For the CLT-scaled terms, notice that Ŵ̂ŴW (n) = g(F̂ cF̂ cF̂ c(n)), so by the continuous mapping theorem,

(λ̂̂λ̂λ(n), Ŵ̂ŴW (n), F̂ cF̂ cF̂ c(n)) ⇒ (ΛΛΛ,ΩΩΩ,ΓΓΓ ) in R2d × (ℓ1)
d, (48)

where ΩΩΩ = g(ΓΓΓ ).

Combining (47) and (48), by Theorem 3.9 of [5], we have

(λ̄̄λ̄λ(n), W̄̄W̄W (n), L̄̄L̄L(n), λ̂̂λ̂λ(n), Ŵ̂ŴW (n), F̄ cF̄ cF̄ c(n), F̂ cF̂ cF̂ c(n)) ⇒ (λλλ,WWW,LLL,ΛΛΛ,ΩΩΩ,F cF cF c,ΓΓΓ ) in R5d × (ℓ1)
2d. (49)

Now we turn to L̂̂L̂L(n). Note that for k = 0, 1, · · · , d− 1, we can write the kth component of L̂̂L̂L(n) as

√
n(L̄k(n)− Lk) =

√
n
( ∞∑
j=0

λ̄[k−j](n)F̄
c
[k−j],j(n)−

∞∑
j=0

λ[k−j]F
c
[k−j],j

)
=

√
n

∞∑
j=0

(
λ̄[k−j](n)F̄

c
[k−j],j(n)− λ̄[k−j](n)F

c
[k−j],j + λ̄[k−j](n)F

c
[k−j],j − λ[k−j]F

c
[k−j],j

)
= hk(λ̄̄λ̄λ(n), F̂

cF̂ cF̂ c(n)) + hk(λ̂̂λ̂λ(n), F̂
cF̂ cF̂ c)

= fF cF cF c,k(λ̄̄λ̄λ(n), λ̂̂λ̂λ(n), F̂
cF̂ cF̂ c(n)), (50)

so

L̂̂L̂L(n) = fF cF cF c

(
λ̄̄λ̄λ(n), λ̂̂λ̂λ(n), F̂ cF̂ cF̂ c(n)

)
. (51)

By Lemma 3.1, fF cF cF c is a continuous function. In addition, ΓΓΓ ∈ (ℓ1)
d w.p.1, so we can apply the continuous

mapping theorem again to get

(λ̄̄λ̄λ(n), W̄̄W̄W (n), L̄̄L̄L(n), λ̂̂λ̂λ(n), Ŵ̂ŴW (n), L̂̂L̂L(n), F̄ cF̄ cF̄ c(n), F̂ cF̂ cF̂ c(n)) ⇒ (λλλ,WWW,LLL,ΛΛΛ,ΩΩΩ,ΥΥΥ ,F cF cF c,ΓΓΓ )

in R6d × (ℓ1)
2d, (52)
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where ΥΥΥ = fF cF cF c(λλλ,ΛΛΛ,ΓΓΓ ), which is what we want as in (18).

Proof of Proposition 3.1. If R̂̂R̂R(n) ⇒ 0, then both R̄̄R̄R(n) = L̄̄L̄L(n) − Q̄̄Q̄Q(n) → 000 and L̂̂L̂L(n) − Q̂̂Q̂Q(n) → 0 in

probability. By applying Theorem 3.1 of [5] based on (52), we have

(λ̄̄λ̄λ(n), W̄̄W̄W (n), Q̄̄Q̄Q(n), L̄̄L̄L(n), λ̂̂λ̂λ(n), Ŵ̂ŴW (n), Q̂̂Q̂Q(n), L̂̂L̂L(n), F̄ cF̄ cF̄ c(n), F̂ cF̂ cF̂ c(n), R̂̂R̂R(n)) ⇒ (λλλ,WWW,LLL,LLL,ΛΛΛ,ΩΩΩ,ΥΥΥ ,ΥΥΥ ,F cF cF c,ΓΓΓ ,000)

in R9d × (ℓ1)
2d. (53)

Now consider the departure processes δ̄̄δ̄δ(n) and δ̂̂δ̂δ(n). Note that

δ̄k(n) =
1

n

n∑
m=1

Dk+(m−1)d =
1

n

n∑
m=1

(Qk+(m−1)d −Qk+1+(m−1)d +Ak+1+(m−1)d)

=


Q̄k(n)− Q̄k+1(n) + λ̄k+1(n), 0 ≤ k < d− 1,

Q̄d−1(n)− Q̄0(n+ 1) + λ̄0(n+ 1) +
1

n
Q0 −

1

n
A0, k = d− 1,

(54)

and

δ̂k(n) =


√
n(Q̄k(n)− Q̄k+1(n) + λ̄k+1(n)− Lk + Lk+1 − λk+1)

√
n(Q̄d−1(n)− Q̄0(n+ 1) + λ̄0(n+ 1)− Lk + Lk+1 − λk+1 +

1

n
Q0 −

1

n
A0)

=


Q̂k(n)− Q̂k+1 + λ̂k+1(n), 0 ≤ k < d− 1,

Q̂d−1(n)− Q̂0 + λ̂0(n) +
1√
n
Q0 −

1√
n
A0, k = d− 1.

(55)

Once again by continuous mapping theorem, we get the joint convergence (20) in Proposition 3.1, where δδδ

is given by (8) and ∆k = Υ[k] − Υ[k+1] + Λ[k+1], 0 ≤ k ≤ d− 1.

6.2 Proof of Corollary 3.1

To make the proof clear, we first establish two lemmas.

Lemma 6.1 Assume Xn ∼ N(µn, σ
2
n), n = 1, 2, · · · , and Xn → X almost surely as n → ∞. Then X ∼

N(µ, σ2) where µ = lim
n→∞

µn, σ
2 = lim

n→∞
σ2
n and Xn → X in L2 as n→ ∞.

Proof Let ϕXn(t) = EeitXn = exp(iµnt−2−1σ2
nt

2) be the characteristic function ofXn. SinceXn → X almost

surely, by dominated convergence theorem, we know that lim
n→∞

EeitXn = EeitX for each t. So we must have

lim
n→∞

µi = µ, lim
n→∞

σ2
i = σ2 for some µ and σ ≥ 0. (Note that we cannot have lim

n→∞
µn = ∞ or lim

n→∞
σ2
n = ∞,
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which would contradict Lévy’s continuity theorem.) Then we know that EeitX = exp(iµt− 2−1σ2t2), which

shows that X ∼ N(µ, σ2).

Note that lim
n→∞

µn = µ and lim
n→∞

σ2
n = σ2 also implies that sup

n
EX4

n = sup
n

(µ4
n + 6µ2

nσ
2
n + 3σ4

n) < ∞. So

{X2
n} is uniformly integrable. Hence Xn → X in L2 as n→ ∞. ⊓⊔

Lemma 6.2 Assume NNN ∈ ℓ1 is a zero-mean normally distributed random variable with Cov(NNN,NNN) = ΣN

and aaa,bbb ∈ ℓ0 are constants. Let X ≡
∑∞

i=1 aiNi = aaaT ···NNN and Y ≡
∑∞

i=1 biNi = bbbT ···NNN , then (X,Y ) is jointly

zero-mean normal distributed with

Cov(X,X) = Var(X) =

∞∑
i=1

∞∑
j=1

aiajΣ
N
i,j <∞,

Cov(Y, Y ) = Var(Y ) =
∞∑
i=1

∞∑
j=1

bibjΣ
N
i,j <∞ and

Cov(X,Y ) = E(XY ) =

∞∑
i=1

∞∑
j=1

aibjΣ
N
i,j <∞.

Proof By the definition of normal distribution in ℓ1 space,X and Y are normally distributed random variables

on R. We only need to show that they are also jointly normally distributed, i.e. for any given α, β ∈ R,

αX + βY is a zero-mean normal distributed random variable.

Denote Xn =
∑n

i=1 aiNi and Yn =
∑n

i=1 biNi. Since X and Y are well defined almost surely, we know

that αXn +βYn → αX +βY almost surely. Note that αXn +βYn is normal distributed with mean zero and

variance
∑n

i=1

∑n
j=1(αai + βbi)(αaj + βbj)Σ

N
i,j . And we can apply Lemma 6.1 and know that αX + βY has

normal distribution with mean zero and variance
∑∞

i=1

∑∞
j=1(αai +βbi)(αaj +βbj)Σ

N
i,j . So (X,Y ) is jointly

normally distributed.

Now we derive E(XY ). By Lemma 6.1 we know that Xn → X and Yn → Y in L2 as well, so XnYn →

XY in L1 and we have E(XY ) = lim
n→∞

E(XnYn) = lim
n→∞

∑n
i=1

∑n
j=1 aibjΣ

N
i,j =

∑∞
i=1

∑∞
j=1 aibjΣ

N
i,j < ∞.

Because X and Y are zero-mean normal distributed, we have Cov(X,Y ) = E(XY ), where Cov(X,X) and

Cov(Y, Y ) are special cases with X = Y . ⊓⊔

Proof of Corollary 3.1. Lemma 6.2 can be easily generalized toNNN ∈ (ℓ1)
d only with some tedious steps. Since

ΓΓΓ ∈ (ℓ1)
d almost surely, ΩΩΩ = g(ΓΓΓ ) and ΥΥΥ = fF cF cF c(λλλ,ΛΛΛ,ΓΓΓ ) are well defined a.s. In addition, with the Gaussian

assumption, we may apply the generalized version of Lemma 6.2 and know that (ΩΩΩ,ΥΥΥ ) has a zero-mean
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jointly normal distribution with each element being well defined a.s. and in L2, where

(Cov(ΩΩΩ,ΩΩΩ))k,l = Cov(
∞∑
j=0

Γk,j ,
∞∑
j=0

Γl,j) =
∞∑
i=1

∞∑
j=1

ΣΓ :k,l
i,j ,

(Cov(ΥΥΥ ,ΥΥΥ ))k,l = Cov(fF cF cF c,k(λλλ,ΛΛΛ,ΓΓΓ ), fF cF cF c,l(λλλ,ΛΛΛ,ΓΓΓ ))

= Cov(
∞∑
j=0

λ[k−j]Γ[k−j],j +
∞∑
j=0

F c
[k−j],jΛ[k−j],

∞∑
j=0

λ[l−j]Γ[l−j],j +
∞∑
j=0

F c
[l−j],jΛ[l−j])

=

∞∑
i=0

∞∑
j=0

λ[k−i]λ[l−j]Σ
Γ :[k−i],[l−j]
i+1,j+1 +

∞∑
i=0

∞∑
j=0

λ[k−i]F
c
[l−j],jΣ

Λ,Γ :[k−j]
[l−j]+1,i+1

+
∞∑
i=0

∞∑
j=0

F c
[k−i],iλ[l−j]Σ

Λ,Γ :[l−j]
[k−i]+1,j+1 +

∞∑
i=0

∑
j=0

F c
[k−i],iF

c
[l−j],jΣ

Λ
[k−i]+1,[l−j]+1,

(Cov(ΩΩΩ,ΥΥΥ ))k,l = Cov(
∞∑
j=0

Γk,j ,
∞∑
j=0

λ[l−j]Γ[l−j],j +
∞∑
j=0

F c
[l−j,j]Λ[l−j])

=

∞∑
i=1

∞∑
j=0

λ[l−j]Σ
Γ :k,[l−j]
i+1,j+1 +

∞∑
i=1

∞∑
j=0

F c
[l−j],jΣ

Λ,Γ :k
[l−j]+1,i+1.

6.3 Proof of Corollary 3.2

If the LoS is bounded by J , then F̄ c
k,j(n) = 0 for all 0 ≤ k ≤ d − 1 and n when j > J . So if we have (C1),

then F c
k,j = 0 must holds for all k and j > J and F̂ cF̂ cF̂ c(n) ∈ (ℓ1)

d w.p. 1. Hence Γk,j = 0 for all k and j > J ,

and ΓΓΓ ∈ (ℓ1)
d w.p. 1.

To see that R̂̂R̂R(n) ⇒ 0 holds, by (7), R̂̂R̂R(n) = L̂̂L̂L(n)− Q̂̂Q̂Q(n) =
√
n(L̄̄L̄L(n)− Q̄̄Q̄Q(n)), so it suffices to show that

√
nE(n) → 0, where E(n) ≡ ||L̄̄L̄L(n) − Q̄̄Q̄Q(n)||1. We take M such that (M − 1)d < J ≤ Md. When n > M ,

because Yk,j = 0 for j > Md ≥ J , we have

√
nE(n) =

√
n
1

n

n∑
m=1

d∑
j=1

∞∑
s=(n−m)d

Yd−j+(m−1)d,j+s = n−1/2
n∑

m=n−M+1

d∑
j=1

Md∑
s=(n−m)d

Yd−j+(m−1)d,j+s

≤
d∑

j=1

n−1/2
n∑

m=n−M+1

MdAd−j+(m−1)d ≤ n−1/2d2M2C → 0 as n→ ∞, (56)

where C is the upper bound for the number of arrivals within a discrete time period. This establishes

R̂̂R̂R(n) ⇒ 0.

6.4 Proof of Theorem 4.1

To prove Theorem 4.1, we need a lemma to establish (C1).
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Lemma 6.3 Suppose Wk, k = 0, 1, · · · , d− 1, are non-negative integer-valued random variables with F c
k,j ≡

1 − Fk,j ≡ P (Wk ≥ j) ∼ O(j−(3+δ)), j ≥ 0, for some δ > 0. W
(i)
k are i.i.d. samples of Wk, denote

III
(i)
k ≡ (I

W
(i)
k ≥0

, I
W

(i)
k ≥1

, · · · ), FFF c
k ≡ (F c

k,0, F
c
k,1, · · · ), andXXX

(i)
k ≡ III

(i)
k −FFF c

k. Assume YYY (i) are i.i.d. non-negative

integer-valued random variables in Rd with EYYY (i) = µYµYµY ≡ (µY,0, µY,1, · · · , µY,d−1) > 000 and Var(YYY (i)) = ΣY ,

where all the W
(i)
k and YYY (j) are independent for k = 0, 1, · · · , d− 1, and i, j ≥ 1. Let

SSS(n) ≡ (S0(n), S1(n), · · · , Sd−1(n)) ≡
n∑

i=1

YYY (i)

and

GGG(n) ≡ (GGG0(n),GGG1(n), · · · ,GGGd−1(n)) ≡ (

S0(n)∑
i=1

XXX
(i)
0 ,

S1(n)∑
i=1

XXX
(i)
1 , · · · ,

Sd−1(n)∑
i=1

XXX
(i)
d−1).

We claim that

n−1/2(SSS(n)− nµYµYµY ,GGG(n)) ⇒ (ΛΛΛ,ΓΓΓ ) in Rd × (ℓ1)
d, (57)

where ΓΓΓ = (ΓΓΓ 0,ΓΓΓ 1, · · · ,ΓΓΓ d−1) and (ΛΛΛ,ΓΓΓ ) has a zero-mean Gaussian distribution in Rd × (ℓ1)
d with ΛΛΛ ∼

N(000, ΣY ), Cov(Γk,j , Γk,s) = µY,kFk,jF
c
k,s for 0 ≤ k ≤ d − 1 and 0 ≤ j ≤ s, and ΛΛΛ,ΓΓΓ 0,ΓΓΓ 1, · · · ,ΓΓΓ d−1 are

independent.

Proof The classical multivariate CLT implies that

n−1/2(SSS(n)− nµYµYµY ) ⇒ ΛΛΛ ∼ N(000, ΣY ). (58)

Let ZZZk ∈ ℓ1 for 0 ≤ k ≤ d − 1 be zero-mean Gaussian distributed random variables with Cov(Zk,j , Zk,l) =

Fk,jF
c
k,l. By Theorem 1.1 of [13],

(Sk(n))
−1/2

Sk(n)∑
i=1

XXX
(i)
k ⇒ ZZZk in ℓ1 for 0 ≤ k ≤ d− 1, (59)

then after applying Slutsky’s theorem, we have

n−1/2

Sk(n)∑
i=1

XXX
(i)
k ⇒ ΓΓΓ k = µ

1/2
Y,kZZZk in ℓ1 for 0 ≤ k ≤ d− 1, (60)

so that ΓΓΓ k has a zero-mean Gaussian distribution with Cov(Γk,j , Γk,s) = µY,kFk,jF
c
k,s for j ≤ s. Unfortu-

nately we cannot get the joint convergence directly since they are not independent of each other, however,

we can use independent copies of YYY (i) as a bridge to prove it.
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Assume that {ỸYY
(i)
} are i.i.d. copies of YYY (i) and are also independent of other variables. Let

S̃SS(n) ≡ (S̃0(n), S̃1(n), · · · , S̃d−1(n)) ≡
n∑

i=1

ỸYY
(i)
.

Because n−1/2(SSS(n)−nµYµYµY ) is independent of n
−1/2G̃GG0(n) ≡ n−1/2

∑S̃0(n)
i=1 XXX

(i)
0 , we can apply Theorem 11.4.4

of [28] to obtain

n−1/2(SSS(n)− nµYµYµY , G̃GG0(n)) ⇒ (ΛΛΛ,ΓΓΓ 0) in Rd × ℓ1, (61)

where we can make ΛΛΛ be independent of ΓΓΓ 0. For what we want, we need to show that n−1/2||GGG0(n) −

G̃GG0(n)||1 → 0 in probability as n→ ∞ and then apply Theorem 3.1 from [5]. For any ϵ > 0,

P (n−1/2||GGG0(n)− G̃GG0(n)||1 > ϵ) = P (||
S0(n)∑
i=1

XXX
(i)
0 −

S̃0(n)∑
i=1

XXX
(i)
0 ||1 > n1/2ϵ)

≤P (||
S0(n)∑
i=1

XXX
(i)
0 −

S̃0(n)∑
i=1

XXX
(i)
0 ||1 > n1/2ϵ, |S0(n)− S̃0(n)| ≤ n3/4) + P (|S0(n)− S̃0(n)| > n3/4)

≤2P ( max
I=1,2,··· ,⌊n3/4⌋

||
I∑

i=1

XXX
(i)
0 ||1 > n1/2ϵ) + P (|S0(n)− S̃0(n)| > n3/4)

=2P ( max
I=1,2,··· ,⌊n3/4⌋

∞∑
j=0

|
I∑

i=1

X
(i)
0,j | > n1/2ϵ) + P (|S0(n)− S̃0(n)| > n3/4)

≤2P (
∞∑
j=0

max
I=1,2,··· ,⌊n3/4⌋

|
I∑

i=1

X
(i)
0,j | > n1/2ϵ) + P (|S0(n)− S̃0(n)| > n3/4). (62)

For the first part, let δ1 ≤ δ/2 and C ≡ (
∑∞

j=0 j
−(1+δ1))−1 be constants, note that Var(X

(i)
0,j) = F0,jF

c
0,j ,

so

P (

∞∑
j=0

max
I=1,2,··· ,⌊n3/4⌋

|
I∑

i=1

X
(i)
0,j | > n1/2ϵ) ≤

∞∑
j=0

P ( max
I=1,2,··· ,⌊n3/4⌋

|
I∑

i=1

X
(i)
0,j | > Cn1/2ϵj−(1+δ1))

≤3
∞∑
j=0

max
I=1,2,··· ,⌊n3/4⌋

P (|
I∑

i=1

X
(i)
0,j | > Cn1/2ϵj−(1+δ1)/3) ≤ 27

∞∑
j=0

max
I=1,2,··· ,⌊n3/4⌋

Var(
∑I

i=1X
(i)
0,j)

C2nϵ2j−(2+2δ1)

≤27

∞∑
j=0

C−2n−1ϵ−2j2+2δ1⌊n3/4⌋F0,jF
c
0,j

≤27C−2ϵ−2n−1⌊n3/4⌋
∞∑
j=0

j2+2δ1F c
0,j → 0 as n→ ∞, (63)

because as a consequence of F c
k,j ∼ O(j−(3+δ)),

∑∞
j=0 j

2+2δ1F c
0,j ≤ ∞, and the second and third inequalities

follow from Etemadi’s inequality (see page 256 of [5]) and Chebyshev’s inequality respectively.
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As for the second part, again using Chebyshev’s inequality, we have

P (|S0(n)− S̃0(n)| > n3/4) ≤ Var(S0(n)− S̃0(n))

n3/2
≤

2nΣY
1,1

n3/2
→ 0 as n→ ∞. (64)

So (62) goes to 0 as n→ ∞, hence

n−1/2(SSS(n)− nµYµYµY ,GGG0(n)) ⇒ (ΛΛΛ,ΓΓΓ 0) in Rd × ℓ1. (65)

Using the same argument (making new i.i.d. copies of YYY (i)), we can add GGG1(n),GGG2(n), · · · ,GGGd−1(n) one by

one and in the end get (57). ⊓⊔

Proof of Theorem 4.1. Take λλλ = E(A0+(m−1)d, A1+(m−1)d, · · · , Ad−1+(m−1)d) and F
cF cF c to be the complemen-

tary distribution functions of the LoS. Let WWW and LLL be as in (C2), in which case WWW is the vector of mean

LoS for a period.

We can use Lemma 6.3 to establish (C1) by letting YYY (i) be theAAAi andW
(i)
k be the LoS of ith customer that

arrived at discrete time period k+(m−1)d for allm = 1, 2, · · · . (So EW (i)
k =Wk and σ2

W,k ≡ Var(W
(i)
k ) <∞.)

The conclusion of Lemma 6.3 is exactly (C1).

Then we need to establish R̂̂R̂R(n) ⇒ 0. Note that (I1) and (I2) imply that the SLLN holds, i.e. equation

(2) hold, so that we have Theorem 2.1. Since R̂̂R̂R(n) = L̂̂L̂L(n)− Q̂̂Q̂Q(n) = n1/2(L̄̄L̄L(n)− Q̄̄Q̄Q(n)), it suffices to show

that for each 0 ≤ k ≤ d− 1, n1/2(L̄k(n)− Q̄k(n)) → 0 in probability as n→ ∞.

From the proof of Theorem 2.1 in [31], we know that

L̄k(n)− Q̄k(n) = n−1
n∑

m=1

d∑
j=1

∞∑
s=n−m+1

Yd−j+(m−1)d,j+k+(s−1)d.

So for any ϵ > 0,

P (n1/2(L̄k(n)− Q̄k(n)) > ϵ)

=P (n−1/2
n∑

m=1

d∑
j=1

∞∑
s=n−m+1

Yd−j+(m−1)d,j+k+(s−1)d > ϵ)

≤
d∑

j=1

P (

n∑
m=1

∞∑
s=n−m+1

Yd−j+(m−1)d,j+k+(s−1)d > n1/2d−1ϵ)

≤
d∑

j=1

(P (

n−⌊n1/4⌋∑
m=1

∞∑
s=n−m+1

Yd−j+(m−1)d,j+k+(s−1)d > n1/2d−1ϵ)

+ P (
n∑

m=n−⌊n1/4⌋+1

∞∑
s=n−m+1

Yd−j+(m−1)d,j+k+(s−1)d > n1/2d−1ϵ)). (66)
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Then we only need to prove that each of the two probabilities go to zero as n→ ∞.

For the first part, we have

P (

n−⌊n1/4⌋∑
m=1

∞∑
s=n−m+1

Yd−j+(m−1)d,j+k+(s−1)d > n1/2d−1ϵ)

≤P (
n−⌊n1/4⌋∑

m=1

∞∑
s=⌊n1/4⌋+1

Yd−j+(m−1)d,j+k+(s−1)d > n1/2d−1ϵ)

≤P (
n∑

m=1

∞∑
s=⌊n1/4⌋+1

Yd−j+(m−1)d,j+k+(s−1)d > n1/2d−1ϵ)

≤
∑n

m=1

∑∞
s=⌊n1/4⌋+1 EYd−j+(m−1)d,j+k+(s−1)d

n1/2d−1ϵ
≤ n1/2dϵ−1

∞∑
s=⌊n1/4⌋+1

λd−jF
c
d−j,j+k+(s−1)d

≤n1/2dλd−jϵ
−1

∞∑
s=⌊n1/4⌋+1

F c
d−j,s ≤ n1/2Cdλd−jϵ

−1

∫ ∞

⌊n1/4⌋
s−(3+δ)ds

=n1/2Cdλd−j(2 + δ)−1ϵ−1⌊n1/4⌋−(2+δ) → 0 as n→ ∞. (67)

For the second part, let Sk(n) =
∑n

m=1Ak+(m−1)d. Then

P (
n∑

m=n−⌊n1/4⌋+1

∞∑
s=n−m+1

Yd−j+(m−1)d,j+k+(s−1)d > n1/2d−1ϵ)

≤P (
n∑

m=n−⌊n1/4⌋+1

∞∑
s=0

Yd−j+(m−1)d,s > n1/2d−1ϵ) = P (

Sd−j(⌊n1/4⌋)∑
i=1

W
(i)
d−j > n1/2d−1ϵ)

≤
Var(

∑Sd−j(⌊n1/4⌋)
i=1 W

(i)
d−j) + (E(

∑Sd−j(⌊n1/4⌋)
i=1 W

(i)
d−j))

2

nd−2ϵ2

=n−1d2ϵ−2(⌊n1/4⌋ΣΛ
d−j+1,d−j+1Wd−j + ⌊n1/4⌋λd−jσ

2
W,d−j + ⌊n1/4⌋2λ2d−jW

2
d−j)

→ 0 as n→ ∞. (68)

Hence, we have proved that n1/2(L̄k(n)− Q̄k(n)) → 0 in probability as n→ ∞, i.e., R̂̂R̂R(n) ⇒ 0. Since we

have established all three conditions in Theorem 3.2 and Proposition 3.1, so their conclusions follow. As a

special case of Corollary 3.1, the covariance matrix of (ΩΩΩ,ΥΥΥ ) has the same form as in (22) with ΣΛ:k,l = 0

for k ̸= l, ΣΛ,Γ :k = 0 for all k and ΣΓ :k,k
i+1,j+1 = λkFk,iF

c
k,j for 0 ≤ i ≤ j.

6.5 Proof of Theorem 4.2

As we discussed before Theorem 4.2, we will first use a CLT for stationary processes with mixing conditions

to {YYY n : n ∈ N} (Step 1). Such type of CLT was established by Ibragimov; see Theorem 18.5.3 in [15] or
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Theorem 0 in [6]. We apply it in RdJ by utilizing Cramér-Wold device; see Theorem 29.4 in [4]. Then, in

Step 2, we show that (C1) holds. Finally, in Step 3, we show R̂̂R̂R(n) ⇒ 000 to complete the proof.

Step 1: Firstly, by the definition of Yi,j and Ai, we observe that E||AAA0||2+δ
∞ < ∞ in (S2) implies that

E|Yk+nd,j |2+δ < ∞ for all n ≥ 0, 0 ≤ k ≤ d − 1 and 0 ≤ j ≤ J − 1. Let F c
k,j ≡ EYk,j

EYk,0
=

EYk,j
λk

for

0 ≤ k ≤ d− 1 and 0 ≤ j ≤ J − 1, where λλλ = (λ0, λ1, · · · , λd−1) is in (S2). Now the FFF we defined in (8) can

also be reduced to finite dimensional space Rd×J , i.e.

F cF cF c =



F0,0 F0,1 · · · F0,J−1

F1,0 F1,1 · · · F1,J−1

...
...

...
...

Fd−1,0 Fd−1,1 · · · Fd−1,J−1


. (69)

We want to show that {YYY n : n ∈ N} satisfies a CLT. By Cramér-Wold device, we only need to show that∑d−1
k=0

∑J−1
j=0 θk,jYk+nd,j satisfies the corresponding CLT for each θθθ = (θk,j)d×J ∈ Rd×J . Let

{Zn(θθθ) ≡
d−1∑
k=0

J−1∑
j=0

θk,j(Yk+nd,j − λkF
c
k,j), n ∈ N}, (70)

be the centralized strictly stationary process, and we need to show that it satisfies Theorem 0 in [6], i.e. for

some δ > 0, E|Zn(θθθ)|2+δ < ∞ and
∑∞

n=1 αZθθθ
(n)δ/(2+δ), where αZθθθ

(n) is the strong mixing coefficient for

{Zn} like we introduced in (29). We take the δ as in (S2). Note that

E|Zn(θθθ)|2+δ = E|
d−1∑
k=0

J−1∑
j=0

θk,j(Yk+nd,j − λkF
c
k,j)|2+δ ≤

d−1∑
k=0

J−1∑
j=0

|θk,j |2+δE|Yk+nd,j − λkF
c
k,j |2+δ

≤
d−1∑
k=0

J−1∑
j=0

|θk,j |2+δ((E|Yk+nd,j |2+δ)1/(2+δ) + λkF
c
k,j)

2+δ <∞, (71)

where the first inequality uses the linearity of expectation and the second is by Minkowski’s inequality. Since

Zn(θθθ) is a linear combination of the elements of YYY n, the corresponding sigma-algebra generated by it is

smaller than the one generated by YYY n, so that by the definition of strong mixing coefficient we know that

αZθθθ
(n) ≤ α(n). Hence, given

∑∞
n=1 α(n)

δ/(2+δ) < ∞ as in (S2), we have
∑∞

n=1 αZθθθ
(n)δ/(2+δ) < ∞. By

Theorem 0 in [6], we know that σ2
θθθ = EZ0(θθθ)

2 + 2
∑∞

i=1 E(Z0(θθθ)Zi(θθθ)) exists with the sum being absolutely

convergent and n−1/2
∑n−1

i=0 Zi(θθθ) ⇒ N(0, σ2
θθθ). Let

Ŷ̂ŶY (n) ≡
√
n(Ȳ̄ȲY (n)− diag(λλλ)F cF cF c) ≡

√
n(

1

n

n−1∑
i=0

YYY i − diag(λλλ)F cF cF c), (72)
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where diag(λλλ) ∈ Rd×d is the diagonal matrix with λλλ on the diagonal. By Cramér-Wold device, we know that

Ŷ̂ŶY (n) ⇒ ψψψ ≡



ψ0,0 ψ0,1 · · · ψ0,J−1

ψ1,0 ψ1,1 · · · ψ1,J−1

...
...

...
...

ψd−1,0 ψd−1,1 · · · ψd−1,J−1


as n→ ∞, (73)

where ψψψ is normal distributed with mean 0 and covariance

Cov(ψk,j , ψl,s) = E((Yk,j − λk, F
c
k,j)(Yl,s − λlF

c
l,s)) + 2

∞∑
i=1

E((yk,j − λkF
c
k,j)(Yl+id,j − λlF

c
l,s)). (74)

Step 2: Now we show that (73) implies conditon (C1) holds. Actually it suffices to show that (λ̂̂λ̂λ(n), F̂ cF̂ cF̂ c(n)) is

actually a continuous function of Ŷ̂ŶY (n). It is trivial to see that λ̂̂λ̂λ(n) = Ŷ̂ŶY (n)eee1, where eee1 = (1, 0, 0, · · · , 0)T ∈

RJ is a continuous map from Rd×J to Rd. For F̂ cF̂ cF̂ c(n) =
√
n(F̄ cF̄ cF̄ c(n) − F cF cF c), note that it is, by (S3), a finite

dimensional matrix, so it suffices to show that each element of it is a continuous function of Ŷ̂ŶY (n). To see it,

observe that

F̂ c
k,j(n) =

√
n(F̄ c

k,j(n)− F c
k,j) =

√
n(
Ȳk,j(n)

Ȳk,0(n)
− F c

k,j) =
√
n
(Ȳk,j(n)− λkF

c
k,j)− F c

k,j(Ȳk,0(n)− λk)

Ȳk,0(n)

=
Ŷk,j(n)− F c

k,j Ŷk,0(n)

Ȳk,0(n)
. (75)

In addition, (73) implies that Ȳk,0(n) → λk in probability, so by continuous mapping theorem, Slutskys

theorem and Cramér-Wold device, we know that

(λ̂̂λ̂λ(n), F̂ cF̂ cF̂ c(n)) ⇒ (ΛΛΛ,ΓΓΓ ) in Rd × Rd×J , (76)

where ΛΛΛ = (ψ0,0, ψ1,0, · · · , ψd−1,0) and Γk,j =
ψk,j − F c

k,jψk,0

λk
, 0 ≤ k ≤ d− 1, 0 ≤ j ≤ J − 1.

Step 3: Finally, since the LoSs are bounded, we only need to show R̂̂R̂R(n) ⇒ 000 to establish Theorem 3.2 and

Proposition 3.1. Moreover, if (ΛΛΛ,ΓΓΓ ) has a Gaussian distribution, Theorem 3.1 holds as well.

Analogously to the proof of Corollary 3.2, it suffices to show that
√
nE(n) → 0 in probability. To see

that, for any ϵ > 0, take the same M as in the proof of Corollary 3.2, and based on (56), we have

P (
√
nE(n) > ϵ) ≤ P (n−1/2Md

d∑
j=1

n∑
m=n−M+1

Ad−j+(m−1)d > ϵ)

≤ P (n−1/2Md2
n∑

m=n−M+1

||AAA(m−1)||∞ > ϵ) ≤ M2d2E||AAA0||∞
ϵn1/2

→ 0 as n→ ∞, (77)



A Central-Limit-Theorem Version of the Periodic Little’s Law 33

where in the last inequality we apply Markov inequality and exploit the stationarity of {AAAn}. So we know

R̂̂R̂R(n) ⇒ 000 and together with Step 2, we have proved the theorem.
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